Traces of Ultra-High–Energy Particles in the Lunar Crust

The Second International Workshop on Ultra-high-energy cosmic rays and their sources INR, Moscow, April 14-16, 2005

Dmitry Gorbunov

gorby@ms2.inr.ac.ru

Institute for Nuclear Research, Moscow

14.04.05 02:33

Traces of Ultra-High–Energy particles in the lunar crust – p. 1/

Flux of Charged Cosmic Rays

Statistics & Methods

overall low : $\frac{dN}{dE} \propto E^{-3}$ Thus @ $E = 10^{20}$ eV

GZK — false — # particles per 10^2 km² per year GZK — true — # particles per 10^4 km² per year

Statistics — Exposure:

- observational area (volume) $S \sim 10^2 10^4 \ km^2$
- observational time $t \sim 10$ year

Earth & Moon

Track's recorder

Calorimeter & Fast Tracker

Traces of Ultra-High–Energy particles in the lunar crust – p. 4/

Let imprints of UHECR be in the Lunar Crust

Advantages:

- enormous exposure: $t \sim \tau_{Moon} \simeq 4 \cdot 10^9$ year Then per 1 m²:
 - GZK false ~ 100 imprints
 - GZK true ~ 1 imprint

search for the ultimate cutoff in UHECR
spectrum — the highest energy events for the last 1/4 of the Universe's life

Earth's Atmosphere: Extensive Air Showers

Moon's Crust: a beam & a target

14.04.05 02:33

Traces of Ultra-High–Energy particles in the lunar crust – p. 7/

Shower in a rock

Evolution

- First collision:
 - one partilcle of E_0 : ~ 500 secondaries of $E \sim E_0/500$
 - angular beam spread $\delta lpha \sim \langle P_T \rangle / E_0 \lesssim 10^{-11}$
 - $l_{||} = 10$ m, then $l_{\perp} \simeq 10^{-8}$ cm=1 A
- Next collisions

Interaction

- washing out the atoms from the shower core
- high-energy secondaries: radiative energy loss
- Iow-energy secondaries: ionization

9 ...

Very naive estimate

One of the candidates: stright long tracks in lunar crust unrealistic but warming up example:

- 🍠 iron
- only radiative energy loss $(dE/dx \propto E)$
- Iost energy is promptly dissipated heating
- then the primary of $E_0 \simeq 10^{20}$ eV smelts $\sim 1 \text{ m} \times (10 \mu)^2$ cylinder
- measurement of the primary energy: radius $r \propto \sqrt{E_0}$

Traces of Ultra-High–Energy particles in the lunar crust – p. 9/

Reality: tracks of CR in micrometeorites

Study of both intensity & composition of galactic CR in the past

14.04.05 02:33

Traces of Ultra-High–Energy particles in the lunar crust – p. 10

Lunar Robotic Missions

Traces of Ultra-High–Energy particles in the lunar crust – p. 11

14.04.05 02:33