ГиперКамиоканаде и DUNE

Юрий Куденко

ИЯИ РАН
Main goals:
- Search for CP violation
- Proton decay
- Neutrino astrophysics

Hyper-K water tank

Water tank
60 m(H)x74m(D)
Total volume 260 kt
Fiducial volume 190 kt ~10xSuper-K
40000 50 cm ID PMTs PMT coverage 40%
6700 20 cm OD PMTs
Photon sensitivity ~2 times better than Super-K
Construction of 2nd tank in Korea
(1-3 deg off axis, 2nd oscill. maximum) is under study

J-PARC

12 countries
> 350 collaborators
Water tank

Total: 258.1 kt/tank
Inner Detector: 215.7 kt/tank
Fiducial Volume: 187.0 kt/tank

ID surface area: 20,063 m²
1 ID-PMT/0.5m² (40% coverage)
→ ~40,000 ID-PMTs/tank
~6,700 OD-PMTs/tank
Photosensors

Hamamatsu R12860-HQE
B&L 50 cm PMT

40000 PMTs
40% photocoverage

Other 50-cm candidates:
- Hybrid Photo-Detector
- MCP PMT
- Multi-PMT

1 p.e. time resolution 1.1 ns
charge resolution 35%

Hamamatsu R5912-HQE
B&L 20 cm PMT
Tokai-to-Hyper-K (T2HK)

Hyper-K

J-PARC

L = 295 km

Off-axis neutrino beam

Neutrino monitor INGRID

Off-axis near neutrino detector

Decay tunnel

Horn

Target

Neutrino beam elements

J-PARC neutrino beam

2.5° off-axis, peak energy 600 MeV (oscillation maximum), current beam power 485 kW
Physics

Accelerator neutrinos
- search for CP violation
- precise measurement of oscillation parameters

Atmospheric and solar neutrinos
- mass hierarchy
- θ_{23} octant

Nucleon decays

Neutrino astronomy and astrophysics
Search for CP violation

Hint on maximal CP violation, $\delta \sim -\pi/2$, $\delta = 0$ excluded at 2σ

$E = 0.6$ GeV, $\Delta m^2_{32} L/4E \approx 1$

$A_{CP} =$

T2HK
for $\delta = -\pi/2$
\rightarrow CP violation effect $A_{CP} \sim 28$
\rightarrow matter effect ~ 8

NOvA

\Rightarrow Search for CP violation
Sensitivity to CP

\[\nu : \bar{\nu} = 1:3 \quad \sin^2\theta_{13} = 0.1 \]

Integrated beam power 1.3 MW x 10^8 s
\[\rightarrow 2.7 \times 10^{22} \text{ POT with 30 GeV proton beam} \]

T2HK: uncertainties of expected number events

- \(\nu_\mu \rightarrow \nu_e \) 3.2%
- \(\nu_\mu \rightarrow \nu_\mu \) 3.6%
- \(\bar{\nu}_\mu \rightarrow \bar{\nu}_e \) 3.9%
- \(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu \) 3.6%

Exclusion of \(\delta=0 \) at 8\(\sigma \) (for \(\delta=-\pi/2 \))
5\(\sigma \) (3\(\sigma \)) significance for 57 (80)% of possible \(\delta \) values
Prospects for δ measurements

Measurement of δ

$\delta = 90$ deg $\quad \sigma = 23$ deg
$\delta = 0$ deg $\quad \sigma = 7$ deg
J-PARC upgrade

1.3MW by Hyper-K

485 kW achieved

J-PARC 30 GeV main ring

→ 750 kW (cycle 1.3 s) - 2020

→ 1.3 MW (cycle 1.16 s) - 2026

Narrow-band neutrino beam, peak energy 600 MeV
ND280 upgrade

E61: Movable Water Cherenkov detector
- Inner diameter 8 m
- Inner detector height 6-8 m
- Multi-PMTs
- Load detector with Gd$_2$(SO$_4$)$_3$ to enhance neutron detection

New upstream tracker:
- Two Horizontal TPCs
- One 3D fine-grained scintillator target SuperFGD
- TOF system around new tracker

Measurement of neutron multiplicity to understand Gd n-capture signal in Super-K and Hyper-K

3D highly granular scintillator detector (SuperFGD):
- Precise measurement of neutrino energy;
- Cover full solid angle and low momentum for charged particles from neutrino interactions;
- Measure electron neutrino cross sections;
- Measure nuclear effects in neutrino interactions;
- Reduce systematic uncertainties to 3-4% level in oscillation measurements
SuperFGD

- Volume 200 x 200 x 60 cm3
- 2×10^6 scintillator cubes, 1 x 1 x 1 cm3
- Each cube has 3 holes, diameter 1.5 mm
- 3D (x,y,z) WLS readout
- About 60000 readout WLS/MPPC channels
- Total active weight about 2 t

Fully active, highly granular, 4π scintillator neutrino detector with 3D WLS/MPPC readout

MC simulation

electron

photon
Technology

Cubes are manufactured at Uniplast, Vladimir

Extrusion \rightarrow injection molding

New machine for injection molding was bought and commissioned at Uniplast in July 2018

Assembly, mechanics, tests, fibers, photosensors at INR

Precision: each side $\leq 30 \, \mu m$
Beam tests at CERN

T9 channel at CERN: muons, pions, protons, electrons 0.5 – 5.0 GeV

-First small prototype:
 -125 cubes, 75 readout channels
 -Beam test October 2017

Large prototype

Length 48 cm
Width 24 cm
Height 8 cm
9216 cubes, each 1x1x1 cm³
1728 Y11 WLS fibers, 1 mm diameter
Readout: 1728 MPPC’s

2 beam tests:
 June-July 2018
 August-September 2018
Beam events

Top views

Positron, 1 GeV, B = 0.2 T

Muon, 5 GeV, 45 deg

Stopped proton, 0.5 GeV, 45 deg
Results

MIP: Light yield per fiber

- Light yield of 1 cube/1 fiber: 42 p.e./MIP
- Light yield of 1 cube/2 fibers: 80 p.e./MIP

MIP: time resolution per fiber

- 1 fiber: 0.92 ns
- 1 cube/2 fibers: 0.68 ns
- 2 cubes/4 fibers: 0.48 ns
- 3 cubes/6 fibers: 0.39 ns
Schedule for SuperGFD

Manufacturing of detector elements 01.2019 - 12.2020
Assembly 10.2020 – 09.2021
Tests 07.2021 – 09.2021
Installation into ND280 pit 10.2021

Participants :
INR; KEK, U.Tokyo, U.Kyoto; U.Geneva, CERN;
Ecole polytechnique, Saclay; Uppsala;
NCBJ, Warsaw; LSU, Stony Brook
Status of Hyper-K and T2HK

Official statement, 12 September 2018

- Seed funding for Hyper-Kamiokande construction was allocated within MEXT 2019 budget

- The University of Tokyo pledges to ensure construction of Hyper-Kamiokande in April 2020
T2HKK

2nd Hyper-K detector in Korea

T2HKK = Tokai-to(2)-HK-to-Korea

KNO
Korean Neutrino Observatory

1-3 deg. off-axis

The J-PARC \(\nu \) beam comes to Korea.

\(L = 1000-1200 \text{ km} \)
Main goals:
- discovery of CP violation in leptonic sector
- neutrino mass hierarchy at >5\(\sigma\) level
- neutrino astronomy
- proton decay search

Beam power
- \(E_p = 60-120\) GeV
- Beam power 1.2 -> 2.4 MW

On axis neutrino beam
- \(E_\nu \sim 1-6\) GeV
- L=1300 km from FNAL to SURF, S.Dakota

LBNF/DUNE project
- Flagship FNAL project
- 30 countries
- 161 institutions
- > 1000 collaborators

Far detector
- 40 kt (4 x 10kt) LAr TPC

Sensitivity to CP violation

Timeline
- 2021 – installation of 1\(^{st}\) far detector
- 2024 – 2 modules operational
- 2026 – deliver neutrino beam
Detector prototyping

Detector R&D of LAr detectors within the CERN neutrino platform start in 2016 beam in 2018

Both prototypes are installed at CERN, in a dedicated extension of the North Area.
1st 10 kt module of DUNE - single-phase TPC
6m x 2.3 m anode and cathode planes 3.6 m spacing
Photon detectors – light guides + SiPMs embedded in APAs
Dual Phase TPC

NP02: WA105 (DP demonstrator + ProtoDUNE DP)

Demonstrator: 3x1x1 m³ – 5 tons

ProtoDUNE DP: 6x6x6 m³
300 tons active mass

Measurements with test beam in 2018
First events in SP TPC

21/09/2018: First track seen at nominal E Field!

On-line Event Display

02/10/2018: First pion interaction from beam!
(1 GeV pion)

DQM Event Display
DUNE Near Detector

3DST: A few ton segmented scintillator detector. Similar to SuperFGD
T2HK and DUNE: CPV Significance

Hyper-K
- Single tank
- Normal hierarchy
- Systematics 3-4%
 \[\nu : \nu = 1:3 \]
- CPV (\(\delta = -90\) deg, 5\(\sigma\))
 \[\rightarrow 1.3\text{MW} \times 4\text{ years} \]

DUNE
- Staging plan
- Normal hierarchy
 \[\nu : \nu = 50\%:50\% \]
- CPV (\(\delta = -90\) deg, 5\(\sigma\)) 253 kt\(\cdot\)MW\(\cdot\)year
 \[\rightarrow 6.5\text{ years} \]

Combination T2K-II and NOvA can reach 4.0-4.5\(\sigma\) for \(\delta = -90\) deg by 2026
Nucleon Decay sensitivities

The diagram illustrates the sensitivities of various experiments to nucleon decay predictions. The horizontal axis represents the lifetime of the particle in years (τ/B), and the vertical axis indicates the predictions for specific decay modes involving proton and antineutrino decays. The experiments mentioned include Soudan, Frejus, Kamiokande, IMB, Super-K, Hyper-K, KamLAND, JUNO, and Hyper-K. The decay modes shown are

- $p
ightarrow e^+ \pi^0$
- $p
ightarrow e^+ K^0$
- $p
ightarrow \mu^+ K^0$
- $n
ightarrow \bar{\nu} K^0$
- $p
ightarrow \bar{\nu} K^+$

Each experiment has a region where it is sensitive to these decays, indicated by the star symbols. The background colors represent different supersymmetric (SUSY) models, with yellow for SUSY SO(10) and orange for non-SUSY SO(10) G224D. The red star indicates the current sensitivity of Hyper-K, while the blue star represents the sensitivity of Super-K.
Hyper-Kamiokande and DUNE - the major next generation neutrino experiments

Very broad physics program:
- search for CP violation in neutrino oscillations
- proton decay
- rich program with atmospheric and solar neutrinos
- supernova neutrinos
- + other interesting physics

Detector (Far and Near) R&D and upgrade in progress → good results

Experiments are expected to start data taking in 2026
Backup slides
Assumed proton lifetime

\[\tau_p/Br = 1.7 \times 10^{34} \text{ years} \]

Free proton bin

Bound proton bin

Hyper K, 1 tank, 10 year exposure

\[p \rightarrow e^+ \pi^0 \text{ events} \]
\(\nu_e \) and \(\bar{\nu}_e \) events

1 Hyper-K tank, 1.3MW, 10x10^7 sec, \(\nu : \text{anti-}\nu = 1:3 \), \(\sin^2 2\theta_{13} = 0.1 \)

\[\delta = 0 \text{ deg} \]

<table>
<thead>
<tr>
<th>(\delta = 0 \text{ deg})</th>
<th>Appearance signal</th>
<th>Wrong sign</th>
<th>Beam (\nu_e) background</th>
<th>NC background</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu) mode</td>
<td>1643</td>
<td>15</td>
<td>259</td>
<td>134</td>
</tr>
<tr>
<td>anti-(\nu) mode</td>
<td>1183</td>
<td>206</td>
<td>317</td>
<td>196</td>
</tr>
</tbody>
</table>
T2HKK: δ precision

T2HKK: study oscillations at 1st and 2nd oscillation maxima
→ better sensitivity to mass hierarchy
→ better sensitivity to CP violation

JD x 1: HK 1 tank, Japan
$\sigma(\delta) = 22$ deg

JD x 2: HK 2 tanks, Japan
$\sigma(\delta) = 17$ deg

JD + KD: HK 1 tank (Japan + HK 1 tank (Korea))
$\sigma(\delta) = 13$-14 deg
Proton Decay: $p \rightarrow \pi^0 e^+$

GUT predicts this process through gage bosons

$$\Gamma(p \rightarrow e^+ \pi^0) \sim \frac{1}{M_X^4} \quad \tau_p \sim \frac{M_X^4}{m_p^5}$$

Neutron tagging

$$(n+p \rightarrow d+\gamma, E_\gamma=2.2\text{MeV})$$

helps to reduce background
Proton Decay: $p \rightarrow \bar{\nu} K^+$

Supersymmetric GUTs

Assumed proton lifetime
\[\tau_p/\text{Br} = 6.6 \times 10^{33} \text{ years} \]

1 tank, 10 year exposure

M. Shiozawa, Neutrino2018