Исследование одиночного рождения топ кварка на адронных коллайдерах

- ~ Процессы рождения топ кварка
- ~ Экспериментальные измерения и методы
- ~ Поиск отклонений в структуре Wtb взаимодействия
- ~ Поиск FCNC во взаимодействиях tgq, tZq, tAq, tHq
- ~ Поиск дополнительных бозонов (W', H+)

<u>XV Марковские чтения, ИЯИ РАН, 16.05.2018</u> <u>Лев Дудко (НИИЯФ МГУ)</u>

Доклад основан на результах работы группы: Проф. д.ф.-м.н. Э.Э. Боос, А. Баскаков, к.ф.-м.н. В. Буничев, Г. Воротников, к.ф.-м.н. Л. Дудко, к.ф.-м.н. Н. Корнеева, И. Мягков, к.ф.-м.н. М. Перфилов, А. Попов

Главные особенности физики топ-кварка

- Топ-кварк является наиболее тяжелым точечным объектом СМ с массой близкой к масштабу электрослабого взаимодействия (М_{топ}=172.44±0.13±0.47 ГэВ)
- Топ-кварк не образует составных адронов, следовательно, уменьшается ошибка измерений и сохраняется информация о фундаментальных взаимодействиях (спиновые корреляции,...)

$$\tau_t = \frac{1}{\Gamma_{tot}} \approx 10^{-25} < \tau_{had} \approx 10^{-24}$$

 Существует практически единственный канал распада топ-кварка, что существенно упрощает исследования

$$t \rightarrow Wb;$$
 $Br(t \rightarrow other) < 10^{-3}$

Процессы рождения топ-кварка

tt pair production (QCD)

	$\sigma_{ m NLO}~({ m IIf})$
Tevatron ($\sqrt{s} = 1.96$ TəB $p\bar{p}$)	$7.08\pm5\%$
LHC ($\sqrt{s} = 7$ TəB pp)	$165\pm6\%$
LHC ($\sqrt{s} = 8$ T \Rightarrow B pp)	$234\pm4\%$
LHC ($\sqrt{s} = 14$ TəB pp)	$920\pm5\%$

Н

t(t) single production (electroweak)

	a shamad	t shamal	W/4
	s-channel	<i>t</i> -channel	VV t
Tevatron ⁵⁰ ($\sqrt{s} = 1.96$ TeV $p\bar{p}$)	$1.04\pm4\%$	$2.26\pm5\%$	$0.14 \pm 20\%$
$LHC^{63,72} \ (\sqrt{s} = 7 \text{ TeV } pp)$	$4.6\pm5\%$	$64\pm4\%$	$15.6\pm8\%$
LHC^{73} ($\sqrt{s} = 8$ TeV pp)	$5.55\pm4\%$	$87.2^{+4}_{-3}\%$	$11.1\pm7\%$
LHC ⁵² ($\sqrt{s} = 14$ TeV pp)	$12\pm6\%$	$243\pm4\%$	$75\pm10\%$

Сложности моделирования t-канального процесса

экспериментах D0 (Fermilab, Tevatron) и CMS (LHC)

Сложности моделирования ассоциативного tW рождения (I)

Leading order (**LO**) 2->2 process **tW** production

Next to leading order (NLO), O(1/log(mt/mb)), 2->3 processes, tWb

Сложности моделирования ассоциативного tW рождения (II)

Diagram removal scheme S. Frixione et al., arXiv:0805.3067.

Diagram subtraction Scheme T. M. P. Tait, arXiv:hepph/9909352

Kinematic separation A.Belyaev, E. Boos, arXiv:hep-ph/0003260 Сложности моделирования ассоциативного tW рождения (III)

Интерференция между tW (однорезонансный вклад) и ttbar (двухрезонансный вклад) отрицательна и существенна. Наиболее правильным способом моделирования будет учет Полного калибровочно-инвариантного набора диаграмм tW+ttbar.

7

Экспериментальные измерения в секторе топ кварка > масса топ кварка (Δт~0.3%) и другие параметры

- полные сечения и сечения в ограниченных областях фазового пространства
- » дифференциальные сечения
- Характеристики взаимодействия с другими частицами, константы связи (gtt, Wtb, FCNC, ...)
- поиск новых резонансов в рождении или распаде топ кварка (W', H⁺, T, ...)

Экспериментальный поиск. Отбор событий

Конечная сигнатура события

Струя от легкого кварка

лептон и недостающий импульс

высокоэнергичная струя от b-кварка

дополнительная мягкая струя от b-кварка

Критерии

- Ровно один жесткий мюон:
 p_T > 20(27) ГэВ/с, |η| < 2.1, rellso > 0.12
- 0 дополнительных мягких мюонов
- 2 или 3 струи:

 $p_T > 30 \frac{\Gamma \to B}{c}$, $|\eta| < 4.7$

Минимум одна из них b-таггирована

Фоновые процессы

Common analysis techniques

Weak points of the methods

- Cut-based and Decision Trees methods use triangle cuts in multi-dimension space therefore it is not very efficient. Boosting algorithm helps to improve the efficiency of DT, but also can be applied with NN and other classifiers.
- Likelihood function is usually far from some optimal function to classify the events and requires special study in each case.
- Matrix element approach tries to use analytic form of Matrix element of signal process for the probability function. The main problem – it is mostly impossible to get analytic form for the processes of interest and backgrounds. Therefore, use events simulated by MC and other classification methods is usually more optimal.
- NN requires different steps of optimizations and tuning to avoid known problems and prepare efficient classifier

10

• Mostly all of the methods require non-trivial set of observables to analyze

Method of "optimal observables"

- Provides general recipe how to choose most sensitive variables to separate signal and background
 - It is based on the analysis of Feynman diagrams (FD) contributing to signal and background processes
 - Distinguish three classes of sensitive variables for the signal and each of kinematically different backgrounds: Singular variables (denominators of FD), Angular variables (numerators of FD) and Threshold variables (Energy thresholds of the processes)
 - Set of variables can be extended with other type of information, like detector relative variables (jet width, b-tagging discriminant)

Described in different examples for the top and Higgs searches

- → E.Boos, L.Dudko, T.Ohl Eur.Phys.J. C11 (1999) 473-484
- → E.Boos, L.Dudko Nucl.Instrum.Meth. A502 (2003) 486-488
- E.Boos, V.Bunichev, L.Dudko, A.Markina, M.Perfilov Phys.Atom.Nucl. 71 (2008) 388-393

• Applied in different experimental analysis in D0 and CMS

- → Phys.Lett. B517 (2001) 282-294 and other D0 publications
- → JHEP02(2017)028 (CMS-TOP-14-007)

Feed-forward NNs and Bayesian NNs

Optimal FF NN requires manual tuning

- → Need to avoid over-fitting problem
- → Tune architecture of NN, training parameters, etc.
- → It is not very stable relative to the tuning
- R. M. Neal proposed Bayesian NN approach where each NN internal weight is not a number but a distribution
 - "Bayesian Learning for Neural Networks" http://www.cs.utoronto.ca/~radford/bnn.book.html
 - FBM package is the software realization for this idea http://www.cs.toronto.edu/~radford/fbm.software.html
 - First use in HEP: P. Bhat and H. Prosper, "Bayesian neural networks", Conf. Proc. C050912 (2005) 151.
- BNN provides the same level of Eff. as FF NN but it is very stable to the modifications of tuning parameters, architecture and practically does not affected by over-fitting problem
 - → Does not require manual tuning
 - → Require significantly more CPU resources

Нейронные сети глубокого обучения (DNN)

Современное понимание оптимального применения нейронных сетей началось со статьи:

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). «A fast learning algorithm for deep belief nets.» Neural computation, 18(7), 1527-1554

Ключевая особенность DNN: возможность тренировать очень большие сети с большим количеством узлов и слоев, что позволяет автоматически формировать пространство признаков в первых слоях, и не требует серьезной оптимизации входных данных.

Пример применения в HEP. DNN позволили увеличить чувствительность с 3.1σ (полученных с помощью обычных NN) до 5.0σ

		Discovery signifi	cance	$aa \rightarrow H^0 \rightarrow W^{\mp}H^{\pm} \rightarrow W^{\mp}W^{\pm}b^0$
Technique	Low-level	High-level	Complete	$gg \rightarrow II \rightarrow W II \rightarrow W W R$
NN	2.5σ	3.1σ	3.7σ	Nature Commun. 5 (2014) 4308
DN	4.9σ	3.6σ	5.0σ	13

Одиночное рождение топ-кварка

измерение параметра ККМ матрицы

- Рождение и распад проходят через Wtb вершину и позволяют напрямую тестировать (V-A) структуру взаимодействия
- Сечения вычислены с NNLO точностью
- Процессы чувствительны к различным отклонениям от СМ

14

Direct measurement of V,

CMS, 13 TeV, arXiv:1610.00678 : $|f_{LV}V_{tb}| = 1.03 \pm 0.07 \,(exp) \pm 0.02 \,(theo)$

ATLAS+CMS Preliminary	LHC <i>top</i> WG	May 2017
$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{tb-r}}}$ from single top quark p	roduction	
σ _{theo} : NLO+NNLL MSTW2008nnlo PRD 83 (2011) 091503, PRD 82 (2010) 0 PRD 81 (2010) 054028	054018,	
$\Delta \sigma_{ ext{theo}}$: scale \oplus PDF		total theo
m _{top} = 172.5 GeV		$ f_{IV}V_{tb} \pm (meas) \pm (theo)$
t-channel:		
ATLAS 7 TeV ¹ PRD 90 (2014) 112006 (4.59 fb ⁻¹)	⊧ <mark>_</mark> ∎∔_4	$1.02 \pm 0.06 \pm 0.02$
ATLAS 8 TeV ^{1.2} arXiv:1702.02859 (20.2 fb ⁻¹)	⊨ ∔=+4	$1.028 \pm 0.042 \pm 0.024$
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	<mark>⊦ i e i - i</mark>	$1.020 \pm 0.046 \pm 0.017$
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	F <mark>+●F 1</mark>	$0.979 \pm 0.045 \pm 0.016$
CMS combined 7+8 TeV JHEP 06 (2014) 090	<mark>⊩+++</mark>	$\textbf{0.998} \pm \textbf{0.038} \pm \textbf{0.016}$
CMS 13 TeV ² arXiv:1610.00678 (2.3 fb ⁻¹)	┝─┼●┼─┤	$1.03 \pm 0.07 \pm 0.02$
ATLAS 13 TeV ² JHEP 04 (2017) 086 (3.2 fb ⁻¹)	┠╧──┼═┼──┥	$1.07 \pm 0.09 \pm 0.02$
Wt:		
ATLAS 7 TeV PLB 716 (2012) 142 (2.05 fb ⁻¹)		$1.03 + 0.15 \\ - 0.18 \pm 0.03$
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	Ⅰ −−−+ ● +−−−−1	$1.01^{+0.16}_{-0.13}$ + 0.03 - 0.04
ATLAS 8 TeV ^{1,3} JHEP 01 (2016) 064 (20.3 fb ⁻¹)	le la	$1.01 \pm 0.10 \pm 0.03$
CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)	F <mark></mark>	$1.03 \pm 0.12 \pm 0.04$
LHC combined 8 TeV ^{1,3} ATLAS-CONF-2016-023, CMS-PAS-TOP-15-019	<mark>┣──┼┋┯╶┼──</mark> ┨	$1.02\ \pm\ 0.08\ \pm\ 0.04$
ATLAS 13 TeV ² arXiv:1612.07231 (3.2 fb ⁻¹)	+ = +	1.14 ± 0.24 ± 0.04
s-channel:		
ATLAS 8 TeV ³ PLB 756 (2016) 228 (20.3 fb ⁻¹)	-+	$0.93 {}^{+ 0.18}_{- 0.20} \pm 0.04$
		uding top-quark mass uncertainty
	o _{the} 3 NPF 3 incl	o. 1920 F DF4EROTT 2S205 (2010) 10, CPC191 (2015) 74 uding beam energy uncertainty
0.4 0.6 0.8	1 1.2	1.4 1.6 1.8
	$ \mathbf{f}_{LV}\mathbf{V}_{tb} $	

ATLAS, 8 TeV, arXiv:1702.02859 $f_{\rm LV} \cdot |V_{tb}| = 1.029 \pm 0.048$ ATLAS, 13 TeV, JHEP04(2017)086 $f_{\rm LV} \cdot |V_{tb}| = 1.07 \pm 0.09$

What we call anomalous Wtb couplings?

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i$$

contact four-fermion interactions (not a part of Wtb vertex):

$$O_{qq}^{(1,3)} = (\bar{q}^i \gamma_\mu \tau^I q^j) (\bar{q} \gamma^\mu \tau^I q)$$

 $V_{\mu} \equiv F_{\tau}^{L} \equiv F_{1}^{L}$

 $V_{P} \equiv F^{R}_{T} \equiv F^{R}_{1}$

 $\mathbf{g}_{\mathrm{L}} \equiv \mathbf{F}_{\mathrm{T}}^{\mathrm{L}} \equiv \mathbf{F}_{2}^{\mathrm{L}},$

 $g_{R} \equiv F^{R}_{T} \equiv F^{R}_{p}$

v O^(1,3) *O*^(1,3) *O*^(1,3) *C en* Zhang, Scott Willenbrock, arXiv:1008.3869

order:

 g_{R}

 $1/\Lambda^2$ $1/\Lambda^4$

 $V_{1} (V_{1})^{2}$

 $- (g_1)^2$

 $(V_R)^2$

 $(g_{p})^{2}$

Operators that contribute to the Wtb vertex:

J. A. Aguilar-Saavedra, arXiv:1008.3225

 $O_{\phi q}^{(3,3+3)} = \frac{i}{2} \left[\phi^{\dagger} (\tau^{I} D_{\mu} - \overleftarrow{D}_{\mu} \tau^{I}) \phi \right] (\bar{q}_{L3} \gamma^{\mu} \tau^{I} q_{L3}), \qquad O_{\phi \phi}^{33} = i (\tilde{\phi}^{\dagger} D_{\mu} \phi) (\bar{t}_{R} \gamma^{\mu} b_{R}),$ $O_{dW}^{33} = (\bar{q}_{L3} \sigma^{\mu\nu} \tau^{I} b_{R}) \phi W_{\mu\nu}^{I}, \qquad O_{uW}^{33} = (\bar{q}_{L3} \sigma^{\mu\nu} \tau^{I} t_{R}) \tilde{\phi} W_{\mu\nu}^{I},$

one can derive vertices:

$$\mathscr{L}_{Wtb} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}\left(V_{L}P_{L}+V_{R}P_{R}\right)t W_{\mu}^{-}$$
$$-\frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}\left(g_{L}P_{L}+g_{R}P_{R}\right)t W_{\mu}^{-}+\text{h.c.}$$

Where corrections to SM coupling:

$$V_L = V_{tb} + C_{\phi q}^{(3,3+3)} \frac{v^2}{\Lambda^2}, \qquad g_L = \sqrt{2}C_{dW}^{33} \frac{v^2}{\Lambda^2}, \\ V_R = \frac{1}{2}C_{\phi \phi}^{33} \frac{v^2}{\Lambda^2}, \qquad g_R = \sqrt{2}C_{uW}^{33} \frac{v^2}{\Lambda^2},$$

 $\sigma \propto A \cdot (f_1^L)^2 + B \cdot (f_1^R)^2 + C \cdot (f_1^L \cdot f_2^R) + D \cdot (f_1^R \cdot f_2^L) + E \cdot (f_2^L)^2 + G \cdot (f_2^R)^2 = 16$

Production Cross Section

for *s*-channel:

$$\sigma(\hat{s})_{u\bar{d}\to t\bar{b}} = \frac{\pi \cdot V_{ud}^2 \cdot \alpha^2}{24\sin^4 \Theta_W} \cdot \frac{\beta^4 \cdot \hat{s}}{(\hat{s} - m_W^2)^2} \left[(3 - \beta^2) \cdot (f_{LV}^2 + f_{RV}^2) \right]$$

$$+ (3 - 2\beta^2) \cdot \frac{\hat{s}}{m_W^2} \cdot (f_{LT}^2 + f_{RT}^2) - \frac{6m_t}{m_W} \cdot (f_{LV} \cdot f_{RT} + f_{RV} \cdot f_{LT})$$

for *t*-channel:

$$\begin{split} \sigma(\hat{s})_{ub \to td} &= \frac{\pi \cdot V_{ud}^2 \cdot \alpha^2}{4 \cdot \hat{s} \cdot \sin^4 \Theta_W} \left[c_0 c_p \beta^4 \cdot f_{LV}^2 + (-(1+c_1) \cdot \ln(a_1) + (2+c_0) \cdot \beta^2) \cdot f_{RV}^2 \\ &+ ((2+c_0) \cdot \ln(a_1) - (1+c_1) \cdot c_0 c_p \beta^2) \cdot f_{RT}^2 + (c_1 \cdot \ln(a_1) - 2\beta^2) \cdot c_0 \beta^2 \cdot f_{LT}^2 \\ &+ \frac{2m_t}{m_W} \cdot ((-\ln(a_1) + c_p \beta^2) \cdot f_{LV} \cdot f_{RT}) + \frac{2m_t}{m_W} \cdot ((c_1 \cdot \ln(a_1) - 2\beta^2) \cdot f_{RV} \cdot f_{LT}) \right] \\ \\ \\ \text{E.Boos, V.Bunichev, L.Dudko, M.Perfilov} \qquad \qquad \beta^2 = 1 - \frac{m_t^2}{\hat{s}}, \quad a_1 = 1 + \frac{\beta^2 \hat{s}}{m_W^2} \end{split}$$

E.Boos, V.Bunichev, L.Dudko, M.Perfilov

Int.J.Mod.Phys. A32 (2016) 1750008

$$(s - m_{\bar{t}} + m_{\bar{W}})$$

$$c_0 = \frac{\hat{s}}{m_W^2}, \quad c_1 = \frac{2m_W^2}{\hat{s}} + \beta^2;$$

 $\frac{\hat{s}}{2}$

s

 $c_p = \frac{1}{\hat{c}}$

protor

antiprotor

b

Моделирование аномальных взаимодействий

~ Учет аномального каплинга в рождении и распаде, (LV, RV) сценарий

 $m = (f_V^L)^4 \frac{w_{SM}}{w_{(f_V^L, f_V^R)}}$ $n = (f_V^L)^2 \cdot (f_V^R)^2 \frac{w_{art}}{w_{(f_V^L, f_V^R)}}$ $k = (f_V^R)^4 \frac{w_{0100}}{w_{(f_V^L, f_V^R)}}$

18

$$\sigma_{\% prod+decay}(f_V^L f_V^R) = m \cdot (SM) + n \cdot (artificial) + k \cdot (0100)$$

Метод для правильного моделирования и воспроизведения кинематических характеристик описан в Int.J.Mod.Phys. A32 (2016) 1750008

Схема экспериментального поиска проявления аномальных Wtb взаимодействий

JHEP 02 (2017) 028

JHEP 02 (2017) 028: Events yield

		\sqrt{s}	$= 7 \mathrm{TeV}$	\sqrt{s}	$= 8 \mathrm{TeV}$	
	Process	Basic selection	Multijet $BNN > 0.7$	Basic selection	Multijet BNN > 0.7	_
	t channel	5580^{+220}_{-160}	4560^{+180}_{-130}	21900^{+980}_{-840}	14800^{+660}_{-560}	_
	s channel	373^{+16}_{-14}	301^{+13}_{-12}	$1307{\pm}47$	865 ± 31	
	tW	$2080{\pm}160$	$1760{\pm}130$	$9220{\pm}620$	$6620{\pm}450$	
	tī	20450^{+770}_{-900}	17360^{+660}_{-770}	101100^{+5100}_{-6100}	72200^{+3600}_{-4300}	
	W+jets	$16100{\pm}800$	$12700{\pm}630$	36100^{+1200}_{-1200}	$23700{\pm}800$	
	Dibosons	$380{\pm}10$	300 ± 8	$780{\pm}20$	$537 {\pm} 14$	
	Drell–Yan	$1520{\pm}80$	$660 {\pm} 40$	$5960{\pm}320$	$2060{\pm}110$	
	Multijets	7340^{+3700}_{-3400}	$740\substack{+380 \\ -350}$	30200^{+6000}_{-6300}	2630^{+520}_{-550}	
	Total	53800^{+3900}_{-3700}	38380^{+1000}_{-1100}	206650^{+8100}_{-8900}	123400^{+3800}_{-4500}	_
	Data	56 145	40 681	222 242	135 071	_
~	×10 ³	5.0 fb ⁻¹ (7	TeV)	×10 ³	19.7 fb ⁻¹ (8 TeV)	
a-MC Events/0.02	2.0 1.5 1.0 0.5 0.0 0.1 0.0 0.0		AS + Data t channel s channel tW tt W+light W+c W+QQ W+QX (UE) Dibosons Drell-Yan Multijet			Data t channel s channel tW tt̄ W+light W+c W+QQ W+QX W+QX (U Dibosons Drell-Yan Multijet
Jaté	0.0 0.2	0.4 0.6 0.8		0.0 0.2 0.4	0.6 0.8 1.0	
-1		SM	BNN		SM BNN	

Data-MC

Статистическая модель

Вероятность получить сигнал силой μ_{e} с набором данных d:

$$p(\vec{\mu}_s|d) = \int p(d|\vec{\mu}_s, \vec{\mu}_b, \vec{\theta}) \frac{\pi(\vec{\mu}_s)\pi(\vec{\mu}_b)\pi(\vec{\theta})}{\pi(d)} \mathrm{d}\vec{\mu}_b \mathrm{d}\vec{\theta},$$

Источники систематических ошибок:

∼Lepton Id/Iso

Немаргинализуемые ~Конечность Маргинализуемые (~5.5%): (~8%): статистики МК моделирования Xsections Generator choise (метод Барлоу-Бистона) **∼**JEC **∼**Scale Светимость Matching **∼**JER (2.6%) ∼Unclustered MET ∼PDF Немаргинализуемые ошибки ∼Pile-Up $\sim p_{t}(top)$ вычисляются с помощью псевдо-экспериментов. ∼B-tag /mistag Triggers SF

21

(LV,RV,RT) и (LV,LT,RT) scenarios

Observed (expected) 1D limits at 95% C.L.:

 $\begin{aligned} & \left| f_{V}^{L} \right| > 0.98(0.97), \\ & \left| f_{V}^{R} \right| > 0.16(0.22), \\ & -0.049(-0.049) < f_{T}^{R} < 0.039(0.037) \end{aligned}$

Observed (expected) 1D limits at 95% C.L.:

 $\begin{aligned} \left| f_{V}^{L} \right| &> 0.98(0.97), \\ \left| f_{T}^{L} \right| &> 0.057(0.10), \\ &- 0.049(-0.051) < f_{T}^{R} < 0.048(0.046) \end{aligned}$

JHEP 02 (2017) 028

Нейтральные токи меняющие аромат кварков (FCNC) в рождении топ-кварка

FCNC с обменом глюоном

$$g_s \frac{\kappa_{tug}}{\Lambda} \bar{u} \ \sigma^{\mu\nu} \frac{\lambda^a}{2} t \ G^a_{\mu\nu} + g_s \frac{\kappa_{tcg}}{\Lambda} \bar{c} \ \sigma^{\mu\nu} \frac{\lambda^a}{2} t \ G^a_{\mu\nu} + h.c.$$

Характерные диаграммы для канала tj

Ограничения на tug, tcg FCNC

\sqrt{s}	$ \kappa_{\rm tug} /\Lambda({\rm TeV^{-1}})$	$\mathcal{B}(t \rightarrow ug)$	$ \kappa_{\rm tcg} /\Lambda({\rm TeV^{-1}})$	${\cal B}(t \to cg)$
$7\mathrm{TeV}$	$14(13) \times 10^{-3}$	$24~(21) \times 10^{-5}$	$2.9~(2.4)~{\times}10^{-2}$	$10.1~(6.9){\times}10^{-4}$
$8\mathrm{TeV}$	$5.1~(5.9)~\times 10^{-3}$	$3.1~(4.2) \times 10^{-5}$	$2.2~(2.0)~{\times}10^{-2}$	$5.6~(4.8) \times 10^{-4}$
$7~{\rm and}~8{\rm TeV}$	$4.1 (4.8) \times 10^{-3}$	$2.0~(2.8){\times}10^{-5}$	$1.8~(1.5)~{ imes}10^{-2}$	$4.1~(2.8) \times 10^{-4}$

Ограничения на аномальные FCNC распады топ-кварка

CERN Courier Ноябрь, 2016

W' searhes

W' search: W - W' interference

considered three scenarios of W' interaction to fermions:

1) SM + purely left-handed W', 2) purely right-handed W'

Single Top in Heavy Ion Collisions

	EPS09	PYQUEN
(1) pp	-	-
(2) PbPb	+	-
(3) $PbPb + PYQUEN$	+	+

Test of MC simulation (W+/W- production)

A. Baskakov, E. Boos, L. Dudko, I. Lokhtin, A. Snigirev Phys.Rev. C92 (2015) no.4, 044901 Single top simulation:

Заключение

- Не наблюдается статистически значимых отклонений от предсказаний СМ в секторе топ-кварка
- ~ Основные направления поиска:
 - рождение тяжелых резонансов распадающихся в топ-кварк
 - возможные модификации tWb взаимодействия
 - дополнительные взаимодействия: tgu(c), tZu(c), tγu(c)
- ~ Следующий уровень чувствительности в экспериментах с топ-кварком это проверка взаимодействия ttH, tHq

 Экспериментальные исследования поддержаны грантом РФФИ 16-02-00664. Теоретические и феноменологические исследования поддержаны грантом РНФ 16-12-10280 Back Up

How we can prepare MC model of production in model independent way (vertex approach)

$$\mathcal{L} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu} (F_L^1 P_L + F_R^1 P_R)tW_{\mu}^{-}$$
$$-\frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_W} (F_L^2 P_L + F_R^2 P_R) + \text{h.c}$$

$$W_{\mu\nu}^{\pm} = D_{\mu}W_{\nu}^{\pm} - D_{\nu}W_{\mu}^{\pm} \quad P_{L,R} = (1 \mp \gamma_5)/2$$
$$D_{\mu} = \delta_{\mu} - ieA_{\mu}; \quad \sigma^{\mu\nu} = (i/2)[\gamma_{\mu}, \gamma_{\nu}];$$
$$F_{L,R}^{1} = V_{tb}f_{L,R}^{1} \qquad F_{L,R}^{2} = V_{tb}f_{L,R}^{2}$$

 $\sigma \propto A \cdot (f_1^L)^2 + B \cdot (f_1^R)^2 + C \cdot (f_1^L \cdot f_2^R) + D \cdot (f_1^R \cdot f_2^L) + E \cdot (f_2^L)^2 + G \cdot (f_2^R)^2$

With these 6 samples we can describe All possible values (models) of the Couplings in production of single top Including the interference terms (approximation with massless b quark)

Notation	f_L^1	f_R^1	f_L^2	f_R^2
1000	1	0	0	0
0100	0	1	0	0
0010	0	0	1	0
0001	0	0	0	1
1010	1	0	1	0
0101	0	1	0	1

In CompHEP samples b-quark is massive and all necessary terms are taken into account ₃₃ correctly as well as anomalous operators in the decay of top.

Моделирование многоструйных событий из КХД

- Плохое моделирование
- Оценка производится из антиизолированной области данных
- QCD BNN: нейронная сеть для вырезания фона КХД

Входные переменные

 $\Delta \varphi(\mu, \nu) m_T(W) MET p_T(\mu)$

Сигнал

 $BNN_QCD > 0.7$

Построение 2D-контуров ограничений

- В отличие от автоматически учитываемых в стат. пакете маргинализуемых систематик, немаргинализуемые систематические неопределённости оцениваются с помощью отдельно проводимых псевдоэкспериментов, и добавляются в двухмерный контур с помощью дополнительного двухмерного размытия по Гауссу, параметры которого определяются матрицей ковариации между рассматриваемыми константами связи.
- Для каждого источника (scale, PDF, etc) создаётся матрица ковариации, с использованием симметризованных отклонений для соответствующей константы связи.

 $\begin{pmatrix} \delta_{LV}^2 & \delta_{LV} * \delta_{RV} \\ \delta_{LV} * \delta_{RV} & \delta_{RV}^2 \end{pmatrix}$

- Симметризация неопределённостей проводится усреднением отклонений вверх и вниз по рассматриваемому параметру.
- Элементы главной диагонали рассчитываются как квадрат симметризованной неопределённости для каждой из констант связи.
- Недиагональные элементы рассчитываются как знаковое произведение симметризованных отклонений различных констант связи, с учетом преимущественного знака отклонении для каждой из констант связи.
- Полная матрица ковариации определяется как сумма по всем источникам неопределённости. Корреляционный коэффициент 2D размытия определяется как:

$$\rho = \frac{\sum (\delta_{LV} * \delta_{RV})}{\sqrt{\sum \delta_{LV}^2 * \sum \delta_{RV}^2}}$$

Комбинация данных из разных периодов работы LHC

Новая статистическая модель:

Объединение гистограмм 7 и 8 ТэВ данных в одну общую гистограмму.

Аномальные константы связи — общие параметры интереса в совместном фитировании.

Маргинализуемая систематическая погрешность задаётся **отдельными** параметрами для 7 и 8 ТэВ данных:

	Xsec	ctio	ns
_			

∼JER

PileUp

- →JEC (without separation) Trigger Sfs
- ∼Unclustered MET
- Lepton ID, Iso
- Luminosity

b-tagging and mistag

— Немаргинализуемая систематическая неопределённость считается полностью скоррелированной для 7 и 8 ТэВ данных

~PDF

 $\sim Q^2$ uncertainty

- Comparison of different generators
- p_r(top) reweighting

Matching threshold

Variable	Description	\mathbf{SM}	$f_{\rm V}^{\rm L} f_{\rm V}^{\rm R}$	$f_{\rm V}^{\rm L} f_{\rm T}^{\rm L}$	$f_{\rm V}^{ m L} f_{ m T}^{ m R}$	FCNC
n (h)	$p_{\rm T}$ of the leading b jet	×				
$p_{\rm T}({\rm D}_1)$	(the b-tagged jet with the highest $p_{\rm T}$)	×				
$p_{\mathrm{T}}(\mathrm{b}_2)$	$p_{\rm T}$ of the next-to-leading b jet	7				
$p_{\mathrm{T}}(\mathbf{j}_1)$	$p_{\rm T}$ of the leading jet			×	×	×
$p_{\mathrm{TT}}(\mathbf{i}_{1}, \mathbf{i}_{2})$	vector sum of the $p_{\rm T}$ of the leading	×		×		
F 1 (31, 32)	and the next-to-leading jet					
$p_{\mathrm{T}}(\sum_{i \neq i_{\mathrm{best}}} \vec{p_{\mathrm{T}}}(\mathbf{j}_i))$	vector sum of the $p_{\rm T}$ of all jets without the best jet	7				
nm(ir)	$p_{\rm T}$ of the light-flavour jet	×		×	×	×
PT(JL)	(untagged jet with the highest value of $ \eta $)			~		~
$p_{\mathrm{T}}(\mu)$	$p_{\rm T}$ of the muon	7	×	×		
$p_{\mathrm{T}}(\mathrm{W},\mathrm{b}_{1})$	$p_{\rm T}$ of the W boson and the leading b jet	×		×	×	×
$H_{\rm T}({\rm j}_1,{\rm j}_2)$	scalar sum of the $p_{\rm T}$ of the leading and the next-to-leading jet	×		×	×	×
$E_{\mathrm{T}}^{\mathrm{miss}}$	missing transverse energy		×			
$\eta(\mu)$	η of the muon	×				
$\eta(\mathbf{j}_L)$	n of the light-flavour jet	×		×		×
1,022)	invariant mass of the leading					
$M(\mathbf{j}_1,\mathbf{j}_2)$	and the next-to-leading jets	×		×	×	×
$M(\sum_{i \neq i_{1}, \dots, i_{j_{i}}} (\mathbf{j}_{i}))$	invariant mass of all jets without the best one	7				
M(jW)	invariant mass of the W boson and all jets	×			×	×
	invariant mass of the W boson					
$M(\mathbf{W},\mathbf{b}_1)$	and the leading b jet	×				
$\Delta R(\mu, \mathbf{b}_1)$	$\sqrt{(\eta(\mu) - \eta(\mathbf{b}_1))^2 + (\phi(\mu) - \phi(\mathbf{b}_1))^2}$				8	
$\Delta R(\mu, j_1)$	$\sqrt{(\eta(\mu) - \eta(j_1))^2 + (\phi(\mu) - \phi(j_1))^2}$				7	
$\Delta \phi(\mu, E_{\rm T}^{\rm miss})$	azimuthal angle between the muon and $\vec{p}_{\rm T}^{\rm miss}$			×	×	
	azimuthal angle between the muon					
$\Delta \phi(\mu, \mathrm{W})$	and the W boson			8		
	cosine of the angle between the muon and					
$\cos(\theta_{\mu,j_L}) _{top}$	the light-flavour jet in the top quark rest frame, for	×	×		7	×
	top quark reconstructed with the leading b jet $[55]$					
	cosine of the angle between					
$\cos(\theta_{\mu,W}) _{W}$	the muon momentum in the W boson rest frame	×	×	×		
	and the direction of the W boson boost vector [56]					
	cosine of the angle between the W boson					
$\cos(\theta_{W,jL}) _{top}$	and the light-flavour jet	8	×			
	in the top quark rest frame [56]					
$Q(\mu)$	charge of the muon					tug
	measure of the flatness of the event					
Planarity	using the smallest eigenvalue	8				
	of the normalized momentum tensor [57]					
SM BNN	SM BNN discriminant					×

Сравнение результатов

Сравнение результатов с W helicity анализами

W' searches at CMS: W' theory

Effective lagrangian of W' interaction to fermions in model-independent form:

$$L = \frac{V_{q_i q_j}}{2\sqrt{2}} g_W \bar{q}_i \gamma_{\mu} [a_{q_i q_j}^R (1 + \gamma_5) + a_{q_i q_j}^L (1 - \gamma_5)] W' q_j + H.C.$$

 $g_W = \frac{e}{\sin(\theta)}$ - Standard Model weak coupling constant

- Standard Model CKM matrix element

∼Different scenarios of W' interaction to fermions:

Left-Handed W' (SM-like couplings)	Right-Handed W'	Mixed case
$a_{q_iq_j}^L = 1$, $a_{q_iq_j}^R = 0$	$a_{q_iq_j}^L = 0$, $a_{q_iq_j}^R = 1$	$a_{q_iq_j}^L = 1$, $a_{q_iq_j}^R = 1$

 $M_{_W}$, > $M_{_{\mathcal{V}_R}}$; $M_{_W}$, < $M_{_{\mathcal{V}_R}}$

 $V_{q_i q_i}$

FCNC tgu(c) Search in Single Top

FCNC Search tZq, tyq, tHq

Reference FCNC analyses in $t\bar{t}$

Flavour changing neutral Higgs in $t\bar{t}$ $t \rightarrow qH, H \rightarrow \gamma\gamma$, <u>CMS PAS TOP-14-019</u> Observed (expected) limits on branching ratios at 95% CL

 $Br(t \rightarrow uH) < 0.42(0.65)\%$ $Br(t \rightarrow cH) < 0.47(0.71)\%$

Reference FCNC analyses in $t\bar{t}$

FCNC with Z in $t\bar{t}$ $t \rightarrow qZ$, <u>CMS PAS TOP-12-037</u> Observed (expected) limits on branching ratios at 95% CL

 $Br(t \rightarrow qZ) < 0.07(0.11)\%$

Reference FCNC analyses in $t\bar{t}$

Flavour changing neutral Higgs in $t\bar{t}$ $t \rightarrow qH, H \rightarrow \gamma\gamma$, <u>CMS PAS TOP-14-019</u> Observed (expected) limits on branching ratios at 95% CL

 $Br(t \rightarrow uH) < 0.42(0.65)\%$ $Br(t \rightarrow cH) < 0.47(0.71)\%$

Ломоносовские чтения, 18 апреля 2017