
Make it as simple as possible, but
not simpler:

The Programming Language Oberon

Niklaus Wirth
Oberon Day

CERN, 10.3.2004

Part 1: Historical perspective
The ambivalent relationship between physicists
and computer scientists:
- Physicists caused the construction of large
computers, invented the Web, thereby pushing
technology.
- Physicists clang to inadequate tools for too long,
thereby hindering progress.

Fortran: no data structures, rigid format, no recursion
Computers: geared to Fortran
Teaching programming at ETHZ in 1968: Fortran,
assembler, (Algol)

Design of Pascal, 1968-70

• Algol-like phrase structure (syntax)
• Generality of expressions
• Conditions and the type Boolean
• Procedures and functions, recursion
• The concept of locality (block structure)
• Data structures: Array, Record, Set, File,

Pointer

Pascal designed with three primary goals:
- A tool for decent teaching
- A tool for designing system software

(compilers, operating systems)
- Compactness and efficiency

These goals required a systematic language
structure, a concentration on what is
essential, avoidance of unnecessary bells
and whistles

Design of Modula-2 1977-1979

• Pascal as basis
• Additional standard data types
• Modules, interfaces, information hiding,

separate compilation
• Elements for parallel programming

Program development in large teams,
software engineering
Reasoning about programs with assertions
and loop invariants

PROCEDURE Reci(x: REAL): REAL; (*0 < x < 2*)

VAR y, c: REAL;

BEGIN y := 1.0; c := 1.0 – x;

WHILE c > e DO

(* y×x = 1-c, 0 < |c| < 1 *)

y := y × (1.0+c); c := c×c

END

(* (1-e)/x <= y < 1/x *) RETURN y

END Reci

PROCEDURE Sqrt(x: REAL): REAL; (*0 < x < 2*)

VAR y, c: REAL;

BEGIN y := x; c := 1.0 – x;

WHILE c > e DO

(*y2 = x×(1-c), c >= 0*)

y := y × (1.0 + 0.5×c);

c := c × c × (0.75 + 0.25×c)

END ;

RETURN y (*x×(1-e) <= y2 < x*)

END Sqrt

Design of Oberon 1986-1988

• Modula-2 as basis
• Discarding several inessential features
• Adding type extensibility (inheritance)
• Simplify syntax

Swimming against the current (PL/1, Ada, C++) :
Reduce rather than increase complexity

Complexity of syntax of programming
languages

S.Z.Sverdlov (University of Vologda, Russia)

Part 2: The benefits of simplicity, or the
curse of complexity

• Economy of design
• Simpler to define and document
• Easier to learn and understand
• Less difficult to implement, more efficient

compilation
• Fewer misunderstandings, more efficient

programs
• Disciplined programming, fewer mistakes

Conclusions and questions

• All together increases efficiency of
program development, program
maintenance, and program execution.

• The more complex the task, the more
perspicuous and reliable must be the tools

• If problem is complex, do not add further,
home-made complexity through tools

• Can a simple language be powerful?
• Can flexibility be achieved without

sacrificing efficiency (or vice versa)?

Part 3: Oberon for embedded systems

• System engineers want to have close
control over program and code

• No hidden mechanisms tolerated
• Oberon compiler generates “straight” code
• Predictable behavior, no surprises
• Ideal for light-weight systems with or

without underlying “operating system”
• Modules with separate compilation

• Oberon allows to program device drivers
through its “low-level features”, which are
encapsulated within specific modules.

• Directs access to device interface registers.
• No overhead through crossing of module

boundaries.
• Watertight type checking, also across module

boundaries, at compile time! Very fast loading
and linking.

• Fast, dynamic loading of modules upon demand
at run-time.

• Compiler was designed/ported for Strong-ARM
within a month.

Simplicity and Complexity

Самый верный признак истины -- это
простота и ясность. Ложь всегда бывает
сложна, вычурна и многословна.

Лев Николаевич Толстой

The most reliable sign of truth is simplicity
and clarity. Lie is invariably complicated,
gaudy and verbose.

