Small-scale structure of extensive air showers.^a

Grigory I. Rubtsov

Institute for Nuclear Research of the Russian Academy of Sciences

The 3rd International Workshop on The Highest Energy Cosmic Rays and Their Sources Moscow, May 17, 2006

^{*a*} work done with D. S. Gorbunov, V. A. Kuzmin and S. V. Troitsky

Talk structure

The goal before us is to understand complexity Albert-Laszlo Barabasi

I. Fluctuation study

- Scale dependence
- S(600) and $\rho_{\mu}(1000)$ fluctuations

II. Public library of artificial air showers

- Library anouncement
- Possible applications

Conclusions

Fluctuation scale

- Only small fraction (< 10⁻⁶) of shower particles is detected by a ground array.
- Small scale fluctuation at the detector level possibly are large and can lead to systematic errors in energy estimation.
- Typical vertical $10^{20} eV$ shower contains about **20 billions** particles at the ground level: ~ 90% γ , ~ 9% e, ~ 1% μ , ~ 3 · 10⁻⁴ hadrons.
- Because of the huge number of particles, Monte-Carlo simulations are usually performed with some kind of THINING, reducing effective number of particles in calculation and washing out small-scale fluctuations

И I Я N И R

Simulation

- To study the fluctuations we have simulated several **vertical** proton-induced extensive air showers with $E = 10^{18} eV$.
- The simulations were performed by CORSIKA v6.2 and CORSIKA v6.5 with QGSJET01 and QGSJET II, GHEISHA and EGS4 without THINING.
- The ground detector array is assumed to consist of 100 scintillators ($1.6m \times 1.6m$) covering the area of $50km^2$.
- The S(600) and $\rho_{\mu}(1000)$ of each shower was estimated many times with **different core locations** in the detector area.

Single detector study

- At core distance of 600 meters, an average particle density in vertical 10¹⁸ eV shower is 63 photons, 4 electrons and 2 muons per square meter.
- As shown by Teshima et al.^a, the magnitude of fluctuations on one detector σ² is nearly proportional to the expected average detector response.

^aTeshima et al., J. Phys. G **12**, 1097 (1986).

G. Rubtsov, Small-scale structure of EAS

Single plastic scintillator

И I Я N И R

Single plastic scintillator 2x

Single plastic scintillator 4x

Single muon detector

ИI ЯN ИR

Single muon detector 4x

Single muon detector 10x

ИI ЯN ИR

Core distance dependence

S(600) estimation

- The readings of detectors at core distance from 300 to 1500 meters were fit by empirical profile used by AGASA experiment.
- To ensure fit quality we followed the procedure, proposed by AGASA: if $\chi^2/N > 1.5$, the worst detector is excluded.
- The procedure is repeated continuously and allows to exclude large deviations, cause by one detector with large fluctuation.
- One detector was excluded in 14% cases, two detectors — in 2% cases, three or more — in 0.4% cases.

S(600) fluctuations

И I Я N И R

$ho_{\mu}(1000)$ fluctuations

ИI ЯN ИR

II. Public library anouncement

Livni - the public database of artificial extensive air showers

- Showers, generated by CORSIKA without thinning are now available to scientists and collaborations
- The library currently contain 13 showers, with primary energies 10¹⁷—10¹⁸ eV, different zenith angles and interaction models
- QGSJET, QGSJET II, GHEISHA and EGS4 models are currently used for simulation of library showers, more to come

Current status of Livni

<i>E</i> _{primary}	Туре	θ	CORSIKA, QGSJET	Size,Gb	$Cuts(h,\mu,e,\gamma)$
10^{17}	р	0	6.2001, I	4.4	0.3 0.3 0.003 0.003
10^{17}	р	0	6.0311, I	7	0.3 0.3 0.003 0.003
10^{17}	р	30	6.2001, I	1.5	0.3 0.3 0.003 0.003
10^{17}	р	45	6.2001, I	0.25	0.3 0.3 0.003 0.003
10^{17}	р	45	6.2001, I	0.35	0.3 0.3 0.003 0.003
10^{17}	γ	30	6.2001, I	5.9	0.3 0.3 0.003 0.003
$3.2 \cdot 10^{17}$	р	0	6.2001, I	17	0.3 0.3 0.003 0.003
$3.2 \cdot 10^{17}$	р	45	6.2001, I	2.2	0.3 0.3 0.003 0.003
10^{18}	р	0	6.0311, I	67	0.3 0.3 0.003 0.003
10 ¹⁸	р	0	6.2001, I	62	0.3 0.3 0.003 0.003
10^{18}	р	0	6.2041, I	98	0.3 0.05 0.0005 0.0005
10^{18}	р	0	6.5001, II	109	0.3 0.05 0.0005 0.0005
10^{18}	р	45	6.2001, I	14	0.3 0.3 0.003 0.003

ИR

G. Rubtsov, Small-scale structure of EAS

Livni: Possible applications

- Estimate experimental uncertanties for specific ground detectors
- Test new experimental techniques
- Analyse shower structure
- Crash-test thinning and "unthinning" procedures
- Base for an open discussion on the topic

Livni: Possible applications

- Estimate experimental uncertanties for specific ground detectors
- Test new experimental techniques
- Analyse shower structure
- Crash-test thinning and "unthinning" procedures
- Base for an open discussion on the topic

We are open for collaboration

Livni: Accessing the library

- Shell access is provided to library server with a read access to datafiles
- Shell access may be used to run custom readout scripts
- Example readout script is provided in C++. Fortran script is available in a CORSIKA package

Livni: Accessing the library

- Shell access is provided to library server with a read access to datafiles
- Shell access may be used to run custom readout scripts
- Example readout script is provided in C++. Fortran script is available in a CORSIKA package

Library website: http://livni.inr.ac.ru

Livni: Accessing the library

- Shell access is provided to library server with a read access to datafiles
- Shell access may be used to run custom readout scripts
- Example readout script is provided in C++. Fortran script is available in a CORSIKA package

Library website: http://livni.inr.ac.ru Registration is open on the Workshop!

Conclusions

- Fundamental scale of fluctuations is smaller than 1 meter
- Small-scale fluctuations lead to log-Gaussian error in S(600) and to Gaussian error in $\rho_{\mu}(1000)$. The difference may be important for Auger comparison with AGASA or TA
- There is an exponential tale in the S(600) estimation error.

Conclusions

- Fundamental scale of fluctuations is smaller than 1 meter
- Small-scale fluctuations lead to log-Gaussian error in S(600) and to Gaussian error in $\rho_{\mu}(1000)$. The difference may be important for Auger comparison with AGASA or TA
- There is an exponential tale in the S(600) estimation error.
- Enjoy the shower library!