# **UHECRs from point sources**

#### Michael Kachelrieß

mika@mppmu.mpg.de

Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)



in collaboration with Dima Semikoz

## Outline of the talk:

- Introduction
- Uniformly distributed sources:
  - $\diamond$  best-fit density  $n_s$
  - fraction of true clusters
  - predictions for PAO
- BL Lacs as proton sources: is there a consistent model possible?
- Summary

## **Extragalactic magnetic field:**



## **Extragalactic magnetic field:**



## **Galactic magnetic field:**



Hammer-Aitoff Proj. in Gal. Coord. of the observed and GMF deflected positions of UHECRs in AGASA data

## **Small-scale clustering in AGASA:**



■ 
$$E > 10^{20} \text{ eV}$$
  
•  $E = 4 - 10 \times 10^{19} \text{ eV}$ 

## **Small-scale clustering:**

- How to define statistical significance of clustering?
- autocorrelation function of the data, e.g.

$$w_1 = \sum_{i=1}^{N} \sum_{j=1}^{i-1} \Theta(\ell_1 - \ell_{ij}),$$

where  $\ell_{ij}$  is the angular distance and  $\ell_1$  the bin size chosen.

• deviation from expectation for an isotropic distribution

$$r = \frac{w_1^* - \langle w_1^{\mathrm{MC}} \rangle}{\sigma^{\mathrm{MC}}}$$

## **Small-scale clustering:**

• autocorrelation function of the data, e.g.

$$w_1 = \sum_{i=1}^{N} \sum_{j=1}^{i-1} \Theta(\ell_1 - \ell_{ij})$$

deviation from expectation for an isotropic distribution

$$r = \frac{w_1^* - \langle w_1^{\rm MC} \rangle}{\sigma^{\rm MC}}$$

• test hypothesis: continuous, isotropic distribution on  $S^2$ , expectation: lower values of  $w_1$  than measured

$$\Rightarrow P_{>}(w_{1}^{*}; S^{2}) = \sum_{i} p_{i}(w_{1}; S^{2}) \Theta (w_{1} - w_{1}^{*}) .$$

#### but controversy about cuts and penalty factors:



Finley, Westerhoff, astro-ph/0309159:  $p_{ch} = 8\%$ . HiRes Stereo: no clusters astro-ph/0404137

• do not use data!

- do not use data!
- instead: MC data sets for your test hypthesis:

- do not use data!
- instead: MC data sets for your test hypthesis:
  - ◊ Ex.: choose single source

- do not use data!
- instead: MC data sets for your test hypthesis:
  - ♦ Ex.: choose single source
  - optimize normalized auto-correlation function as function of bin size (including magnetic field, detector resolution)

- do not use data!
- instead: MC data sets for your test hypthesis:
  - Ex.: choose single source
  - optimize normalized auto-correlation function as function of bin size (including magnetic field, detector resolution)
- $\Rightarrow$  optimal bin size for AGASA around  $2.5^{\circ}$

## Number of sources $N_s$

• As  $N_s$  decreases, sources become brighter for fixed flux  $\Rightarrow$ probability for clustering increases. [Waxman, Fisher, Piran '96]

## Number of sources $N_s$

- As  $N_s$  decreases, sources become brighter for fixed flux  $\Rightarrow$ probability for clustering increases. [Waxman, Fisher, Piran '96]
- allows to estimate  $n_s$

## Number of sources $N_s$

- As  $N_s$  decreases, sources become brighter for fixed flux  $\Rightarrow$ probability for clustering increases. [Waxman, Fisher, Piran '96]
- allows to estimate  $n_s$ :
  - $\diamond$  choose finite number of sources according denity  $n_s$
  - $\diamond$  generate CRs according to  $dN/dE \propto E^{-lpha}$
  - ◇ propagate them
  - $\diamond$  calculate  $w_1$  for fixed  $n_s$ ,  $\alpha$ ,  $\ell_1$  ...
  - determine consistent parameters

## Distribution of $p(w_1; n_s)$ :



# Distribution of $p(w_1; n_s)$ :



- strongly non-Gaussian, asymmetric
- $w_n$  with n > 1 contains essentially no information
- use area between median and observed value as measure

## Consistency of $p(w_1; n_s)$ with $n_s$ :



## if $n_s < \infty$ , main question to address is:

- how many of the clusters seen are true ones?
- $\Rightarrow$  if the fraction is large, search for point sources makes sense

### How many of the clusters are real?

auto-correlation function w of observed event directions,

$$w = \sum_{i < j} \begin{cases} 1, & \text{for} \quad \ell_{ij} < \ell_1 \\ 0, & \text{for} \quad \ell_{ij} > \ell_1 \end{cases}$$

define additionally to "true" or source auto-correlation function W,

$$W = \sum_{i < j} \begin{cases} 1, & \text{for } \ell_{ij} < \ell_1 \text{ and ij from same source} \\ 0, & \text{otherwise} \end{cases}$$

## Probability that all clusters are fake if $w_1 = 7$



## **Predictions for PAO:**

- for one year, assuming N = 300 events above  $4 \times 10^{19}$  eV
- determination of *n<sub>s</sub>*
- establishing finite  $n_s$

if not

• points towards nuclei as primaries

## determination of $n_s$ :



Prob

## determination of $n_s$ :



 $\Rightarrow$  singlet distribution better than auto-correlation function

## singlet distribution:



## determination of $n_s$ :



## determination of $n_s$ :



 $\Rightarrow$  effect of egmf (à la DGST) not important

## establishing $n_s < \infty$ :



Institut for Nuclear Research, May 2004

### establishing $n_s < \infty$ :



 $\Rightarrow$  continuous distribution can be excluded with  $<10^{-5}$  for true densities smaller than  $10^{-5}/~{\rm Mpc^3}$ 

### **BL Lacs as sources**

small number of BL Lacs results in strong clustering and in strong GZK cutoff, if  $z_{\min} > 0$ :



### **BL Lacs as sources**

small number of BL Lacs results in strong clustering and in strong GZK cutoff, if  $z_{min} > 0$ :



- add to BL Lac distribution an uniform component with smaller luminosity:
- vary parameter  $L_{BL}/L_u$ ,  $z_{\min,BL}$ ,  $n_u$ :
- possible to obtain  $f_{BL} = 10-30\%$  for reasonable parameters?



 $z_{
m min} \lesssim 0.05$ –0.15 necessary for non-negligible contribution of BL Lacs to events above  $4 \times 10^{19}$  eV



for each L small range in  $z_{\rm min}$  possible with acceptable clustering and non-negligible contribution of BL Lacs

- BL Lacs can contribute around 20–30% to UHECR flux without contradiction to clustering
- do not improve combined fit of spectra and clustering

## Summary:

- if AGNs are sources of UHECRs, clustering is real
- source densities much smaller than AGNs are excluded
- BL Lacs can contribute 20–30% to UHECR events above  $4 \times 10^{19} \text{ eV}$
- continuous source distribution can be excluded by PAO for all estimated  $n_s < 10^{-4}/{\rm Mpc^3}$
- if not: nuclei as primaries, stronger extragalactic magnetic fields, ...