Can neutral correlations be explained in the Standard Model?

Peter TINYAKOV

ULB & INR

Igor Tkachev CERN & INR

ASSUME:

- Energies are measured correctly
- Primary particles are neutral, their fraction is

 $1.5\% < \eta < 3.5\%$

• Sources are at $\gtrsim 400~{\rm Mpc}$

SHOW:

NO EXPLANATION EXISTS WITHIN THE STANDARD MODEL

To cross the Galactic magnetic field particle lifetime must be

$$\tau > 10 \,\mathrm{s} \left(\frac{m}{1 \,\mathrm{GeV}}\right) \left(\frac{10^{19} \mathrm{eV}}{E}\right)$$

SM candidates:

- neutrino
- photon
- neutron
- atoms

Photon and neutrino

- $\ast\,$ Photons of energy 10^{19} eV do not reach Earth from 400 Mpc
- * Neutrino is not interacting strongly enough to be the primary particle

Neutron

Weak reactions

On neutrino background

$$\sigma \propto G_F^2 E^2$$

rate

$$R \sim 3 \times 10^{-12} \frac{1}{\mathrm{Mpc}}$$

 \Longrightarrow out of question: too small

Nuclei photodisintegration

We need the reaction

$$A \to A' + \#n + \dots$$

to occur within 100 kpc from Earth

$$R = \int d^3 p \, n(\mathbf{p}) (1 - v \cos \theta) \sigma_{\text{NRF}} [\gamma p (1 - v \cos \theta)]$$

$$\sim \frac{2\pi}{\gamma^2} \int_0^\infty dp \, n(\mathbf{p}) \int_0^{2\gamma p} d\omega' \, \omega' \sigma_{\mathrm{NRF}}(\omega')$$

The cross section of photodisintegration is measured, and an analytic parameterization exists.

$$\gamma = (1-2) \times 10^{10}$$

* Take only CMB photons (IR background can only make the rate larger)

7

How does A evolve with the distance from the source?

 \Longrightarrow No hope to produce neutrons this way

Neutrons by pion photoproduction on Galactic IR

Galactic IR background

Modeled by the point source at the center

$$n(\mathbf{p}) = \frac{I_0}{r^2} \frac{p^{1.65}}{e^{-p/T} - 1} \delta(\mathbf{n} - \mathbf{n}_0)$$

IR luminosity within solar orbit is measured,

$$L_G = 2 \times 10^{10} L_{\odot} = 8 \times 10^{36} \mathrm{W}$$

$$\implies I_0 = \frac{L_G}{60.3T^{5.65}}; \qquad T = 23.3^{\circ} \mathrm{K}$$

$$P = \frac{1}{60.3} \frac{L_G}{T} \int_0^\infty dl \frac{\mathrm{e}^{-l/\lambda}}{r^2} (1 - v \cos \theta) \, \langle \sigma \rangle(T_{\mathrm{eff}}),$$

where

$$\langle \sigma \rangle(T) = \frac{1}{T^{4.65}} \int \frac{\epsilon^{3.65} \sigma(\epsilon) d\epsilon}{\mathrm{e}^{\epsilon/T} - 1}$$

 and

$$T_{\rm eff}(\theta) = \gamma (1 - v \cos \theta) T$$

 \implies An order (only!) of magnitude too small

Atoms

Rate of formation by creating the e^+e^- -pair and dressing

$$R_{\text{formation}} \sim 10^{-5} \frac{1}{\text{Mpc}}.$$

Rate of decay on CMB:

$$R_{\text{decay}} \sim 100 \frac{1}{\text{Mpc}}.$$

\Longrightarrow Fraction of atoms is too small

CONCLUSIONS

- * There seem to be no explanation within the SM
- * The neutron production on the Galactic IR background came closest only about an order of magnitude too small.