"Статус нейтринных осцилляционных экспериментов"

А. В. Буткевич

Институт ядерных исследований РАН, Москва

26.05.2017

Эксперименты с солнечными, атмосферными, реакторными и ускорительными нейтрино наблюдают эффекты, связанные с осцилляциями нейтрино, которые обусловлены наличием у нейтрино массы и смешиванием массовых состояний нейтрино.

- (*) Все убедительные данные о нейтринных осцилляциях могут быть описаны в рамках 3-х флейворной парадигмы осцилляций нейтрино.
- (*) Осцилляции нейтрино. Гипотеза о возможном смешивании нейтрино Понтекорво (1957), Маки, Накагава, Саката (1962). Нейтрино с определенным ароматом ν_{α} , где $\alpha = e, \mu, \tau$ является суперпозицией ν_i , i=1,2,3,... собственных состояний с массами $m_i \neq m_j$

$$u_{lpha} = \sum U_{lpha i}
u_i$$

В случае 3-х дираковских состояний ν_i матрица смешивания лептонов $U_{\alpha i}$ зависит от 3-х углов смешивания θ_i и дираковской фазы нарушения СР-инвариантности в лептонном секторе δ . СР-инвариантность сохраняется, если $U=U^{\star}$ - реальнная матрица, т.е. $\delta=0,\pi$

Актуальность

3-х флейворная парадигма нейтринных осцилляций

Матрица смешивания дираковских массивных нейтрино Понтекорво-Маки-Накагава-Саката (аналогично смешиванию кварков) $c_{ij} = \cos \theta_{ij}, \quad s_{ij} = \sin \theta_{ij}, \quad \delta$ -фаза нарушения СР-инвариантности

$$U=\left(egin{array}{cccc} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{array}
ight) \left(egin{array}{cccc} c_{13} & 0 & s_{13}e^{-\imath\delta} \ 0 & 1 & 0 \ -s_{13}e^{\imath\delta} & 0 & c_{13} \end{array}
ight) \left(egin{array}{cccc} c_{12} & s_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{array}
ight)$$

атмосферные, ускоритель ускоритель, реактор солнечные, реактор

В случае майорановских массивных нейтрино матрица смешивания U_M содержит две дополнительных фазы нарушения СР-инвариантности (ξ_1, ξ_2) и имеет вид

$$U_M = U imes diag(1, \exp(i m{\xi}_1), \exp(i m{\xi}_2))$$

Эффекты осцилляций - после прохождения расстояния $L: \nu_{\alpha} \rightarrow \nu_{\beta}$, где $\alpha, \beta = e, \mu, \tau, \dots$ Вероятности осцилляций зависят от энергии нейтрино E и пройденного расстояния L, а также от разностей квадратов масс нейтрино $\Delta m_{ij}^2 = m_i^2 - m_j^2$, углов смешивания $\theta_{ij} = [0, \pi/2]$, фазы $\delta = [0, 2\pi]$ и иерархии масс нейтрино. Фазы (ξ_1, ξ_2) не влияют на эффекты осцилляций нейтрино.

Измеренные значения параметров 3-х нейтринных осцилляций. PDG 2016.

Атмосферные и ускорительные (анти)нейтрино ("атмосферные" параметры) $\Delta m^2 = m_3^2 - (m_2^2 + m_1^2)/2$ иерархия масс: нормальная (NH) $m_1 \ll m_2 \ll m_3$ и $\Delta m_{23}^2 > 0$ или обратная (IH) $m_3 \ll m_1 \ll m_2$ и $\Delta m_{23}^2 < 0$? $|\Delta m_{23}^2| = (2.50 \pm 0.043) \cdot 10^{-3}$ эВ² (NH) $|\Delta m_{23}^2| = (2.46 \pm 0.046) \cdot 10^{-3}$ эВ² (IH) $\sigma \approx 1.7\%$ $\sin^2 \theta_{23} = 0.437^{+0.060}_{-0.019}$ (NH) и $\sin^2 \theta_{23} = 0.569^{+0.023}_{-0.062}$ (IH) $\sigma \approx 9\%$ Солнечные и реакторные (анти)нейтрино ("солнечные" параметры) $\Delta m_{21}^2 = (7.37^{+0.026}_{-0.022}) \cdot 10^{-5}$ зВ² $\sigma \approx 2.3\%$ $\sin^2 \theta_{21} = 0.297 \pm 0.019$ $\sigma \approx 5.8\%$

Реакторные, ускорительные (анти)нейтрино $\sin^2 \theta_{13} = 0.0214 \pm 0.001$ (NH) и $\sin^2 \theta_{13} = 0.0218 \pm 0.001$ (NH) $\sigma \approx 4.8\%$

Ускорительные (анти)нейтрино $\delta/\pi=1.35^{+0.213}_{-0.143}$ (NH) и $\delta/\pi=1.32^{+0.223}_{-0.163}$ (IH)

Что еще необходимо сделать в осцилляционных экспериментах Измерить вероятности $\nu_{\mu} \rightarrow \nu_{e}, \, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ переходов, вероятность выживания $\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$ и определить

- (*) иерархию масс: нормальная (NH) $m_1 \ll m_2 \ll m_3$, или обратная (IH) $m_3 \ll m_1 \ll m_2$?
- (\star) фазу нарушения СР инвариантности δ в лептонном секторе $\delta
 eq [0,\pi]$
- (*) уточнить значения Δm^2_{23} и θ_{23} . Если $\sin^2 2\theta_{23} < 1(0.97)$, то определить в каком октанте находится угол θ_{23} . Если $\theta_{23} < 45^\circ$, то (в массивном состоянии ν_3 примесь ν_{τ} больше, чем ν_{μ}) и наоборот, если $\theta_{23} > 45^\circ$

3-х флейворная парадигма хорошо описывает подавляющее большинство данных. Осцилляционные эксперименты на коротких расстояниях наблюдают аномальные эффекты $\nu_{\mu} \rightarrow \nu_{e}, \, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ переходов и большие вероятности исчезновения из пучка, т.е. $\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$ аномалия в экспериментах с радиоактивными источниками и реакторными $\bar{\nu}_{e}$.

Иерархия масс нейтрино

Fractional Flavor Content varying $\cos \delta$

Один из способов определения иерархии масс нейтрино - измерение влияния вещества на вероятности $u_{\mu} \rightarrow \nu_{e}$ и $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ переходов.

Упорядоченность (иерархия) масс нейтрино

Массы нейтрино существенно меньше масс фундаментальных частиц Нормальная иерархия масс (NH) $m_1 \ll m_2 \ll m_3$ и $\Delta m_{12} \ll \Delta m_{23}$ $m_1 \ll \sqrt{\Delta m_{12}^2}, \quad m_2 = \sqrt{m_1^2 + \Delta m_{12}^2} \ge \sqrt{\Delta m_{12}^2} = 8.68 \cdot 10^{-3} \; \mathrm{sB}$ $m_3 = \sqrt{m_1^2 + \Delta m_{12}^2 + \Delta m_{23}^2} \geq \sqrt{\Delta m_{23}^2} = 5 \cdot 10^{-2}$ sB Два легких m_1, m_2 и одно тяжелое нейтрино m_3 Обратная иерархия масс (IH) $m_3 \ll m_1 \ll m_2$ и $\Delta m_{12} \ll \Delta m_{13}$ $m_3 \ll \sqrt{\Delta m_{13}^2}, \qquad m_1 = \sqrt{m_3^2 + \Delta m_{13}^2} \ge \sqrt{\Delta m_{13}^2} = 5 \cdot 10^{-2}$ əB $m_2 = \sqrt{m_3^2 + \Delta m_{13}^2 + \Delta m_{12}^2} \geq \sqrt{\Delta m_{13}^2 (1 + \Delta m_{12}^2 / 2\Delta m_{13}^2)} = 5 \cdot 10^{-2}$ əB Одно легкое m_3 и два 'тяжелых' m_1, m_2 нейтрино. Состояния ν_1, ν_2 являются квази-вырожденными, чего нет в спектре масс заряженных лептонов. Масса хотя бы одного нейтрино > 50 мэВ. • Квази-вырожденный спектр масс

 $\sim 1 \text{ P}$

 $m_1\simeq m_2\simeq m_3\geq 0.1$ əB, $m_1(m_3)\gg \sqrt{\Delta m^2_{23}(\sqrt{|\Delta m^2_{13}|})}$

• Мы не знаем абсолютных значений и иерархии масс нейтрино. Не исключено, что $m_{lig} << 10^{-3}$ эВ, или $m_1\simeq m_2\simeq m_3$.

 $P(\nu_e o \nu_e)$ - вероятность выживания $\nu_e~(\bar{
u}_e)$ в вакууме - реакторные антинейтрино.

 $P_{\nu_e,\nu_e} = 1 - \cos^4 \theta_{13} \sin^2 \theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee},$ $\sin^2 \Delta_{ee} = \cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{21} \sin^2 \Delta_{32} \approx \sin^2 \Delta_{32}$

Измерение угла $heta_{13}$ - эксперименты с реакторными $ar{
u}_e$ на расстояниях ~ 1 км

Вероятность выживания $u_{\mu} \rightarrow \nu_{\mu}$ (атм. и ускорительные нейтрино)

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \Delta_{31}$$

Измерение $\sin^2 heta_{23}$ и Δm^2_{23}

Осцилляции нейтрино в веществе

Эффект вещества (Михеев-Смирнов-Волфенстайн): в веществе ν_e и $\nu_{\mu,\tau}$ взаимодействуют не одинаково. *А. Smirnov arXiv:1609.02386*

 u_e находится в потенциале U_e , а $u_{\mu,\tau}$ в потенциале $U_{\mu,\tau}$. Разность потенциалов определется амплитудой рассеяния вперед u_e заряженным током на электронах и $V = U_e - U_{\mu,\tau} = G_F N_{Av} \rho(x) / \sqrt{2}$, где $\rho(x)$ - плотность вещества

Случай 2-х нейтрино в веществе с постоянной плотностью

$$P(
u_e
ightarrow
u_X) = \sin^2 2 heta_m \sin^2 \left(\Delta m^2 L R^{-1/2}/4E
ight),$$

где $\sin^2 2\theta_m = \sin^2 2\theta \cdot R$, $R = [\sin^2 2\theta + (\cos \theta \mp A)^2]^{-1}$ и параметр $A = 2VE/\Delta m^2 = 7.6310^{-5}\rho(g/cm^3)E(GeV)/\Delta m^2(eV^2)$ "-" для нейтрино и "+" для антинейтрино.

Для $\Delta m^2 > 0$ (нормальная иерархия масс) $\sin^2 2\theta_m > \sin^2 2\theta$ для $\nu_e \to \nu_X$ осцилляций (усиление) и $\sin^2 2\theta_m < \sin^2 2\theta$ для $\bar{\nu}_e \to \bar{\nu}_X$ осцилляций (ослабление). And vice versa для $\Delta m^2 < 0$ (обратная иерархия масс), т. е. ослаление $\nu_e \to \nu_X$ осцилляций и усиление $\bar{\nu}_e \to \bar{\nu}_X$. Знак Δm^2 можно определить, измерив вероятности $\nu_e \to \nu_X$ и $\bar{\nu}_e \to \bar{\nu}_X$.

3-х флейворная парадигма - осцилляции в веществе

Вероятность появления ν_e в пучках ν_μ в веществе. Приближенные решения уравнения эволюции \Rightarrow разложение по малым параметрам α , A, s_{13} и их комбинациям.

Y. Arafune et al. PRD 56,3093 (1997), E.K. Akhmedov et al. JHEP 04, 078, 2004, O.M. Requejo et al. PRD 72, 053002, 2003, M.Freund, PRD 64, 053003 (2001)

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}(A-1)\Delta}{(A-1)^{2}} + \alpha^{2} \sin^{2} 2\theta_{12} \cos^{2} \theta_{23} \frac{\sin^{2} A\Delta}{A^{2}} \\ &+ \alpha \sin 2\theta_{13} \cos(\Delta - \delta) \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{A-1}, \end{split}$$

где $\Delta = \Delta m_{31}^2 L/4E$, $A = \Delta m_{12}^2/\Delta m_{13}^2 = 0.034$ Асимметрия $A_{l'l}^{CP} = P(\nu_l \rightarrow \nu_{l'}) - P(\bar{\nu}_l \rightarrow \bar{\nu}_{l'}) = A_{\delta}^{CP} + A_{matter}$, где $A_{matter} \sim L \times E$

$$A_{\delta}^{CP} \approx \frac{\cos \theta_{23} \sin 2\theta_{12}}{\sin \theta_{23} \sin \theta_{13}} \sin \delta \frac{\Delta m_{21}}{4E}$$

Оценка эффекта вещества в области энергий нейтрино, где эффект $u_{\mu} \rightarrow \nu_{e}$ осцилляций максимальный, т.е. $\sin^{2} \Delta_{31} \approx 1$. $P_{\mu e}^{m} \approx P_{\mu e}^{v} (1 + 2E/E_{r})$ где $P^{m}(P^{v})$ - вероятность осцилляций в веществе (вакууме) и $E_{r} = \Delta m_{31}^{2}/2V \approx 10$ ГэВ

Аномальные эффекты

Большинство данных нейтринных экспериментов хорошо описываются в рамках 3-х флейворной парадигмы. Данные экспериментов на малых расстояниях, а также астрофизические и космологические наблюдения "намекают" на существование дополнительных нейтринных массовых состояний. Имеются "маргинальные", но постоянно повторяющиеся указания на эффекты

имеются маргинальные, но постоянно повторяющиеся указания на эффекты осцилляций в области $\Delta m^2 \sim 1$ эВ², которые не согласуются с масштабом солнечных и атмосферных Δm^2 :

- (*) избыток $\bar{
 u}_e$ (3.8 σ) в LSND-эксперименте [A. Aguilar-Arevalo et al. hep-ex/0104049]
- (*) избытки $\nu_e(3.4\sigma)$ и $\bar{\nu}_e(2.8\sigma)$, наблюдаемые в MiniBooNE-эксперименте [A. Aguilar-Arevalo et al. 1303.2588]
- (*) дефицит $\bar{\nu}_e$ событий (0.937 \pm 0.027), наблюдаемый в экспериментах с реакторными нейтрино [G. Meution et al. 1101.2755]
- (*) дефицит ν_e событий (0.86 \pm 0.05), наблюдаемый в экспериментах SAGE и GALLEX с радиоактивными источниками нейтрино [С. Giunti and M.Leveder 1006.3244]

Это часто интерпретируется как доказательства существования одного или более дополнительных состояний нейтрино — стерильных нейтрино.

Как следствие, аналогичные эффекты должны наблюдаться и в осцилляционных экспериментах на убывание $u_l o
u_l$ и $ar
u_l o
u_l$.

Легкое стерильное нейтрино,3+1 схема

Минимальная схема расширения 3-х флейворной парадигмы - дополнительно вводится одно стерильное нейтрино ν_s и одно массовое нейтринное состояние ν_4 . Матрицу смешивания U (4х4) можно параметризовать как

 $U = R_{34}R_{24}R_{14}R_{23}R_{13}R_{12}$, где R_{ij} - матрицы вращения с углами вращения θ_{ij} H.Harari et al. Phys.Lett B181,123 (1986). Появляются 3 новых угла смешивания θ_{14}, θ_{24} и θ_{34} и две дополнительные дираковских фазы δ_{14} и δ_{24} .

Углы смешивания $\theta_{14}, \theta_{24}, \theta_{34}$ должны быть малы, поскольку вероятности выживания $P(\nu_l \rightarrow \nu_l)$ хорошо описываются в рамках 3-х флейворной парадигмы.

Long baseline neutrino experiment: NOvA

Off-axis (14 mrad) пучок нейтрино большой интенсивности мощность протонного пучка составляет 0.7 MBt (стат. ошибка).

Используются два детектора: NDближний детектор (эффекты осцилляций малы) и FD- дальний детектор на расстоянии L=810км (NOvA) для регистрации эффектов осцилляций в потоках нейтрино.

Эффект осцилляций максимальный при $E_{min} \sim \Delta m^2_{23}L$, т.е. при $E \sim 1 \div 3$ ГэВ.

На FD зарегистрировано 78 событий кандидатов, включая 6.5 фоновых событий. В отсутствии осцилляций ожидалось 473 \pm 30. Подгонка параметров осцилляций: $\Delta m_{32}^2 = (2.67 \pm 0.11) \times 10^{-3} \text{ sB}^2$ $\sin^2 \theta_{23} = 0.404^{+0.030}_{-0.022} \text{ и } \sin^2 \theta_{23} =$ $0.624^{+0.022}_{-0.030}$ (NH) $\Delta m_{32}^2 = (-2.72 \pm 0.11) \times 10^{-3} \text{ sB}^2$ $\sin^2 \theta_{23} = 0.398^{+0.050}_{-0.022} \text{ и } \sin^2 \theta_{23} =$

Ожидаемое число событий - 82.4

 $0.618^{+0.022}_{-0.030}$ (IH)

При максимальном смешивании $\sin^2 \theta_{23} = 0.5$, $\Delta m_{32}^2 = 2.48 \times 10^{-3} \text{ >B}^2$ (NH) и ожидаемое число событий = 77.7 Область энергий $1 \div 2$ ГэВ наиболее чувствительна к максимальному смешиванию.

А. Буткевич (ИЯИ РАН)

В плоскости ($\Delta m^2_{32}, \sin^2 \theta_{23}$) имеются две изолированные области разрешенных значений параметров осцилляций. Максимальное смешивание $\theta_{23} = \pi/2 (\mu - \tau)$ симметрия в состоянии ν_3) исключается со значимостью 2.6 σ .

Экспозиция $6.05 \times 10^{20} POT$, $\nu_{\mu} \rightarrow \nu_{e}$ $P(\nu_{\mu} \rightarrow \nu_{e}) \sim \sin^{2} \theta_{23} \sin^{2} 2\theta_{13}...$

P.Adamson et al., arXiv:1703.03328

Области разрешенных значений параметров $(\sin^2 \theta_{23}, \delta_{CP}).$

На FD зарегистрировано 33 кандидата в ν_e события. Ожидаемый фон 8.2 ± 0.8 (syst) событий.

Фитировались одновременно спектры ν_{μ} и ν_{e} событий, как функ- $\Delta m_{32}, \theta_{23}, \delta_{CP}$ Значения ции $\sin^2 2\theta_{13} = 0.085 \pm 0.05, \Delta_{21}, \theta_{12}$ PDG фиксированы Имеются два вырожденных решения для NH: $\sin^2 \theta_{23} = 0.404$, $\delta_{CP} = 1.8\pi$ и $\sin^2 \theta_{23} = 0.623, \delta_{CP} = 0.74\pi$ B случае обратной иерархии масс для всех значений δ_{CP} и углов $heta_{23}$ ожидается меньше событий, чем зарегистрировано. Best fit - $\delta_{CP} \sim 3\pi/2$.

Long baseline neutrino experiment: T2K

T2K Experiment

А. Буткевич (ИЯИ РАН) "Статус нейтринных осцилляционных э ИЯИ РАН-26.05.2017 17 / 24

Off-axis (2.5°) пучок нейтрино большой интенсивности. Мощ u_{μ^-} мода: экспозиция 7.482×10^{20} РОТ, зарегистрировано 135 мюонных событий и 32 электронных события.

 $\bar{\nu}_{\mu^{-}}$ мода: экспозиция 7.471×10^{20} POT, зарегистрировано 66 мюонных событий и 4 электронных события.

Совместный фит спектров событий от $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}$ Значения параметров $\Delta m_{21}, \sin^{2} 2\theta_{12}$ фиксированы. PDG. Оценивались значения параметров $\Delta m_{32}, \sin^{2} \theta_{23}, \sin^{2} \theta_{13}, \delta$

Best fit: $\delta_{cp} = -1.794(NH), \quad \delta_{cp} = -1.414(IH)$ Гипотеза сохранения СР-инвариантности ($\delta_{CP} = 0, \pi$) исключается на 90% д.у..

K.Abe et al. arXiv:1701.00432

θ_{23} and Δm^2_{32}

Чувствительность к нарушению СР-ивариантности:

 $N(\delta_{cp} = \pm \pi/2)/N(\delta_{cp} = 0, \pi) \approx 1.2$ Чувствительность к эффекту вещества: $N(NH)/N(IH) \approx 1.09$ Данные Т2К предпочитают $\sin^2 \theta_{23} > 0.5$ с вероятностью 61%

K.Abe et al. arXiv:1701.00432

Совместный фит данных SK + T2K + NOvA

- (*) NH: $(m_1, m_2, m_3) > (0, 0.86, 5.06) \times 10^{-2}$ $_{3}$ B IH: $(m_1, m_2, m_3) > (4.97, 5.04, 0) \times 10^{-2}$ $_{3}$ B
- $\begin{array}{l} (\star) \ m_1 + m_2 + m_3 < [0.06(NH), 0.10(IH)(Planck\ 2015) \div \\ 0.18(m_{eff}\ KamLAND Zen\ at\ 2\sigma) \div 2(\nu_e\ Troitsk)] \exists B \end{array}$
- (\star) NH предпочитает значение $heta_{23} < \pi/4$
- (*) Ускорительные данные лучше согласуются со значением фазы $\delta\sim 3\pi/2$, и исключают значение $\delta\sim \pi/2$ со значимостью 3σ

(*) "Реакторные аномалии"

Потоки $\bar{\nu}_e$, измеренные в экспериментах Daya Bay F.An et al. PRL 116,061801 (2016), RENO J.H. Choi et al. PRL 116,211801 (2016), Double Chooz Y. Abe et al. JHEP 10,(2014),086; 02(2015),74, оказались на 5% меньше, чем предсказанно в расчетах P. Huber et al. PRC 84,024617 (2011), T.A.Mueller et al. PRC 83,054615 (2011). Неопределенность в потоках $\bar{\nu}_e$ оцениваевалась $\approx 2\%$. Daya Bay - Расхождение с предсказаниями модели Huber-Mueller потока $\bar{\nu}_e$ от ^{235}U состовляет 7.8% - нельзя описать $\bar{\nu}_e \to \bar{\nu}_s$ осцилляциями A.P.An et al. arXiv:1704.01082

Результаты последнего анализа показали, что неопределенность в потоках реакторных $\bar{\nu}_e$ составляет $\approx 5\%$. A.C. Hayes et al. PRL 112,202501 (2014), P.Vogel arXiv 1603.08990, A.C. Hayes and P.Vogel arXiv 1605.02047

(*) MINOS

Фитировались отношения спектров событий (от взаимодействия нейтрино заряженным (СС) и нейтральным (NC) токами), измеренных в ND и FD, FD(CC)/ND(CC) и FD(NC)/ND(NC). Подгонялись значения $\Delta m^2_{41}, \Delta m^2_{32}, \theta_{23}, \theta_{24}, \theta_{34}, \theta_{41}$. Фазы $\delta_{13} = \delta_{14} = \delta_{24} = 0$. *P.Adamson et al. PRL* 117,151803,(2016)

(★) Daya Bay

Фитировались отношения спектров, измеренных на ближних детекторах (3 детектора). Свободные параметры - $\sin^2 2\theta_{14}$, $\sin^2 2\theta_{13}$, $|\Delta m^2_{41}|$. F.P.An et al. PRL 117,151802 (2016)

(*****) Анализ данных Bugey-3.

B.Achkar et al. NPB 434,503, (1995)

 $\begin{array}{ll} {\rm MINOS} + {\rm Daya}\;{\rm Bay} + {\rm Bugey3}\;{\rm orpaничения}\;{\rm Ha}\;\sin^22\theta_{\mu e}\;{\rm Ha}\;90\%\;{\rm g.y.}\\ {\rm При}\;\Delta m_{41}^2 = 1.2eV^2\;{\rm orpaничениe}\\ \sin^22\theta_{\mu e} < [3\times10^{-4}(90\% C.L.), 4.5\times10^{-4}(95\% C.L.)]\\ {\rm Oбласть}\;\Delta m_{41}^2 < 0.8eV^2,\;{\rm paзpeшeнная}\;{\rm даннымu}\;{\rm LSND}\;{\rm u}\;{\rm MiniBooNE},\;{\rm uck}{\rm novaercs}\;{\rm Ha}\\ 95\%\;{\rm g.y.} & P.Adamson\;{\rm et\;al.}\;{\it PRL\;117,151803,(2016)}\\ {\rm IceCube:\;sin^2\;2\theta} < 0.1\;{\rm npu}\;\Delta m_{41}^2 \in (0.1,10)eV^2 & M.Aartsen\;{\rm et\;al.}\;{\it PRL\;117,071801,}\\ (2016)\end{array}$

Наблюдается противоречие между результатами экспериментов на исчезновение из пучка

и результатами экспериментов на появление в пучке, на коротких расстояниях.

ЗАКЛЮЧЕНИЕ

- (*) 3-х флейворная парадигма хорошо описывает подавляющее большинство данных.
- (*****) NOvA эксперимент

Смешивание не максимальное, т.е. $\theta_{23} \neq 45^{\circ}$ - достоверность 2.6σ $\theta_{23} < 45^{\circ}$ - нормальная иерархия масс и $\delta \sim 3\pi/2$. $\theta_{23} > 45^{\circ}$ - обратная иерархия масс и $\delta \sim 3\pi/2$, или нормальная иерархия масс и $\delta \sim \pi/2$.

(*) Т2К эксперимент

Смешивание, практически, максимальное: best fit $\sin^2 \theta_{23} \approx 0.532$ с вероятностью 61% Фаза: best fit: $\delta_{CP} = -1.79$ при нормальной иерархии масс и $\delta_{CP} = -1.41$ при обратной иерархии масс

 $\delta_{CP}=(0,\pi)$ исключается на 90% д.у.

- (*) Стерильное нейтрино MINOS + Daya Bay + Bugey3 эксперименты исключают на 95% д.у. область $\Delta m^2 < 0.8$ эВ², разрешенную LSND и MiniBooNE данными.
- (*) Мы не знаем механизма, ответственного за генерацию масс нейтрино. Но, можно утверждать, что необходим выход за рамки Стандартной модели.
- (*) Картина лептонного смешивания отличается от того, что мы наблюдаем в кварковом секторе. Мы не знаем что это значит, но точное измерение углов смешивания может дать важную информацию для решение этой проблемы