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Race for Knowledge

With current technologies the energy depends on the linear size of collider.

For better sensitivity we need more collisions.

Quantity Number
Circumference 26 659 m
Dipole operating temperature 19 K (-271.3°C)
Number of magnets 9593
Number of main dipoles 1232
Number of main quadrupoles 392
Number of RF cavities 8 per beam
Nominal energy, protons 6.5 TeV
Nominal energy, ions 2.56 TeV/u (energy per nucleon)
Nominal energy, protons collisions 13 TeV
No. of bunches per proton beam 2808
No. of protons per bunch (at start) 1.2x 10"
Number of turns per second 11245

Number of collisions per second 1 billion

Four main detectors installed at Large Hadron Collider are LHCb, ALICE, CMS, ATLAS.



A typical discovery procedure 50 years ago

Camera was triggered
by a person and than
developed and
analysed by another
person

Fermilab and LBNL Image Database 96602983
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Example (LHCb) Run Il data flow

=

Monitoring

Hardware Software trigger Software trigger Offline
trigger (LO) 1 (HLT1) 2 (HLT2) reconstruction
e Real-time e Real-time e Complete event e Decay-specific user-
e Selects events with e Selects events with reconstruction specific
hits in muon muons e Decay-specific
chamber ¢ Selects event s with selection

e Selects events with high pl¢ tracks
significantamount e Selects events with
of transverse energy  high IP
in hadronic
calorimeter

https://pos.sissa.it/321/226/pdf
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Example (LHCb) Run Il data flow

Monitoring

Hardware

trigger (LO)

)

WIP ML

(v) () B2 ()

Software trigger

1 (HLT1)

Software trigger Offline
2 (HLT2) reconstruction

¢ Real-time

¢ Selects events with
hits in muon
chamber

¢ Selects events with
significant amount
of transverse energy
in hadronic
calorimeter

® Real-time

¢ Selects events with
muons

¢ Selects event s with
high pd¢ tracks

¢ Selects events with
high IP

e Complete event e Decay-specific user-
reconstruction specific

e Decay-specific
selection

https://pos.sissa.it/321/226/pdf
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Information processing
challenge



Frequency problem

Typical ALICE event in lead-lead collision
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An event is occurring 40M times per
second, with a typical size of 1 MB,
this makes around 40 TB/s of
information.

We thus need a fast, precise and
reliable to analyse the information
online in search for a “good” event.

We need a trigger system.




Trigger system in HEP experiments

[ 40 MHz bunch crossings

v

[ hardware trigger (-1 MHz)

The goal is to select interesting events (proton-proton

collisions) based on detailed online analysis of measured \1'

physics information.

[ software trigger (-10 kHz)

Trigger system often consists of two stages: hardware \l'
and software.

[ offline analysis
v
[ discovery!

|
|
|
|
|




LHCDb trigger

hadrons

|

40 MHz bunch crossings rate

v

LO Hardware Trigger:
1 MHz readout, high Et/Pt signatures

[ 450 kHz h+ [400 KHz /P [ 150 kHz e‘y
N\

—
] \muons

v

Software High Level Trigger

29000 CPU cores

Offline reconstruction tuned to trigger time
constraints

k/ photons,

electrons

5 kHz Rate to storaae
2 kHz 2 kHz 1 kHz
Inclusive Inclusive/ Muon and

Topological Exclusive DiMuon
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LHCb topological trigger

) HLT-1 track is looking for either one super
high PT or high displaced track

) HLT-1 2-body SV classifier is looking for two
tracks making a vertex

) HLT-2 improved topological classifier uses
full reconstructed event to look for 2, 3, 4
and more tracks making a vertex

HLT-1 track: 100 kHZ HLT-1 2-body SV: 50

N

OR

HLT-2 Topo: 2-4 kHZ

~
@/'

/S @

PV

®

/

o—@®
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Interesting event

) Primary vertex (PV) is a collision point

) Secondary Vertex (SV) is a point where
an unstable particle decayed, this particle
is associated with SV

) SV is called interesting if it is associated
with the decay of particle under study

) Event is interesting if it contains at least 9
. . roton
one interesting secondary vertex (SV)

PV

@ —

B’meson

Proton
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LHC data

) Sample: one proton-proton collision
) Binary classification: event is interesting or not
) Event consists of:
1. tracks (track description)
2. secondary vertices (SV description)
) Questions:
1. How to describe event in ML terms?

2. How to train model on such samples?

13



Machine learning problem

Sample is a set of SVs for all events
Features: momentum, mass, angles, impact parameter.

Task: separate "signal" signatures of B-mesons and D-
mesons decays from “background".

P("signal" decay) < 104

Event is represented
as set of SV’s

SV SV SV SV SV
)

true match to signal
v

SV SV SV SV

!

other
v

SV SV SV
l

ML ——trigger!
re

SV

If at least one SV in the event
passed all stages, the whole event

14



Machine learning problem

"Signal":

) Monte Carlo sample is simulated for various types of interesting events (different
decays)

"Background":

) generic proton-proton collisions are simulated during a small period of time
Imposed restriction:

) output rate is fixed (2.5 kHz), thus, false positive rate (FPR) for events is fixed
Goal:

) get the highest efficiency for each type of signal events at given FPR

15



How to measure quality?

) Looking at the quality for each decay separately is not a way

) Need to have aggregative metric to measure quality

o
fos)

o
N

efficiency
© o o o o ©
| N W H ul (@)}

o
o
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ROC curve, computed for events

— base — forest selection partial, top 2 —— forest top-2 in channel
— forest selection, top 1 — Xxgb top-1 in channel -- rate: 2.5 kHz
— forest selection, top 2 — Xxgb top-2 in channel -- rate: 4. kHz
forest selection partial, top 1 forest top-1 in channel
) Output rate = false positive rate (FPR) for _ ROC for events (trainina
events ' '
_'(5
. . - . %0.80»
) Optimise true positive rate (TPR) for fixed ¢
FPR for events %
% .
) Weight signal events in such a way that G
decays have the same sum of weights oo
0
) Optimise ROC curve in a region g

5 . ! ‘ . . .
W|th Sma” FPR 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060
FPR. backaround events
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Topological trigger results

50% improvement implies that
the same physics results would
be collected during 3 years with
Run | model and during 2 years
with new model.

Currently, the model is run at the
LHCb experiment online,
collecting 60% of data.

90

80

0

60

40

30

20

10

N-Body trigger Performance Comparison
(bars correspond to trigger efficiency for different decay modes)

2 3 4 5

Run-| (Before optimization) MatrixNet

J.Phys.Conf.Ser. 664 (2015) no.8, 082025

http://iopscience.iop.org/article/10.1088/1742-6596/664/8/082025/meta
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Precision analysis
challenge
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PID at LHCb

Problem: identify particle type associated
with a track/energy deposited in the
subdetectors

* Charged:m, e, u, K, p

 Neutral: % vy, n

Better PID performance - better bkg
rejection - more precise results.

PID also used for trigger (in particular for

upgrade): less background = less resources
(less bandwidth)

High-level info from subdetectors + track
qguality info - multi-class classification in
machine learning

photons

R

electrons

R

muons
—_—

rotons
aons
pions
———

neutrons
0
I(I,

w w = [$2]
(=) (3] [=] a (=]
. SECSL AR it 7 ¢

Cherenkov Angle (mrad)

25F

=N
g o

innermost layer
tracking electromagnetic hadronic

system

muon
calorimeter calorimeter s

C. Lippmann - 2003

LA A A A raaaal
10 102

» outermost layer

20
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=1100

- =180
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40
0

0
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Global Particle Identification

Problem: identify particle type
associated with a track.

Particle types: Electron, Muon, Pion,
Kaon, Proton and Ghost

Input observables: particle responses
in RICH, ECAL, HCAL subdetectors,
Muon Chambers and Track
observables.

Y
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Quality Metrics

) One-vs-rest ROC curves used to
measure models quality.

) Area under them (ROC AUC) are
used as target metrics to select the
best models.

Background rejection
o o o o o ©° o o &=
NOOWw R Y N v o

o
=

©
@

Electron, 0.96

Proton, 0.92
Pion, 0.94
Muon, 0.99
Kaon, 0.93
Ghost, 0.96

ROC Curves

0.1 0.2

0.3

04 0.5 06
Signal efficiency

0.7

0.8

0.9

1.0
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Technologies

) Several possibilities were tested, all of them were inspired by the knowledge of detector responses.

subdetectorN

subdetector1

Input features from all subdetectors

subdetectorN

subdetector1

output of neural
networks on
subdetectors
is concatenated with
original features

representations

for subdetectors
are concatenated

\
%
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mm
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network output

network output

network output

) Other approaches using Decision trees were also tested and brought competitive results.
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Results

- W’“"W‘“‘M
..0.8 o LHCb Simulation
) Using the above mentioned approaches c o’ S
= 0.6 ___Ww."“%
we were able to decrease the error rate by = "
w @
up to 80%. § 0.4|
=02,
@1
Particle vs particle: AOC ratio 0-00 2 4 6 ) 10
@ Transverse Momentum, GeV/c
_8 27.8 431 249 289 236
O
3
£ 343 46.9 499
Q
wl
c
2 50.8 457
=
S | oag s i1 a0 ) In addition to this, we were able to correct
a
the detector acceptance function, which
c
8 ¥ - 52 lead to a lower systematics.
c
S 26 43.0 18.6 8.8
&
Ghost Electron Muon Pion Kaon Proton

Journal of Physics: Conference Series. 2018. Vol. 1085. No. 4. P. 1-5. o5

http://iopscience.iop.org/article/10.1088/1742-6596/1085/4/042038/meta
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Flat efficiency approach

o PID performace depends on particle kinematics (p,p7,7) and Neracks
o Flat PID efficiencies:
¥ Good discrimination for different analyses

¥ Unbiased background discrimination
% Reduced systematic uncertainties

Introduce flatness term in loss function: £ = L Adal oss + L FIat
o Flat4d: LF/at4d = L/:/at_p + LF/at_PT + »CFlat_nTracks + LFIat_n

Pions Kaons
1.0 ; : : _ 1.0¢f - - ——— —— -
LHCb Simulation, preliminary LHCb Simulation, preliminary
0.8 2081 geeeseeneg, o _
9 O . 3 %
o O.GM L + I § o.GﬂwW'm%%ﬁ % % %
NIRRT - B
L HEH
0.4} Yew Hm %‘H c 0.4}, . #
5 s 2] f
* 0.2} # -+ Baseline 454004 | ¥ 0.2] #+ 4 Baseline
-+ -4 Flat 4d @%@@% 3 + ﬁ% o8- -4 Flat 4d
% 2 4 6 e 2% 2 4 6 8 10

Transverse Momentum, GeV/c

Flat4d, ProbNN
— Better PID efficiency flatness in p,p1,m, N¢racks than baseline

Transverse Momentum, GeV/c



Neutral PID

n¥ copiously produced at LHCb , decay to yy

high momentum n® - merge of ECAL clusters - huge background for
radiative decays

Need for a powerful tool to discriminate signal (y) from background mn®-> yy

A
p A y
. 5m SPD/PS
5m SPD/PS - ua M5 S o/ HCAL pp M o
magnet RICH2  ECAL M2 RICH2  ECAL
=M1 M1
vertex I+ {12 B3 vertex I+ ' RICH1 \ N2 T35
LY £ locato Ly A

ocatey 74/ @ | 5 o7 - 'z |

( \ : . ;' J ¢ T\ X ; ;;;.t' ’-
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‘% - o~ Y = & © ol r‘_‘ 2 == B < @ © Oi1 [
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e l Ll | [
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1 1 ) | ! | i > L . | AT B
— — — — S— S— D C— —_— —_— ’
5m 10m 15m 20m z 5m 10m 15m 20m 7
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ECAL Signatures

,y
20
17.5
15
12.5 :
10
75
5
25
0

0 1 2 3 - 0 1 2 3 -

ECAL clusters (3x3 cells)

Energy, GeV
(] =]
Energy, GeV

L

F =

Coarse granularity - separation is not straightforward
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Baseline approach [LHCb-PUB-2015-016]

Neural Network with 2 hidden layers (TMVA MLP)

14 ECAL and Pre-Shower cluster parameters
(grouped under shape and
symmetry )
* 4 variables that account for the size &
tails, semiaxes and orientation of the
 ellipse in the ECAL
« 2 variables related to the energy of the
most (seed) and the second most
* energetic cells of the cluster
« 4 variables for multiplicities of hits in the
PS cells matrix in front of the seed
« of the electromagnetic cluster
* 4 shape and asymmetry variables in the
3x3 PS cells

| TMVA response for classifier: MLP |

TMVA

12 Dlsliglna' LI | I T T I T
|| Background
10 —

(1/N) dN/ dx

2f 7
o:"d-**‘T'T'H ?;;%L,l .

T I T

T I T LI l —]

L1 1 1 L1
U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

I Vo L LAL
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1 1.2
MLP response

/-l
:
| I e 5.
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New approach

New method: XGBoost classifier which is a Gradient Boosting over Decision Trees
classifier. Inputs are raw energy values in 5 5 ECAL and PS cells around the cell seed.

There are no any additional input features
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Automation Challenge



Data Quality Control

) Several people are
typically on shifts
controlling the flow of
data from detector into
the storage

Detector

Online
Reco

Offline
Reco

D2

A

A
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Updated Workflow

) The monitoring systems
can be updated with:

Detector Online Offline
Reco Reco
) helper, a
recommendation XX ﬁﬁ & - ﬁ
system for a shifter & I
) solver, automated &
decision maker

Y both
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Supervised Learning

)  Problem: CMS Data Certification
) Data: CMS 2010B run open data

> Aim: automated classification of

automatic

LumiSections as “good” or “bad” decision

) Features: particle flow jets, Calorimeter

Jets, Photons, Muons

)  The dataset was flagged by experts (3
FTE)

blac!

k zone

white zone

Oe

° ®
Cut “bad” Cut “good”

0
1

expert
decision
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More time for researchers

Rejection Rate
0.020 manual work

I°-7519 The aim is to minimise the Manual work with
low Loss Rate (“good” classified as “bad”)

©
o
o
a1

d

£

G 0.015 06271 and Pollution Rate (“bad” classified as
ﬁ “gOOd”)_
- 0.5023

O

C 0.010

O 0.3775

wd

©

a'd

"

0

O

—

~90% saving on manual work is feasible for
Pollution rate at 0.5%

0'08.(%)00 0.0_05 0.010 0.d15 . 0.020
Pollution Rate constraint

J.Phys.Conf.Ser. 898 (2017) no.9, 092041

http://iopscience.iop.org/article/10.1088/1742-6596/898/9/09204 1/meta >
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Monitoring Robo-shifter

< Robo-shifter is machine-
learning based system

designed to assists the DQ

shifter

<& Given run data it can
predict probability of run
being good or bad

< Hint for potential problem
sources Is extracted from
decision trees

& Commissioned for LHCDb
Data Quality Monitoring

A Robo-shifter [T 48 - + 183156

Robo-shifter

The prediction for this run is 0.47

Please judge by distribution of predictions:

@ Bad runs
[ Good runs

Il

5 06 0.7

| —

o N Foy

Suspicious histograms:

¢ /OfflineDataQuality/ALIGNMENT: page 06: IT overlap residuals: histogram
IT1TopBox dx

» /OfflineDataQuality/TESLA-BRUNEL: page 01: Tesla Brunel monitor:
histogram TeslaBrunelMonitor

¢ /OfflineDataQuality/CALO: page 1: Photon and Electrons Reconstruction:
histogram (gg) mass Rec/Calo/Photons

» /OfflineDataQuality/TESLA-BRUNEL: page 01: Tesla Brunel monitor:
histogram TeslaBrunelMonitor

¢ /OfflineDataQuality/RICH: page 8: PID Monitoring with J-Psi: histogram
Mass of J/psi(1S)_all

o /OfflineDataQuality/ALIGNMENT: page 04: RICH HPD Panel Alignment:

Journal of Physics: Conference Series. 2017. Vol. 898. No. 9. P. 1-5  "stegramdihetavphi CSide-right

http://iopscience.iop.org/article/10.1088/1742-6596/898/9/092027/meta
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Better Localisation of Anomalies

InputLayer for calorimiter
Followed by DropoutlLayer
Output shape: (None, 266)

InputLayer for muons
Followed by DropoutLayer
Output shape: (None, 267)

InputLayer particle flow
Followed by DropoutLayer
Output shape: (None, 126)

InputLayer for photons'
Followed by DropoutLayer
Output shape: (None, 232)

Even more than this, we are able to identify a
particular failing subsystem. The training only
requires global flags.

\ 4 Y A\ 4 Y
DenselLayer DenselLayer
Followed by DropoutLayer Followed by DropoutLayer
Output shape: (None, 50) Output shape: (None, 50)

DenselLayer
Followed by DropoutLayer
Output shape: (None, 50)

DenselLayer
Followed by DropoutLayer
Output shape: (None, 50)

y
DenselLayer
Followed by DropoutLayer
Output shape: (None, 10)

Y Y Y
DenselLayer DenselLayer DenselLayer
Followed by DropoutLayer Followed by DropoutLayer Followed by DropoutLayer
Output shape: (None, 10) Output shape: (None, 10) Output shape: (None, 10)

\ 4 Y Y
DenselLayer DenselLayer DenselLayer
Output shape: (None, 1) Output shape: (None,1) Output shape: (None,1)

\ /
Muons 0.9
Photons 0.8
PF 0.7
Calo 0.6

DenselLayer
Output shape: (None,1)

ElemwiseSumLayer
Output shape: (None, 1)

Y
ExpressionLayer
Output shape: (None, 1)

NN branches

AUC scores vs channels
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2 £ 2% ¢ £ 2 2 2 5 5 z 5 s B 3
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Emerging Challenges



Large Hadron Collider Upgrade

e Peak luminosity ~—Integrated luminosity
8.0E+34 — - - — o 4000
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0.0E+00 et L 0

10 11 12 13 14 15 16 17 18 15 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Year

LHCb 2015 Trigger Diagram

40 MHz bunch crossing rate

tatistics accumulated will be growing
exponentially.

hus, the challenges | mentioned before
will also be harder and harder to tackle.

LHCb Upgrade Trigger Diagram

30 MHz inelastic event rate
(full rate event building)

LO Hardware Trigger : 1 MHz -Software High Level Trigger

readout, high Et/Pr signatures
il kb Remove

hardware trigger

. Software High Level Trigger 5 ﬁ

[ Partial event reconstruction, select ]
Increased output

‘ 450 kHz 400 kHz 150 kHz

Full event reconstruction, inclusive and
exclusive kinematic/geometric selections

L

Buffer events to disk, perform online

detector calibration and alignment

g

displaced tracks/vertices and dimuons
rate to storage

Buffer events to disk, perform online

detector calibration and alignment

N
Add offline precision particle identification
and track quality information to selections

Output full event information for inclusive
triggers, trigger candidates and related

of inclusive and exclusive triggers

& v S ST

(Full offline-like event selection, mixture)

primary vertices for exclusive triggers
\ J

Wl .,

2-5 GB/s to storage



SHIP Experiment

Decay volume

Emulsion spectrometer \:\"\\ ""H

l \“ Nl ’
i P '.'
‘, ‘\ \& “ . - ; -

Hidden sector spectrometer

\
Area "V

Active muon shield _SHiP

AWAKE (previously
0\\[e))

& Search for Hidden Particles M

& Post-LHC era experiment for direct search of very weakly
interacting light particles

J.Phys.Conf.Ser. 934 (2017) no.1
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Active Magnetic Shield
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<& Absorber shape optimization: background suppression at
reasonable cost



Gaussian Process Optimization

<& Loss function includes both . Gaussian process
background level and cost

:L SaP J’/\/ [\\‘; P S—

& estimation in every point takes -0}
significant time 15

<& 50+ configuration parameters

GP value
o
o

|
o
v

—20 T T T T T T T
-2.0 -15 -10 =05 0.0 0.5 10 15 20

Acquisitioh function

<& full GEANT simulation of 10+M
muons passing through iron

0.04 -

0.02 1
¢ loss function is very irregularin ¢ | A/\ -
the multidimensional parameter <
space on

20 -15 -10 -05 00 05 10 15 20

& Use Gaussian Processes x



Shield Optimization

Target/Magnetised hadron absgrbes

!
‘ ﬁ I I
/Best known point to an itearation

4

™

¢ The same background
suppression |

< Twice lighter

& save $9

1000 2000 3000 400 5000
iteration

Advanced optimization methods
rule in multidimensional space

, Journal o IC Co
http://iopscience.iop.org art|cle7 O [



http://iopscience.iop.org/article/10.1088/1742-6596/934/1/012050/meta

Emerging Challenges: Reliable and Fast Simulation

<& Computationally heavy tasks

¢ e.g. simulating shower development in the calorimeter

< May be substituted by generative models trained on the
original task

<& save orders of magnitude in computing performance

<& challenge is to keep physics performance high


https://indico.cern.ch/event/668017/timetable/

Problem

>  We want to speed up calorimeter simulation (calorimeter showers) while keeping reasonable simulation
accuracy (correctly reproducing simulation behavior)

o consider LHCb ECAL as a practical goal

> Our ML problem formulation (hidden variables model):

x Input target
p ':‘> HxWrgatrix y

K variables:

, PY, PZ, ... S | energy response
P artidle a m p er in cells

particle type, etc

£ nhoise : ¥ = G(x,60) ~p(y|x)

L variables:
“hidden variables”



https://indico.cern.ch/event/668017/timetable/

Conditional WGAN

X
input —>
5x1:
pX, pY, PZ, ...
concat
noise ——>
Nx1

mmlE ,N,,,([ D(G(x, e ]+/l||1 - 1||1
—>

Generator real

256x4x4

u

128x8x8
64x16x16 L_______ | ~~ "~~~ / fa ke
32x32x32 30x30

CxHxW

CxHxW

CxHxW

A\ FC + reshape
— Upsampling 2x + Conv + BN + RelL.U

— output tensor size (w/o batch size)

— Conv s2 + LeakyReLU (gray = fixed)

Discriminator

256x4x4

128x8x8

“““ 64x16x16
30x30 32x32x32

Regressor (pretrained)

256x4x4

128x8x8

""" 64x16x16
30x30 32x32x32

max IE,/N[, () [D U IE:/N/)((/)[D(:I/)] N
+/\El/~1) () [(||V,;D(§/)||> o 1)-]

D

D(y)
\

> Score

1x1

D(¥)

——> input

5x1
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GEANT Simulated

GAN Generated

GEANT Simulated

GAN Generated

http://arxiv.org/abs/arXiv:1812.01319


https://indico.cern.ch/event/668017/timetable/
http://arxiv.org/abs/arXiv:1812.01319

Cherenkov Fast Simulation

* Plots are a pilot study on BaBar DIRC MC

* 1 vs KAUC difference ~0.01 0.25.
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https://rich2018.org/indico/event/1/contributions/89/ «



https://indico.cern.ch/event/668017/timetable/
https://rich2018.org/indico/event/1/contributions/89/

Conclusions

Machine learning applications in HEP are numerous.
And the amount of emerging areas is growing fast.

New challenges arise with upgrade of LHC and new experimental setups constructed
around the world.

Should you have any data set with an interesting problem - let us know!


https://indico.cern.ch/event/668017/timetable/

More unknown challenges
ahead!



