Towards event-by-event composition studies

GZK-40

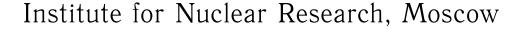
The Third International Workshop on Ultra-high-energy cosmic rays and their sources

INR, Moscow, May 16-18, 2006

Dmitry S. Gorbunov

D.S.G., G.I. Rubtsov, S.V. Troitsky

gorby@ms2.inr.ac.ru



Motivation

What can we learn from GZK-studies, if the cutoff would be observed?

Astrophysics

sources:

accelaration mechanism, local backgrounds space:

 γ -background, magnetic fileds

Particle physics

interactions at $E_{cm} \gtrsim 300$ TeV: cross section, inelasticity, multiplicity, P_T -distribution, new physics phenomena?

Motivation

What can we learn from GZK-studies, if the cutoff would be observed?

Astrophysics

sources:

accelaration mechanism, local backgrounds space:

 γ -background, magnetic fileds

Particle physics

```
interactions at E_{cm} \gtrsim 300 TeV: cross section, inelasticity, multiplicity, P_T-distribution, new physics phenomena?
```


chemical composition

Plan

- The main idea: event-by-event analysis
- Chemical composition from observed events with "estimated" primary type
- Several Examples: highest energy AGASA and Yakutsk events
- How one can estimate the primary of a given observed event
- What else?

Event-by-event analysis

It is obviously important:

- just several parameters of EAS are measured
- significant fluctuations
- degenerecy: similar parameters for different primaries
- azimuth angle dependence
- global anisotropy?
- evolution of chemical composition with energy
- poor statistics

Interesting questions: a given event

For a given observed (several parameters of EAS are measured) event:

- conservative study (negative knowledge): what is the probability, that it could not be initiated by the primary A?
- (positive knowledge): what is the probability, that it could be initiated by a primary of a given type A_i (say, $A_i = p, \gamma, \ldots$, Fe)?
- **.** . . .
- \blacksquare what is the most probable initial energy, if the primary was A_i ?
- (z, θ) are fixed (contra examples?)

Interesting questions: combined set

Chemical composition of UHECR within a given energy interval $E_{min} < E < E_{max}$:

- ullet (negative knowledge): the upper limit on the primary A
- (positive knowledge): what is the most probable chemical composition (the set of possible primaries is fixed)?
- **_**
- selection cuts
- global (an)isotropy

Procedure to estimate the chemical composition

- 1. one selects the set of observed events (EAS parameters have been measured) experimental cuts ($z < 45^{\circ}$), quality cuts?
- 2. for each event j one compares the parameters of simulated EAS of various primaries to parameters of observed EAS and estimates the probabilities $p_i(j)$ that it could (not) be initiated by a primary A_i of energy within $E_{min} < E < E_{max}$ ($\equiv \mathcal{E}$)
- 3. $p_i(j)$ enables one to estimate the probability that among N events n_i were (not) initiated by primary A_i combinatorics
- 4. one estimates the most probable chemical composition ϵ_i or set the upper bound on a primary A, which are consistent with selected set of observed events likelihood
- 5. one takes into account possible corrections because of cuts on initial set, global anisotopy, etc.

The upper limit on a fraction of primary A

1. Input

set of N observed events with energies \mathcal{E} ,

$$p_A^{(+)j}$$
 , $p_{\overline{A}}^{(+)j}$,

generally $p_A^{(+)j} + p_{\overline{A}}^{(-)j} \neq 1$

Steps

2. Probability $\mathcal{P}(n_1, n_2)$: among N observed events, n_1 initiated by A with \mathcal{E} and n_2 initiated by \overline{A} with \mathcal{E} :

The probability to have i_1 -th, ..., i_{n_1} -th events ($i_1 < \cdots < i_{n_1}$) induced by A with \mathcal{E} and k_1 -th, ..., k_{n_2} -th events $(k_1 < \cdots < k_{n_2}, i_i \neq k_l)$ induced by A with \mathcal{E} :

$$\mathcal{P}\left(\{i_j\},\{k_l\}\right) = \prod_{i_j} p_A^{(+)i_j} \prod_{k_l} p_{\overline{A}}^{(+)k_l} \prod_{m_n \neq i_j,k_l} \left(1 - p_A^{(+)m_n} - p_{\overline{A}}^{(+)m_n}\right);,$$

To calculate $\mathcal{P}(n_1, n_2)$ one sums over all subsets $(\{i_i\}, \{k_l\})$

$$\mathcal{P}(n_1,n_2) = \sum_{\substack{i_1 < i_2 < \dots < i_{n_1} \\ k_1 < k_2 < \dots < k_{n_2} \\ k_1 < k_2 < \dots < k_{n_2} \\ }} \mathcal{P}\left(\{i_j\},\{k_l\}\right) , \qquad 1 \leq i_j,k_l,m_n \leq N$$

The upper limit on a fraction of primary A

Let ϵ_A be the fraction of A in \mathcal{E}

3. Let $\mathcal{P}(\epsilon)$ be the probability that the observed results are reproduced for a given ϵ_A . Hence

$$\mathcal{P}(\epsilon_A) = \sum_{n_1, n_2}^{n_1 + n_2 \le N} \mathcal{P}(n_1, n_2) \epsilon_A^{n_1} (1 - \epsilon_A)^{n_2}$$

4. Upper limit on ϵ_A at a given confidence level ξ :

$$P(\epsilon_A) \ge 1 - \xi$$

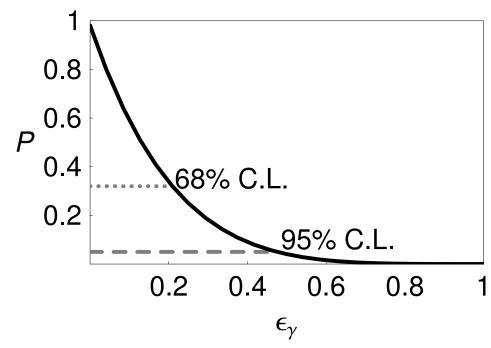
5. Correction because of cuts:

$$\lambda = \frac{m_{ ext{lost}}}{m} \; , \qquad \epsilon_{A, \, ext{true}} = \frac{\epsilon_A}{1 - \lambda + \lambda \epsilon_A}$$

Example

all AGASA events with known muon content and energies $E_{\rm obs} > 8 \cdot 10^{19}$ eV: N=6

Event	$p_{\gamma}^{(+)}$	$p_{\overline{\gamma}}^{(+)}$
1	0.000	1.000
2	0.001	0.998
3	0.013	0.921
4	0.003	0.887
5	0.000	0.580
6	0.000	0.565



Result:

AGASA+Yakutsk, $E > 10^{20}$ eV, muons:

 $\epsilon_{\gamma, \text{true}} < 0.50$ at 95% C.L.

 $\epsilon_{\gamma, \rm true} < 0.36$

Rubtsov et al, '06:

The most probable chemical composition

1. Input

set of N observed events with energies \mathcal{E} ,

$$p_{A_1}^{(+)j}$$
 , $p_{A_2}^{(+)j}$,

generally $p_{A_1}^{(+)j} + p_{A_2}^{(-)j} \neq 1$

Steps

2. Probability $\mathcal{P}(n_1, n_2)$: among N observed events, n_1 initiated by A_1 with \mathcal{E} and n_2 initiated by A_2 with \mathcal{E} :

The probability to have i_1 -th, ..., i_{n_1} -th events ($i_1 < \cdots < i_{n_1}$) induced by A_1 with \mathcal{E} and k_1 -th, ..., k_{n_2} -th events ($k_1 < \cdots < k_{n_2}$, $i_j \neq k_l$) induced by A_2 with \mathcal{E} :

$$\mathcal{P}\left(\{i_j\},\{k_l\}\right) = \prod_{i_j} p_{A_1}^{(+)i_j} \prod_{k_l} p_{A_2}^{(+)k_l} \prod_{m_n \neq i_j,k_l} \left(1 - p_{A_1}^{(+)m_n} - p_{A_2}^{(+)m_n}\right);,$$

To calculate $\mathcal{P}(n_1, n_2)$ one sums over all subsets $(\{i_j\}, \{k_l\})$

$$\mathcal{P}(n_1, n_2) = \sum_{\substack{i_1 < i_2 < \dots < i_{n_1} \\ k_1 < k_2 < \dots < k_{n_2} \\ i_1 \neq k_l}} \mathcal{P}\left(\{i_j\}, \{k_l\}\right), \qquad 1 \leq i_j, k_l, m_n \leq N$$

The most probable chemical composition

Let us suppose that $\epsilon_{A_{1,2}}$ are the fractions of $A_{1,2}$

3. Let $\mathcal{P}(\epsilon_{A_1})$ be the probability that the observed results are reproduced for a given set $(\epsilon_{A_1}, \epsilon_{A_2} = 1 - \epsilon_{A_1})$. Hence

$$\mathcal{P}(\epsilon_{A_1}) = \sum_{n_1, n_2}^{n_1 + n_2 \le N} \mathcal{P}(n_1, n_2) \epsilon_{A_1}^{n_1} (1 - \epsilon_{A_1})^{n_2}$$

4.a The allowed ϵ_{A_1} at a given confidence level ξ :

$$P(\epsilon_{A_1}) \ge 1 - \xi$$

4.b The most probable composition: maximization of $\mathcal{P}(\epsilon_{A_1})$

5. Correction because of cuts:

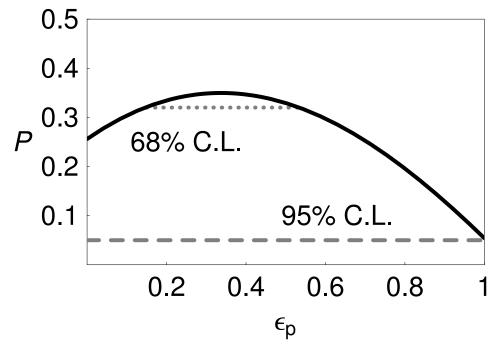
$$\lambda = \frac{m_{\text{lost}}}{m} , \qquad \epsilon_{A_1}^{\text{true}} = \frac{\epsilon_{A_1} (1 - \lambda_{A_2})}{1 - \lambda_{A_1} + \epsilon_{A_1} (\lambda_{A_1} - \lambda_{A_2})} .$$

Example

Two AGASA and two Yakutsk events with known muon content and energies $E_{\rm obs} > 1.5 \cdot 10^{20}$ eV:

N=4,
$$A_1 = p, A_2 = Fe$$

Event	$p_p^{(+)}$	$p_{ m Fe}^{(+)}$
1	0.254	0.136
2	0.295	0.135
7	0.186	0.814
8	0.413	0.587



Result:

$$\begin{array}{ll} \text{most probable} & \epsilon_p = 0.35 \\ 0.15 < \epsilon_p < 0.54 \quad \text{at } 68\% \text{ C.L.} \end{array}$$

What is the primary of an observed event?

energy-related parameters of a shower composition-related parameters of a shower

E-parameters *c*-parameters

Both parameters are reconstructed with some errors

The probability distribution that the primary particle which produced an actual shower with the observed E-parameters equal to $E_{\rm obs}$ would rather produce a shower with these parameters equal

to
$$E_{\text{rec}}$$
: $g_E(E_{\text{rec}}, E_{\text{obs}})$

The probability distribution that a shower with measured C-parameters equal to \mathbf{c} could produce detector readings corresponding to \mathbf{c}' :

$$g_c(\mathbf{c}',\mathbf{c}).$$

Steps

- 1. for each primary one generates a library of simulated showers : the same direction, $E_s \sim E_{obs}$, e.g. $< 0.5E_{obs} < E_s < 2E_{obs}$
- 2. following the experimental procedure for each event one finds E_{rec}
- 3. one assigns to each simulated shower a weight $w_1 = g_E(E_{\text{obs}}, E_{\text{rec}})$
- 4. one assigns to each simulated shower an additional weight $w_2 = (E_s/E_{obs})^{\alpha}$ to mimic the real power-law spectrum

Output:

The distribution of the parameters \mathbf{c} for the showers consistent with the real one by E-parameters is given by

$$f_A(\mathbf{c}) = \frac{1}{\mathcal{N}} \sum_i g_c(\mathbf{c}, \mathbf{c}_{iA}) w_{1,iA} w_{2,iA}$$

Results

If the event is unlikely being initiated by the primary A, one can estimate of the probability it could be initiated by the primary A:

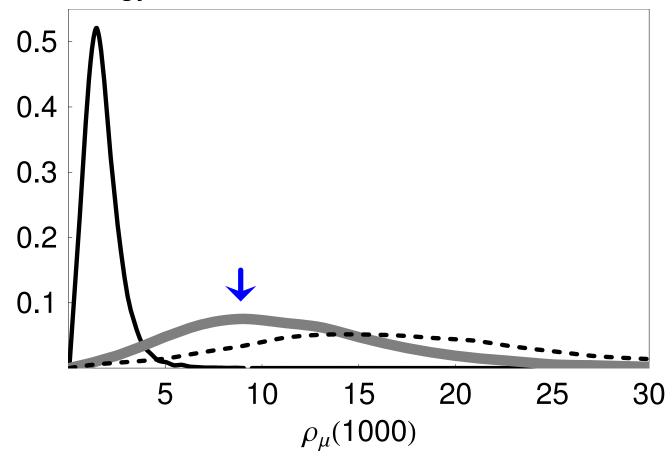
$$p_{A_1} = F_A(\mathbf{c}_{\text{obs}}) \equiv \int_{f_A(\mathbf{c}) \leq f_A(\mathbf{c}_{\text{obs}})} f_A(\mathbf{c}) d\mathbf{c}$$

one can test the hypotheisi that the primary was either A_1 or A_2 . Then $p_{A_1} + p_{A_2} = 1$ and

$$p_{A_k} = \frac{f_{A_k}(\mathbf{c}_{\text{obs}})}{f_{A_1}(\mathbf{c}_{\text{obs}}) + f_{A_2}(\mathbf{c}_{\text{obs}})}$$

Example

The highest energy AGASA event $2.46 \cdot 10^{20}$ eV



Distributions of muon densities f_A of simulated events: thin dark line, $A = \gamma$; thick gray line, A = p; dashed line, A = Fe.

What else?

- Many types of c-parameters
- Many types of primaries
- Unknown primary
- ullet Only ${\mathcal E}$ depends on energy systematics

