

K Shinozaki

Max-Planck-Institute for Physics, Munich

M Takeda(ICRR), M Teshima(MPI-Munich) N Sakaki(Aoyama Gakuin) on behalf of AGASA Collaboration GZK40@INR Moscow 16—18 May, 2006

Outline

Introduction

- Physics motivation
- Apparatus of AGASA

• Results from standard analysis

- Energy spectrum of UHECRs
- Anisotropy
 - Large scale anisotropy in 10¹⁸eV energies
 - Small scale anisotropy in GZK energies
- Chemical composition
 - Gamma-ray 1ries limit
- Energy spectrum based on CORSIKA Sim.
- Summary & Outlook

Physics motivation

Ринеск $\gamma_{CMB} \rightarrow N \pi^+$ (*E*₀ ~5х10¹⁹eV)

AGASA (Akeno Giant Air Shower Array)

- 35°7N 138°5E 900m asl.
- Detector station
 - 111 surface detectors
 - Effective area ~100km²
 - Optical fibre cable connection to observatory
 Triggered by 5-neighbouring hit detector within 25µs
 - 27 muon detectors
 - Southern region ~30km² coverage
- Operation
 - Feb. 1990–Dec.1995
 4 separate- array operation
 - Dec. 1995—Jan.2004
 Unified operation

Surface detector

- 5cm thick scintillator
- Hamamatsu 5" R1512 PMT
- Muon detectors (2.8–10m²; south region)
 - 14-20 Proportional counters
 - Shielded by 30cm Fe or 1m concrete
 - Threshold energy: 0.5GeVxsecθ
 - Triggered by accompanying surface detecto

Detector calibration

50000

Date [MJD]

51000

52000

48000

49000

- Stability of detector
 - Gain variation (peak of PWD)
 :±0.7%
 - Linearity variation (slope of PWD) : $\pm 1.6\%$ (slope of PWD) ($\Delta \tau / < \tau > = -\Delta a / < a >$

Event sample & observables

- Energy estimator (charged particle density @600m): S(600)
- Primary mass estimator (muon density@1000m): ρ_μ(1000)

Event selection criteria (standard)

Dataset: February 1990 – January 2004

- Energy: $\geq 10^{17} \text{eV}$ ($\geq 10^{18.5} \text{eV}$ for spectrum)
- Zenith angle: $\leq 45^{\circ}$
- Core location: inside AGASA boundary
- Number of hit detector ≥ 6
- Good reconstruction
 - $\chi^2 \le 5$ for arrival direction fitting
 - $\chi^2 \le 1.5$ for core location fitting

Event reconstruction

- Centre of gravity in charged particle density distribution \rightarrow a priori core location
- Geometry fitting
 - Arrival direction optimisation (fitting shower front structure)
 - Core location estimation (fitting lateral distribution)
 - Iterative recalculation of fitting processes till satisfying quality cuts (otherwise rejected)
- S_{θ} (600) \rightarrow S_{0} (600) translation
- Energy estimation by S_0 (600) vs. E_0 relation

Lateral distribution (empirical)

• Modified Linsley formula

 $\rho(R) = C (R/R_{\rm M})^{-\alpha} (1+R/R_{\rm M})^{-(\eta-\alpha)} \{1+(R/1000)^2\}^{-\delta}$

- C: Normalisation constant, $\alpha = 1.2$, $\delta = 0.6$
- *R*_M: Moliere unit @ Akeno (=91.6m)
- $\eta = (3.97 \pm 0.13) (1.79 \pm 0.62) (\sec \theta 1)$

Energy estimating relationships Energy vs. S(600) for vertical showers

- Dai *et al.*'s MC result by COSMOS+QCDJET (1988)
 *E*₀ [eV] = 2.03×10¹⁷ S₀ (600)
- S(600) Attenuation curve

- Empirical relationship (equi-intensity cut method)

$S_{\theta} (600) = S_{0} (600) \\ \exp\{-X_{0} / \Lambda_{1} (\sec\theta - 1) - X_{0} / \Lambda_{2} (\sec\theta - 1)^{2}\}$

- X 0: Atmospheric depth @ AKeno (920 g/cm²)
- Λ 1 = 500 g/cm²
- Λ ₂ = 594 g/cm²

Energy spectrum ($\theta < 45^{\circ}$)

- 11 events above 10²⁰ eV
- Exposure: 5.8x10¹⁶ [m² s sr] ~18.4 km² century sr

Anisotropy around 10¹⁸eV

Significance map of event density in 20° dalong equi-declination

Right Ascension(deg)

- Large scale anisotropy clearly found
 - ~4σ excess @~ Galactic Centre
 - ~ 4σ deficit @~ anti- Galactic Centre
 - Implication of Galactic cosmic rays up to 10¹⁸eV

Arrival direction distribution $(> 4 \times 10^{19} \text{eV}; \theta < 50^{\circ})$

- Small scale anisotropy
 - Event clustering (>4x10¹⁹eV within 2.5[°])
 6 doublets (○) &1 triplet (○) observed
 - Against expected 2.0 doublets (Pch < 0. 1%)

Muon component (vs CORSIKA)

- Average $\rho\mu$ (1000) vs energy (θ < 36°)
 - $-\rho\mu$ (1000) [m⁻²]= (1.34±0.12) (E_0 / 10¹⁹eV)^{0.75±0.08}
 - Consistent with p+QGSJET or mixed+SIBYLL

$\rho\mu$ (1000) distribution

- Assuming p+gamma-ray composition
 - Fraction of gamma-rays
 - 43% (>10^{19.5} eV) @ 95%CL (QGSJET01)

Re-analysis scheme MC-based

Simulation

- CORSIKA version 6.203
- Interaction models
 - QGSJET01 & SIBYLL
- Detector simulation with GEANT
- Artificial shower data analysed by 'standard' reconstruction programme but... assuming MC-based results of:
 - Shape of lateral distribution
 - Attenuation correction
 - Energy conversion with CORSIKA results

S₀(600) vs energy by CORSIKA

- Vertical showers
 - Consistent with conventional formula $E_0 [eV] = (1.98 \pm 0.30) \times 10^{19} (S_0(600)/100 \text{m}^{-2})^{1.01}$

S(600) attenuation by CORSIKA

- Consistent with empirical formula around 10¹⁹eV
- 1ry dependence esp. at large zenith angles
 - p+SIBYLL
 - Slowest developing
 - Fe+QGSJET
 - Most developed
- Trend of *E*⁰ dependence
 - Flattening at highest energy regions

1ry/model uncertainty vs. zenith angle and energy

Most stable distance and angle varying as energy

This paticular study: we emply *S*(600) converting at 33.5 deg. (sec(theta)=1.2)

• Evaluated from analysing artificial showers by CORSIKA

Spectra@low & middle zenith angles (MC-derived vs standard)

Spectra@low & middle zenith angles (Fe+OGSIET vs standard)

Compilation

- 6 / 5 events above 10²⁰eV for p+SIBYLL/Fe+QGSJET
- Conclusion (y/n) against GZK-cut off still open from present re-analysis

Summary

- AGASA Experiment (1990—2004)
 - 14 years stable observation (5.8x10¹⁶m² s sr@10²⁰eV)
 - ~1000 evens observed above 10^{19} eV
- Standard analysis
 - Eleven events above 10²⁰eV
 - Characteristic anisotropy
 - Events cluster (6 doublets + 1 triplet) above 4×10^{19} eV
 - Excess @~Galactic Centre in 10¹⁸ eV energies
 - Muon component
 - Gamma-ray fraction <43%@95%CL (>10^{19.5} eV)
- PRELIMINARY results form *re*-analysis study (2006)
 - MC-based S(600) -> energy estimation giving lower E_0 From CORSIKA 6.203 (QGSJET01 / SIBYLL2.1) tested
 - Current result not conclusive to (dis-/)prove GZK cut-off
 5 or 6 events remain >100EeV
 - Checking consistency in shower cahracateristics with experimental data to be done