
XDS Family of Products

H2D User’s Guide

http://www.excelsior-usa.com

Copyright c© 1999-2001 Excelsior, LLC. All rights reserved.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Excelsior, LLC.

Excelsior’s software and documentation have been tested and reviewed. Nevertheless, Ex-
celsior makes no warranty or representation, either express or implied, with respect to the
software and documentation included with Excelsior product. In no event will Excelsior
be liable for direct, indirect, special, incidental or consequential damages resulting from
any defect in the software or documentation included with this product. In particular, Ex-
celsior shall have no liability for any programs or data used with this product, including
the cost of recovering programs or data.

XDS is a trademark of Excelsior, LLC.

All trademarks and copyrights mentioned in this documentation are the property of their
respective holders.

Contents

1 Introduction 1
1.1 New in version 1.30. 2
1.2 Typographic conventions. 2

1.2.1 Language descriptions. 2
1.2.2 Source code fragments. 3

2 Configuring H2D 5
2.1 Setting up system search path. 5
2.2 Working configuration . 5
2.3 Redirection file . 6
2.4 Configuration file. 7
2.5 Customizing H2D messages. 7

3 Getting Started 11
3.1 Creating a working directory. 11
3.2 Invoking H2D . 12
3.3 H2D usage example. 12
3.4 Error reporting . 13

4 Translation Rules 15
4.1 Comments. 15
4.2 Identifiers . 15
4.3 Types .16

4.3.1 Derived types. 17
4.3.2 Enumeration. 18

4.4 Type synonyms. 19
4.5 Variables . 19
4.6 Function prototypes. 20
4.7 Non-standard qualifiers. 21
4.8 Preprocessor directives. 21

4.8.1 Macro definitions. 21

i

ii CONTENTS

4.8.2 File inclusion. 23
4.8.3 Conditional compilation. 23
4.8.4 Other directives. 24

4.9 Non-standard preprocessor directives. 24
4.9.1 #merge . 24
4.9.2 #variant. 24

4.10 Module names. 26

5 Using H2D 27
5.1 Headers merging. 27
5.2 Fitting a Modula-2 compiler. 28

5.2.1 Native code. 28
5.2.2 Convertor to C . 30

5.3 Modifying translation rules. 32
5.3.1 Base types mapping. 32
5.3.2 Pointer type function parameters. 34
5.3.3 Preserving constant names. 35

6 Project files 37
6.1 Overview . 37
6.2 Project file contents. 39

6.2.1 !header . 39
6.2.2 !module. 40
6.2.3 !name. 41

7 Options Reference 43
7.1 File extensions and prefixes. 43
7.2 Translation options. 44
7.3 Base types definition. 47

A XDS 49

Chapter 1

Introduction

Sooner or later, every Modula-2 programmer encounters four problems. These
are: absence, incompleteness, unportability, and low quality of libraries. At the
same time, C/C++ programmers usually have problemschoosingfrom a huge set
of free, public domain, shareware, and commercial libraries of various purpose,
size, and quality which are in many cases portable or are available for a number
of platforms. Moreover, theApplication Programming Interfaces (APIs)of the
most widely used software products (operating systems, database engines, etc.),
are defined in terms of the C programming language.

In order to use this resources galore from Modula-2, a programmer needs, first,
a Modula-2 compiler which supports C calling/naming conventions and a set of
types corresponding to C types, and, second, definition modules corresponding
to the C headers of the library/API. Finding a suitable compiler is not a very big
deal, but manual conversion of C headers turns to a real nightmare when it comes
to, say, the X Window API. That is why we created H2D.

H2D does the job automatically, i.e. translates C header files into Modula-2 defi-
nition modules. H2D is intended to be used with XDS (see AppendixA) version
2.10 or later and is included in the XDS distribution package. However, the gener-
ated definition modules may be used with any ISO-compliant Modula-2 compiler.
The required modifications are minor and may be done using text editor macros
or a simpleREXX , sed, etc script.

The source language is a subset of ANSI C, which includes declarations and pre-
processor directives, with some extensions (See4.7 and Chapter6). Destination
language isISO Modula-2 with some XDS language extensions. XDS allows to
use the resulting definition modules withbothModula-2 and Oberon-2.

H2D generates definition modules suitable for either XDS-C, Native XDS, or

1

2 CHAPTER 1. INTRODUCTION

both. In case of Native XDS, module template for function-like C macros may
be generated (See5.2.1). In case of XDS-C, an extra header file containing C
declarations of types introduced by H2D is generated (See5.2.2).

1.1 New in version 1.30

Major improvements in v1.30:

• Generalized#variant directive (see4.9.2)

• Custom mapping of C base types to Modula-2 types (see5.3.1)

• Non-standard directives extraction (see4.9)

• Options renamed to follow XDS compilers style (see Chapter7)

• Control file syntax now closely matches used by XDS compilers (see Chap-
ters2 and6)

1.2 Typographic conventions

1.2.1 Language descriptions

Where formal descriptions for language syntax constructions appear, anextended
Backus-Naur Formalism (EBNF)is used.

These descriptions are set in a monospaced font.

Text = Text [{Text}] | Text.

In EBNF, brackets[and] denote optionality of the enclosed expression, braces
{ and} denote repetition (possibly 0 times), and the line| denotes other possible
valid descriptions.

Non-terminal symbols start with an upper case letter (e.g.Statement). Termi-
nal symbols either start with a lower case letter (e.g.ident), or are written in
all upper case letters (e.g.BEGIN), or are enclosed within quotation marks (e.g.
":=").

1.2. TYPOGRAPHIC CONVENTIONS 3

1.2.2 Source code fragments

When fragments of a source code are used for examples or appear within a text
they are set in a monospaced font.

/* example.h */

typedef unsigned long int UINT;

4 CHAPTER 1. INTRODUCTION

Chapter 2

Configuring H2D

2.1 Setting up system search path

If you installed H2D as part of an XDS package, no additional setup is required.
Otherwise you must tell your operating system where to find the executable before
using H2D. Refer to theh2d.txt file from the on-line documentation.

2.2 Working configuration

The H2D working configuration includes an executable file and a set of system
files:

h2d.red Search path redirection file (see2.3)
h2d.cfg Configuration file (see2.4)
h2d.msg Message file (see2.5)

Upon invocation, H2D tries to locate these files in the current directory and then
in the directory where H2D executable resides. If aredirection file, h2d.red is
found, all other files are searched for/created using paths defined in it, otherwise
the current directory is used for all input and output, except files specified with
directories.

The configuration filecontains various H2D settings. If the configuration file is
not found, default settings are used.

Themessage filecontains texts of error messages.

5

6 CHAPTER 2. CONFIGURING H2D

2.3 Redirection file

Upon activation, H2D looks for a file calledh2d.red — the redirection file.
This file defines directories in which all other files are searched for or created.
A redirection file has to be placed in the current directory, otherwise themaster
redirection filefrom the directory where H2D executable resides is used.

A redirection file consists of severalredirections:

Redirection = Pattern "=" directory {";" directory}

Pattern is a regular expression which all file names used by H2D will be com-
pared with. A regular expression is a string containing certain special characters:

Sequence Denotes
* an arbitrary sequence of any characters, possibly empty

(equivalent to{\000-\377} expression)
? any single character

(equivalent to[\000-\377] expression)
[...] one of the listed characters
{...} an arbitrary sequence of the listed characters, possibly empty
\nnn the ASCII character with octal codennn , where n is[0-7]

& the logical operation AND
| the logical operation OR
ˆ the logical operation NOT

(...) the priority of operations

A sequence of the forma-b used within either[] or {} brackets denotes all
characters froma to b.

When H2D looks for or intends to create a file, its name is sequentially compared
with all patterns from the top of the redirection file. A file is created in the first
directory of the list corresponding to the matched pattern. A file is searched for in
all directories in the list (from first to last) until it is found or the directory list is
exhausted. If a match is not found, the file is created or searched for in the current
directory.Note: If a match is found, the current direcory isnot searched unless it
is explicitly specified in the directory list.

It is possible to put comment lines into the redirection file. A comment line should
be started with the%character.

2.4. CONFIGURATION FILE 7

Example

*.h = h; .; c:\bc\include
mac_*.def = macro;
*.def = def;
mac_*.mod = macro;
*.h2d = h2d;

2.4 Configuration file

The configuration file is used to set options which control various aspects of H2D
behaviour: names of generated files, source/target language extensions, mapping
of C base types to Modula-2 types etc. It should reside in the current directory or
in the directory with H2D executable (themasterconfiguration file). However, it is
recommended to use aproject file(see Chapter6) instead of a local configuration
file to specify options for a particular set of header files.

An option is a pair (name, value). Every line in the configuration file may contain
only one option setup directive. Arbitrary spaces are permitted. The%character
starts a one-line comment. Option setup directives have the following syntax:

Option = "-" name ("-" | "+" | "=" (string | integer))

The same syntax is used for command line options and in aproject file(see Chap-
ter 6). Command-line options have the highest priority. Options specified in a
project file override the configuration file settings.

Options, their meanings and valid values are described in Chapter7.

Figure2.1contains a configuration file example.

2.5 Customizing H2D messages

The fileh2d.msg contains error messages in the form

number text

The following is an excerpt fromh2d.msg :

001 Can’t open file %s
. . .

010 Invalid use of modifier

8 CHAPTER 2. CONFIGURING H2D

. . .

Some messages contain format specifiers for additional arguments. In the example
above, the message number 001 contains a%sspecifier which is substituted with
a file name when the message is printed.

In order to use a language other than English for messages it is necessary to trans-
late message texts, preserving error numbers and the number andorder of format
specifiers.

2.5. CUSTOMIZING H2D MESSAGES 9

-DEFEXT = def % file extensions
-HEADEXT = h
-MODEXT = d
-PRJEXT = prj
-TREEEXT = inc
-DIREXT = dir

-DEFPFX = h2d_ % prefix for output definition modules
-MACPFX = m_ % prefix for macro prototype modules

-BACKEND = COMMON % M2 compiler compatibility mode: C, NATIVE, COMMON
-GENMACRO- % do not generate macro prototype modules
-GENWIDTH = 70 % maximum string length in output files
-COMMENTPOS = 0 % comment position
-CHANGEDEF+ % allow to overwrite existing definition modules
-PROGRESS+ % enable progress indicator
-CSTDLIB- % do not set C standard library option
-CPPCOMMENTS+ % recognize C++ comments
-MERGEALL+ % merge all #included headers
-GENSEP- % separate merged headers with comments
-GENLONGNAMES- % prepen module name with directory names
-GENENUM = CONST % enum transtaltion mode: CONST, ENUM, AUTO
-GENTREE+ % create file with include/merge tree
-GENDIRS+ % extract non-standrard directives
-GENROVARS+ % translate constants to read-only variables

% C BASE TYPES SYNONYMS:

-ctype = signed char = 1, CHAR
-ctype = signed int = 4, SYSTEM.int

. . .
-ctype = long float = 8, UNDEF
-ctype = long double = 8, UNDEF

% MODULA-2 TYPES:

-m2type = INTEGER = 4, SIGNED
-m2type = SHORTINT = 1, SIGNED

. . .
-m2type = SYSTEM.SET32 = 4, SET
-m2type = SYSTEM.int = 4, SIGNED
-m2type = SYSTEM.unsigned = 4, UNSIGNED

Figure 2.1: Configuration file example

10 CHAPTER 2. CONFIGURING H2D

Chapter 3

Getting Started

In this chapter we assume that H2D is properly installed and configured (See
Chapter2).

3.1 Creating a working directory

Redirection files (see2.3) give you complete freedom over where you keep your
header files and any files which H2D itself creates for further use. It is recom-
mended to work in a project oriented fashion — i.e. to have a separate directory
hierarchy for each set of header files you wish to translate.

In this case, each project shall have a main working directory. The script called
h2dwork may be used to create the required subdirectories and a redirection file.
For example, to create a directory structure for a project calledmyproj in the
current directory, issue the following commands:

mkdir myproj
cd myproj
h2dwork

Note: Since H2D preserves directory hierarchies of original header files. you may
also need to create additional subdirectories. See4.8.2for more information.

11

12 CHAPTER 3. GETTING STARTED

3.2 Invoking H2D

H2D is implemented as a command line utility calledh2d . To translate a header
file (or a set of header files), type

h2d { HeaderFile } { Option } [-prj=ProjectFile]

at the command prompt, whereHeaderFile is a header file name.

The syntax forOption is described in2.4.

If you specify the-prj option, each header will be translated as if it was specified
in a !module directive (see6.2.2) in ProjectFile .

To process aproject file(see Chapter6), type

h2d =p ProjectFile { Option }

To view the default option values, type

h2d =o

If invoked without parameters, the utility prints a brief help information.

3.3 H2D usage example

Copy the H2D sample included in your XDS or H2D distribution to a working
directory and type

h2d =p example.h2d

at the command prompt. The H2D banner line will appear:

H2D v1.30 (c) XDS 1996-1997
File example.h

After translation the following lines will be displayed:

no errors, lines 23.
--
Files 1, lines 23, no errors, time 0:3.

showing the number of errors, the number of source lines in the file, and some
statistics. The following files will be generated:

3.4. ERROR REPORTING 13

h2d example.def basic definition module
h2d example.h definitions of types generated by H2D (see5.2.2)
mac example.def macro definition module (see5.2.1)
mac example.mod prototype macro implementation module (see5.2.1)

3.4 Error reporting

When H2D detects an error in the input file, it displays an error report. It contains
the file name and position (line and column numbers) where the error occurred:

Error [example.h 16:44] ** Duplicate identifier ’insert’

The error which is often encountered is

Error [...] ** Expected , or ;

In most cases it means that an identifier is undefined for some reason. Try to put
”,” or ”;” at the specified position to find out what is the problem source.

14 CHAPTER 3. GETTING STARTED

Chapter 4

Translation Rules

4.1 Comments

All comments from the original C text are copied to generated definition modules.
Their placement, however, is not preserved in some cases. TheCOMMENTPOS
option may be used to align comments which are placed next to declarations.

C++ compilers are usually able to recognize C++-style comments (beginning with
’ // ’) even while operating in C mode. TheCPPCOMMENTS option controls
whether H2D recognizes such comments as well.

4.2 Identifiers

In most cases, H2D preserves original C identifiers. Exceptions are structure,
union, and enumeration tags, which constitute a separate name space in C. If there
is a constant, type, variable, or function identifier which coincides with a tag, H2D
appends ”_struct ”, ” _union ” or ” _enum” to that tag.

In some situations, H2D itself generates additional identifiers, e.g. for unnamed
function arguments (see4.6), derived types (see4.3.1), and formal types (see4.6).

H2D may append digits to generated identifiers to avoid conflicts with existent
ones.

Identifiers matching Modula-2keywordsare not allowed in source files. However,
Modula-2pervasive identifiers(e.g. INTEGERor HALT) are permitted.

15

16 CHAPTER 4. TRANSLATION RULES

Example

The following C declarations were taken from thesys/stat.h file:

struct stat { ... };
int stat(const char *, struct stat *);

TYPE stat_struct = RECORD ... END;
PtrChar = POINTER TO CHAR;

PROCEDURE stat(arg0: PtrChar; arg1: stat_struct): SYSTEM.int;

4.3 Types

C types are translated to Modula-2 types according to the following table:

C type Modula-2 type
base (int , char , etc.) (see5.3.1)
void* SYSTEM.ADDRESS
pointer pointer
array array
enumeration (see4.3.2)
structure record
union variant record
pointer to function procedure type

Notes:

• Structure, union, and enumerationtagsare not preserved in cases of colli-
sion. It may cause problems with Modula-2 to C convertors (e.g. XDS-C).
See4.2.

4.3. TYPES 17

Examples

struct STRUCTURE{ TYPE STRUCTURE = RECORD
int field1; field1: SYSTEM.int;
char field2; field2: CHAR;
double field3; field3: LONGREAL;

}; END;

union UNION { TYPE UNION = RECORD
int field1; CASE : INTEGER OF
char field2; 0: field1: SYSTEM.int;
double field3; |1: field2: CHAR;

}; |2: field3: LONGREAL;
END;

END;

4.3.1 Derived types

For objects declared as having derived types (pointer or array) either a new
Modula-2 type is introduced or a previously declared type synonym is used to
improve readability. For pointers to base types, a new type is always declared.

In particular, a C structure may contain fields which type is defined as pointer to
that structure. In this case H2D also automatically inserts a necessary forward
pointer type declaration.

This may cause type compatibility problems. Fortunately, in XDS (see Appendix
A), compatibility rules for foreign objects are relaxed, e.g. two ”C” pointer types
are compatible if theirbase typesare the same. Additional setup or postprocessing
may be required when H2D is used with third-party Modula-2 compilers.

char *str1; TYPE
char *str1; H2D_PtrSChar = POINTER TO CHAR;

VAR
str1: H2D_PtrSChar;
str2: H2D_PtrSChar;

18 CHAPTER 4. TRANSLATION RULES

struct s { TYPE
int i; s = RECORD

}; i: SYSTEM.int;
END;

struct s *p; H2D_Ptrs = POINTER TO s;

VAR
p: H2D_Ptrs;

struct s { TYPE
int i; s = RECORD

}; i: SYSTEM.int;
END;

typedef struct s *ps; ps = POINTER TO s;

struct s *p; VAR
p: ps;

struct Node { TYPE
int i; PtrNode = POINTER TO Node;
struct Node *next; Node = RECORD

}; i: SYSTEM.int;
next: PtrNode;

END;

4.3.2 Enumeration

An enumeration (enum) is not actually a distinct type in C — it is just a con-
venient way to declare integer constants (but in C++ enumerationis a distinct
type). Moreover, since it is possible in C to explicitly specify enumeration con-
stant value, translation to Modula-2 enumeration type may be incorrect. H2D may
translate C enumerations into either Modula-2 enumeration types or Modula-2
constant declarations, depending on theGENENUM option setting. For instance,
if GENENUM is set to"Const" or "Mixed" , the following C type synonym
declaration:

typedef enum{ one=1, two } Number;

4.4. TYPE SYNONYMS 19

will be translated to

(* H2D: enumerated type: Number *)
CONST

one = 1;
two = 2;

TYPE
Number = SYSTEM.int;

(* H2D: End of enumerated type: Number *)

If GENENUM is set to"Enum" , the same declaration will be translated unsafely
(a warning comment will be added):

TYPE
Number = (

one, (* H2D: integer value was 1 *)
two

);

4.4 Type synonyms

C declarations of type synonyms (typedef) are translated to Modula-2 type
declarations. If there are multiple synonyms declared for a type, their equivalence
is preserved:

typedef char String[256]; TYPE String = ARRAY [0..255] OF CHAR;
typedef String *PString; PString = POINTER TO String;
typedef String *Buffer; Buffer = PString;

Note: In C, function type synonyms may be used in function declarations. These
synonyms are processed in a way they are processed by a C compiler and do not
appear in output files (see4.6).

4.5 Variables

Variables are translated to variables. Variables declared with theconst qualifier
are translated to read-only variables (XDS extension). Thevolatile qualifier
is currently ignored.

20 CHAPTER 4. TRANSLATION RULES

extern int i; VAR i : SYSTEM.int;
extern const int j; VAR j- : SYSTEM.int;

4.6 Function prototypes

C function prototypes declared asvoid are translated to proper procedure dec-
larations; other are translated to function procedure declarations. If there is no
name specified for a function parameter,arg x is substituted, wherex is a number
unique for each unnamed parameter.

In C, a derived type (more precisely, pointer or array) may be specified for a
function parameter. In Modula-2, theformal typeof a procedure parameter have
to be either type name or open array type. H2D translates parameters of array type
to open array value parameters.

The translation procedure for pointers is more complicated. By default, H2D
searches for a type synonym, previously declared viatypedef . The synonym,
if found, is used as formal type; otherwise H2D automatically declares one. If
automatic declaration is undesirable, required synonyms may be declared in the
project file(see Chapter6). Other variants of translation may be explicitly speci-
fied by means of the#variant directive (see4.9.2).

See also4.7.

Examples

void p(int,int); PROCEDURE p (arg0 : SYSTEM.int;
arg1 : SYSTEM.int);

int f(char c); PROCEDURE f (c : CHAR): SYSTEM.int;

void P(T *t); TYPE PtrT = POINTER TO T;
PROCEDURE P (t : PtrT);

void Q(T t[]) PROCEDURE Q (t : ARRAY OF T);

int strlen(char *); PROCEDURE strlen (arg0 : ARRAY OF CHAR)
#variant strlen(0) : ARRAY : SYSTEM.int;

4.7. NON-STANDARD QUALIFIERS 21

4.7 Non-standard qualifiers

In practice, header files are not ”pure” ANSI C. The most common extension
is a set of additional keywords (qualifiers) which may be used to specify call-
ing/naming conventions used in a particular library or API.

Since XDS provides the similar mechanism calleddirect language specification
(DLS), H2D recognizes a number of such keywords, which are translated to the
following DLS strings:

C keyword DLS String
cdecl none
fortran none
interrupt none
pascal "Pascal" for types and variables

"StdCall" for functions
syscall "Syscall"

near , far , andhuge qualifiers are recognized but ignored.

4.8 Preprocessor directives

4.8.1 Macro definitions

A #define C preprocessor directive may contain anobject-likedefinition or a
function-likedefinition which are translated differently.

#define identifier Text

If Text is a constant expression, the directive is translated to a constant declara-
tion or a read-only variable declararion (see5.3.3). If Text is a type identifier, the
directive is translated to a type declaration. IfText is an identifier of a function, a
macro definition, or a constant, the directive is translated to a constant declaration.
In all other cases, it is interpreted in a C preprocessor manner.

#define identifier"(" idenifier, { identifier } ")" Text

Translated to a proper procedure declaration with all parameters having type
ARRAY OF SYSTEM.BYTE. These declarations are marked with a special com-
ment and may be corrected after translation to reflect the actual semantics of a
macro by changing parameter types and/or adding return types. See also5.2.1for
information about macro prototype modules.

22 CHAPTER 4. TRANSLATION RULES

#undef identifier

Undefinesidentifier as it is done by a C preprocessor.

Example

#define str_constant "Hello World!\n"

#define constant 0x10
#define constant_synonym constant

#define macro_with_params(p1,p2,p3) p1+p2+p3
#define macro_with_params_synonym macro_with_params

int function(int);
#define function_synonym function

typedef int INT;
#define INTEGER INT

CONST
str_constant = ’Hello World!’ + 12C;
constant = 10H;
constant_synonym = constant;

<* IF __GEN_C__ THEN *>

(* H2D: this procedure was generated from Macro. *)
PROCEDURE macro_with_params (p1, p2, p3: ARRAY OF SYSTEM.BYTE);

<* ELSE *>

PROCEDURE / macro_with_params (p1, p2, p3: ARRAY OF SYSTEM.BYTE);

<* END *>

<* IF __GEN_C__ THEN *>

CONST
macro_with_params_synonym = macro_with_params;

4.8. PREPROCESSOR DIRECTIVES 23

<* END *>

PROCEDURE function (arg0: SYSTEM.int): SYSTEM.int;

CONST
function_synonym = function;

TYPE
INT = SYSTEM.int;

INTEGER = SYSTEM.int;

4.8.2 File inclusion

#include <file_name>
#include "file_name"

If the file specified byfile namehas to be merged with the current file (see5.1),
H2D treats this directive exactly as a C preprocessor, i.e. replaces it with contents
of a specified file. Otherwise,file name is added to the import list and the
file specified by it is translated into a separate definition module. Iffile_name
contains directories, the output files are placed to the same subdirectory.

The GENLONGNAMES option controls conversion of included header file
names which contain path:

#include <sys/stat.h>

is translated to

IMPORT stat;

if GENLONGNAMES is OFF and to

IMPORT sys_stat;

if GENLONGNAMES is ON.

See also4.10.

4.8.3 Conditional compilation

H2D handles conditional compilation directives#if , #ifdef , #ifndef ,
#else , and#endif the same way as a C preprocessor does. Aproject file

24 CHAPTER 4. TRANSLATION RULES

(see Chapter6) may be used to define constants which are used in arguments of
these directives.

4.8.4 Other directives

H2D recognizes and ignores#line , #error , and#pragma C preprocessor
directives.

4.9 Non-standard preprocessor directives

H2D recognizes two non-standard preprocessor directives:#merge and
#variant . These directives are related to definiton module generation only and
do not affect the C text, so they may be placed arbitrarily in a header file. Typi-
cally they are collected in project files inside a corresponding!header directive
(see6.2.1).

The advanced technique is to put these directives right into working copies of
header files, next to the corresponding declarations. Then, after successful trans-
lation of all headers, these directives may be extracted with the help ofGENDIRS
option and moved to the project file. Now original headers may be used for trans-
lation.

4.9.1 #merge

#merge (<file_name> | "file_name")

This directive lists included header files which should be merged even if the
MERGEALL option is OFF. This feature may be useful in some cases (see5.1).

When placed in a header file, this directive has effect only in this file. When
placed in aproject file(see Chapter6), it has effect in all headers matching the
surrounding!header directive (see6.2.1).

4.9.2 #variant

#variant Designator ":" Type
Designator = identifier { "ˆ" | "[]" | "." identifier } |

Parameter

4.9. NON-STANDARD PREPROCESSOR DIRECTIVES 25

Parameter = identifier "(" number ")"
Type = qualident

This form of the#variant directive allows to explicitly specify a Modula-2
Type for an object denoted byDesignator . See5.3.1for more information.

Designator specifies a named object or its element which is subject to the
#variant directive:

"ˆ" pointer dereference
"[]" array indexing
"." identifier structure or union field selection

Parameter specifies a functionidentifier and its parameternumber
(zero-based).

#variant Parameter ":" ("VAR" | "ARRAY" | "VAR ARRAY")

This form is used to control translation of a functionParameter , which has a
pointer type.

By default, pointer type function parameters are translated to pointer type proce-
dure parameters (see4.6). The#variant directive allows to specify one of the
following alternative rules for a particular parameter:

Modifier T *p is translated to
VAR VAR p: T
ARRAY p: ARRAY OF T
VAR ARRAY VAR p: ARRAY OF T

See also5.3.2.

#variant f(0) : VAR ARRAY
void f(char*);

PROCEDURE f (VAR arg0: ARRAY OF CHAR);

A #variant directive has effect only in the file where it is located, or, if spec-
ified in a project file, in all files matching the surrounding!header directive.
Therefore,Designator should specify an object declared in this file or in one of
the files which it includes. If an object specified byDesignator is not present,
an error message is displayed.

26 CHAPTER 4. TRANSLATION RULES

4.10 Module names

By default, H2D uses a header file name without ”.h ” extension as a definition
module name. If a file name contains characters which are not allowed in identi-
fiers, the!name directive (see6.2.3) must be used in aproject file(see Chapter
6) to specify a proper identifier.

Chapter 5

Using H2D

5.1 Headers merging

A C header file may contain one or more#include directives. H2D offer the
following translation variants for included headers:

• All headers are merged and translated into a single definition module (the
MERGEALL option is set ON).

• Each included header is translated into a separate definition module which
name is added to the import list (theMERGEALL option is set OFF).

• The headers which have to be merged are explicitly specified using the
#merge directive (theMERGEALL option must be OFF).

If the GENSEPoption is set ON, H2D separates pieces of Modula-2 text, which
correspond to different merged headers, with comments containing header file
names.

The#merge directive (see4.9.1) provides more flexible method of merging con-
trol than theMERGEALL option. The example illustrates situation in which this
directive is very helpful.

Example

/* m1.h */ /* m2.h */
typedef int INTEGER; struct descriptor{

27

28 CHAPTER 5. USING H2D

#include <m2.h> INTEGER handl;
#include <m3.h> };
#include <m4.h> typedef int far * RETVAL;
RETVAL handler(); /* end m2.h */
/* end m1.h */

In this example, theRETVAL declaration fromm2.h is used inm1.h . On
the other hand,m2.h uses the declaration fromm1.h (INTEGER). Setting the
MERGEALL option ON results in all headers (m1.h , m2.h , m3.h , andm4.h)
being merged and translated into the single definition modulem1. If this is not a
desired behaviour, the#merge directive (see4.9.1) should be used instead. If the
MERGEALL option is OFF and the line

#merge <m2.h>

is added to eitherm1.h or the corresponding#header directive in aproject file
(see Chapter6), H2D producesthreedefinition modulesm1, m3andm4, where
m1is a result of translation of two merged headersm1.h andm2.h .

5.2 Fitting a Modula-2 compiler

Some of H2D translation rules depend on the target Modula-2 compiler; even
XDS-C and Native XDS require different definition modules. TheBACKEND
option is used to reflect the major difference: whether the target Modula-2 com-
piler is a native code compiler (-BACKEND = Native) or a convertor to C
(-BACKEND = C). It is also possible to produce definition modules suitable for
both XDS-C and Native XDS (-BACKEND = Common). In this case H2D en-
closes target-dependent parts with XDS conditional compilation directives.

5.2.1 Native code

C headers often contain a number of useful function-like macros. These
macros are translated into procedure declarations with parameters having type
ARRAY OF SYSTEM.BYTE, which is assignment compatible with any other
type. But C macros exist only at compile-time and are not present in object files.
Therefore, a Modula-2 compiler is unable to handle them properly unless it is
implemented as a convertor to C. Nevertheless, H2D provides a technique which
allows to use C function-like macros even with a native code Modula-2 compiler.

5.2. FITTING A MODULA-2 COMPILER 29

If the BACKEND option is set to eitherNative or Commonand theGEN-
MACRO option is set ON, H2D produces an additional module containing macro
prototypes— procedures corresponding to function-like macros, which bodies
consist of a comment with C macro definition and are expected to be written by a
programmer. These procedures are then declared as external in the main definition
module. Thus, a macro prototype module need not to be imported, it should be
just linked into an executable which uses the generated definition module.

A macro prototype module name is constructed from a header module name and
a prefix specified by theMACPFX option.

Example

/* macro.h */
...

#define cube(x) (x*x*x)
...

(* macro.def Sep 20 2:38:9 1996 *)
...

DEFINITION MODULE ["C"] macro;
...

PROCEDURE / cube (x: ARRAY OF SYSTEM.BYTE);
...

END macro.

(* m_macro.def Sep 20 2:38:9 1996 *)
...

DEFINITION MODULE m_macro;

IMPORT SYSTEM;
...

PROCEDURE ["C"] cube (x: ARRAY OF SYSTEM.BYTE);
...

END m_macro.

30 CHAPTER 5. USING H2D

(* m_macro.mod Sep 20 2:38:9 1996 *)
...

IMPLEMENTATION MODULE m_macro;

IMPORT SYSTEM;
...

PROCEDURE ["C"] cube (x: ARRAY OF SYSTEM.BYTE);
(*
#define cube(x) (x*x*x)
*)
BEGIN
END cube;

...
END m_macro.

5.2.2 Convertor to C

A Modula-2 compiler implemented as a convertor to C (e.g. XDS-C) converts
definition modules written by a programmer to C headers. But headers corre-
sponding to definition modules generated by H2D already exist. To prevent them
from being overridden, H2D inserts theNOHEADER XDS option, which dis-
ables header file generation, at the beginning of each definition module.

For all included header files, which are not merged (see5.1), H2D also sets the
CSTDLIB XDS option according to the parenthesis used in the#include di-
rective – double quotes or angle brackets. For top-level header files, this option is
set equal to the value of theCSTDLIB option.

H2D usually has to introduce a number of additional types in the definition mod-
ule (see4.6and4.3). These types are absent in the original header file, and their
usage would cause C compilation to fail. To solve this problem, H2D constructs
a resulting definition module name from a header file name and a prefix speci-
fied by theDEFPFX option. Then, it produces a”wrapper” header file, which
name corresponds to the name of adefinition module, containing an#include
directive with original header name, followed by required type declarations. Type
declarations from aproject file(see Chapter6) are copied to a wrapper file as well.

Example

/* type.h */

5.2. FITTING A MODULA-2 COMPILER 31

struct Node {
struct Node *next;
struct Node *prev;
int hash;

};

int Hash(char * str);

(* h2d_type.def Sep 20 2:51:7 1996 *)
...

DEFINITION MODULE ["C"] h2d_type;

IMPORT SYSTEM;
...

<*- GENTYPEDEF *>

TYPE
PtrNode = POINTER TO Node;

<*+ GENTYPEDEF *>

Node = RECORD
next: PtrNode;
prev: PtrNode;
hash: SYSTEM.int;

END;

<*- GENTYPEDEF *>

PtrSChar = POINTER TO CHAR;

PROCEDURE Hash (str: PtrSChar): SYSTEM.int;

END h2d_type.

/* h2d_type.h Sep 20 2:51:7 1996 */
...

#include "type.h"

32 CHAPTER 5. USING H2D

#ifndef h2d_type_H_
#define h2d_type_H_

typedef struct Node * PtrNode;
typedef signed char * PtrSChar;

#endif /* h2d_type_H_ */

5.3 Modifying translation rules

5.3.1 Base types mapping

TheCTYPE andM2TYPE options in conjunction with the#variant directive
(see4.9.2) provide complete control over mapping of C base types to Modula-2
types.

The CTYPE option specifies sizes (in bytes) of C base types, and their default
mapping to Modula-2:

-CTYPE = float = 4, REAL
. . .

-CTYPE = unsigned short int = 2, SYSTEM.CARD16

The M2TYPE option specifies Modula-2 types supported by a particular com-
piler, with their sizes and families to which they belong:

-M2TYPE = CARDINAL = 4, UNSIGNED
-M2TYPE = CHAR = 1, CHAR

. . .
-M2TYPE = SYSTEM.SET16 = 2, SET

Finally, the #variant directive (see4.9.2) allows to explicitly specify a
Modula-2 type for a particular object:

void f(unsigned short mask) PROCEDURE f(mask : SYSTEM.SET16);

#variant f(0) : SYSTEM.SET16

Note: In order to keep original headers intact,#variant directives may be
placed into theproject file (see Chapter6) inside the corresponding!header
directive (see6.2.1).

H2D checks type mappings for correctness using the following rules:

5.3. MODIFYING TRANSLATION RULES 33

• type sizes must match

• floating point C types may only be mapped to Modula-2 types defined as
REAL by M2TYPE option.

• signed integer C types may be mapped to any Modula-2 type except REAL
and UNSIGNED.

• unsigned integer C types may be mapped to any Modula-2 type except
REAL and SIGNED.

One of the most advanced features of this mechanism is the ability to use
Modula-2 set types for C objects. The C programming language, as well as C++,
has no built-in set type. The common practice is to treat unsigned integer types as
bit scales and to use bitwise logical operators to manipulate them. Since Modula-2
provides set types (and no bitwise operators), it would be more convenient to
translate individual integer constants and types to set constants and types.

Example

struct s{
unsigned int field;

};
typedef unsigned long BITSCALE;
int variable;
void long function(unsigned argument);
char bitarray[10];
#define constant 0x0011

#variant s.field : BITSET
#variant BITSCALE : BITSET
#variant variable : BITSET
#variant function(0) : BITSET
#variant bitarray[] : SYSTEM.SET8
#variant constant : SYSTEM.SET16

TYPE
s = RECORD

field: BITSET;
END;

34 CHAPTER 5. USING H2D

BITSCALE = BITSET;

VAR
variable: BITSET;

PROCEDURE function (argument: BITSET);

VAR
bitarray: ARRAY [0..9] OF SYSTEM.SET8;

CONST
constant = SYSTEM.SET16{0, 4};

5.3.2 Pointer type function parameters

In C, the actual semantics of a pointer type function parameter depends on that
function and cannot be determined automatically. A function may interpret its
parameter of typeT* as either:

• pointer to T (type defined asPOINTER TO T)

• single value passed by reference (VAR T)

• array (ARRAY OF T)

• array passed by reference (VAR ARRAY OF T)

where the corresponding Modula-2 formal types are given in parenthesis.

The#variant directive (see4.9.2) may be used to explicitly point out the se-
mantics of each pointer type parameter.

Note: In order to keep original headers intact,#variant directives may be
placed into theproject file (see Chapter6) inside the corresponding!header
directive (see6.2.1).

Example

#variant function(0) : VAR
#variant function(1) : ARRAY
#variant function(2) : VAR ARRAY

5.3. MODIFYING TRANSLATION RULES 35

void function(int*, int*, int*, int*);

is translated to:

TYPE
PtrSInt = POINTER TO SYSTEM.int;

PROCEDURE function (VAR arg0: SYSTEM.int;
arg1: ARRAY OF SYSTEM.int;

VAR arg2: ARRAY OF SYSTEM.int;
arg3: PtrSInt);

5.3.3 Preserving constant names

By default, a#define directive introducing a constant is translated to a constant
declaration:

#define ENOTEXIST 10 CONST
ENOTEXIST = 10;

This is the only way in case of a native code Modula-2 compiler, since such con-
stants are substituted by a C preprocessor and do not appear in object files. But
in case of a convertor to C, the original C headers will be used after conversion
and it would be useful to refer to their names in the generated C text. Setting
theGENROVARS option ON forces constants to be translated to read-only vari-
ables (Note: this is an XDS language extension). This option has no effect on
generation for a native-code Modula-2 compiler.

The#variant directive (see4.9.2) may be used to specify a type for a variable:

#define ENOTEXIST 10 VAR
#variant ENOTEXIST : CARDINAL ENOTEXIST-: CARDINAL;

36 CHAPTER 5. USING H2D

Chapter 6

Project files

6.1 Overview

The most powerful and multi-purpose feature of H2D is theproject file, which
name may be specified at the command line after=p.

The project file may be used:

• To translate a set of header files at once, using the same option settings:

-BACKEND=C
-GENROVARS+
!module <stdio.h>
!module <stdlib.h>

• To map calling/naming convention qualifiers used by a particular C com-
piler to those supported by H2D (see4.7), or to make them ignorable:

!header <*.h> /* define for all headers */
#define _System syscall
#define far
!end

• To define macros which are predefined by a particular C compiler or are
used in conditional compilation preprocessor directives (see4.8.3):

!header <*.h>
#define __WATCOM_C__
#define INCL_DOS
!end

37

38 CHAPTER 6. PROJECT FILES

• To declare type synonyms in order to prevent H2D from automatic type
declarations (see4.6and4.3):

!header <*.h>
typedef char *String /* no more PtrChar */
!end

• To collect non-standard preprocessor directives in order to keep original
header files intact (see6.2):

!header <string.h>
#variant strlen(0) : ARRAY
!end

Example

The header filesa.h andm1.h :

/* a.h */
#include "m1.h"
#define constant1 0x11u
__PASCAL function3(float * arg0, unsigned long arg1);

/* end a.h */

/* m1.h */
#define constant2 0x111u
__PASCAL function1(float * arg0, float * arg1);
function2(unsigned long arg0, unsigned long arg1);

/* end m1.h */

with project filep.h2d :

!header "*.h"
#define __PASCAL pascal

!end
!header "a.h"

#merge "m1.h"
!end
!header "m1.h"

#variant function1 (1) : VAR
#variant constant2 : BITSET
#variant function2 (1) : BITSET

!end
!module "a.h"

6.2. PROJECT FILE CONTENTS 39

are translated to

(* ************************ *)
(* m1.h *)
(* ************************ *)
CONST

constant2 = {0, 4, 8};
<*- GENTYPEDEF *>
TYPE

PtrFloat = POINTER TO REAL;
PROCEDURE ["StdCall"] function1 (arg0: PtrFloat;

VAR arg1: REAL): SYSTEM.int;
PROCEDURE function2 (arg0: LONGCARD; arg1: BITSET): SYSTEM.int;
(* *********************** *)
(* a.h *)
(* *********************** *)
CONST

constant1 = 111H;
PROCEDURE ["StdCall"] function3 (arg0: PtrFloat;

arg1: LONGCARD): SYSTEM.int;

6.2 Project file contents

A project file may contain options settings and directives. Option settings in a
project file override settings in the configuration file.

H2D recognizes the following directives in project files:!header , !module ,
and!name , which are described is the following sections.

6.2.1 !header

!header (’<’ Pattern ’>’ | ’"’ Pattern ’"’)
Prologue

[
!footer

Epilogue
]
!end

Pattern is a regular expression (see2.3) representing a set of file names.

40 CHAPTER 6. PROJECT FILES

Prologue and Epilogue are arbitrary sequences of C language tokens.
Prologue is inserted at the beginning of any header file which name matches
Pattern ; Epilogue is appended to its end.!footer andEpilogue may
be omitted.

If a header file name matchesPattern in more than one!header directive,
theirPrologue andEpilogue sections are merged.

Prologue usually contains:

• #merge and#variant directives

• Predefined macros of a particular C compiler

• Type synonym declarations to prevent automatic type names generation

Note: If there are#include directives in eitherProlodue or Epilogue
ensure that names of the included files do not matchPattern , to avoid recursive
inclusion:

!header <*.h&ˆmytypes.h>
#include <mytypes.h>
!end

6.2.2 !module

!module (<file_name> | "file_name")

The !module directive is used to specify header files which are to be translated
when H2D processes the project file.

Translating more than one header at once has one more advantage. A header file
name may occur multiple times in#include directives. H2D keeps information
about each translated header in memory, and if an already transtaled header file
is encountered, it is not processed again.Note: In this case H2D requires more
memory.

Example

!module <ctype.h>
!module <math.h>

6.2. PROJECT FILE CONTENTS 41

!module <stdio.h>
!module <stdlib.h>
!module <string.h>

6.2.3 !name

!name (’<’ file_name ’>’ | ’"’ file_name ’"’) identifier

H2D replacesfile name with identifier when generating module names.
This may be useful whenfile name contains special characters (e.g.
my-header.h), or when there are headers with equal names in different di-
rectories. See also the description of theGENLONGNAMES option.

Example

!name <errno.h> errno
!name <sys\errno.h> syserrno

42 CHAPTER 6. PROJECT FILES

Chapter 7

Options Reference

This chapter contains brief descriptions of all options that may be specified in
either configuration file (See2.4). or project file(see Chapter6).

The general option syntax is:

Option = "-" name ("+" | "-" | "=" (string | integer))

Option names are case insensitive. Case is preserved when string option values
are stored or emitted, but is ignored when they are compared.

Examples

-mergeall+
-GENWIDTH=78
-BackEnd=Common

7.1 File extensions and prefixes

This group of options sets file name extensions and prefixes for H2D input and
output files.

43

44 CHAPTER 7. OPTIONS REFERENCE

Option Sets extension for... Default
DEFEXT definition modules def
DIREXT directive files (see4.9) dir
HEADEXT header files h
MODEXT implementation modules mod
PRJEXT project files (see Chapter6) h2d
TREEEXT include tree files (see theGENTREE option) tre

Option Sets prefix for... Default
DEFPFX definition modules (see5.2.2) none
MACPFX macro prototype modules (see5.2.1)

7.2 Translation options

Option Meaning Default
BACKEND target compiler back-end Common
CHANGEDEF enable retranslation OFF
COMMENTPOS preserved comments position undefined
CPPCOMMENTS recognize C++ comments ON
CSTDLIB set CSTDLIB value OFF
GENDIRS extract non-stsndard directives OFF
GENENUM enum translation mode Const
GENLONGNAMES keep directory names OFF
GENMACRO produce macro prototype modules OFF
GENROVARS translate constants to r/o vars OFF
GENSEP separate merged headers OFF
GENTREE generate inclusion tree OFF
GENWIDTH limit output line length unlimited
MERGEALL merge all headers OFF
PROGRESS enable progress indicator OFF

For each option, a set of possible values is given in parenthesis:

string an arbitrary sequence of characters
numeric an unsigned integer number
boolean ON or OFF

BACKEND (Native/C/Common)

7.2. TRANSLATION OPTIONS 45

Enables generation of definition modules suitable for either native-code
compiler, translator to C, or both. It also affects generation of additional
modules (See5.2).

Default: Common- both native and translator.

CHANGEDEF (boolean)

If this option is set OFF, H2D does not translate a header file if a definition
module corresponding to it already exists. Otherwise, H2D produces a new
definition module which may overwrite the old one.

See also2.3.

Default: OFF - do not process already translated headers

COMMENTPOS (numeric)

Sets starting position of comments preserved by H2D in output files. Has
effect only on comments which are placed next to declarations.

Default: delimit comments with a single blank.

CPPCOMMENTS (boolean)

If this option is set ON, H2D recognizes C++-style comments (started with
’//’) in header files.

Default: ON - recognize C++ comments.

CSTDLIB (boolean)

Sets value of theCSTDLIB XDS option in output definition modules corre-
sponding to top-level header files (listed on the command line or in aproject
file (see Chapter6)). See5.2.2for more information.

Default: OFF - setCSTDLIB off in definition modules.

GENDIRS (boolean)

If this option is set ON, a file containing non-standard preprocessor direc-
tives (see4.9) is produced for each header file.

Deafult: OFF - do not extract non-standard directives

GENENUM (Const/Enum/Mixed)

Defines whether C enumerations should be unconditionally translated to in-
teger constants (Const) or Modula-2 enumeration types (Enum). If set to
Mixed , only enumerations with default (or explicitly specified, but match-
ing default) constant values are translated to enumeration types; all other
are translated to constants. See also4.3.2.

46 CHAPTER 7. OPTIONS REFERENCE

Default: Const - always translate to constants

GENLONGNAMES (boolean)

This option controls translation of the#include directive in cases when
a specified file name contains directories. If this option is set OFF, H2D
strips directory names. Otherwise directory names are kept and separators
are replaced with underscore characters:

#include <sys\errno.h> IMPORT sys_errno;

See also6.2.3.

Default: OFF - strip directory names

GENMACRO (boolean)

Setting this option ON forces H2D to produce prototype modules for
function-like C macros encountered in header files (prototypemeans that
implementation modules contain procedures with empty bodies; the actual
code has to be written by hand). These modules have not to be imported,
but to be added to the link list. See also5.2.1.

This option is ignored if the target is XDS-C (theBACKEND option is set
to C).

Default: OFF - do not generate macro modules.

GENROVARS (boolean)

Being set ON, enables translation of#define d constants to read-only vari-
ables. Have no effect in native back-end sections. See5.3.3for more infor-
mation.

Default: OFF - do not translate constants to variables.

GENSEP (boolean)

Setting this option ON forces H2D to insert a comment containing name of
a merged header before declarations from that header.

Default: OFF - do not insert separators

GENTREE (boolean)

If this option is set ON, H2D produces a text file containing a tree of
#include directives for each header file specified on the command line or
in a project file using the!module directive (see6.2.2). A name of a tree
file is a name of a corresponding header file with extension defined by the
TREEEXT option.

Default: OFF - do not produce tree files

7.3. BASE TYPES DEFINITION 47

GENWIDTH (numeric)

Sets maximum length of a string in the output file.

Default: do not limit string length.

MERGEALL (boolean)

If this option is set ON, H2D merges all header files included into the trans-
lated header by means of the#include directive. If this option is set
OFF, H2D generates separate definition module for each header which is
not specified in the#merge directive.

See also4.8.2and5.1.

Default: OFF - do not merge headers which are not specified in the#merge
directive.

PROGRESS (boolean)

Setting this option ON enables progress indicator.

Default: OFF - show no progress indicator

7.3 Base types definition

The base types definition and mapping options,CTYPE andM2TYPE , have a
special syntax. Either of them may be specified more than once in a project or
configuration file, provided that each time a new type is defined. See5.3.1 for
more information on usage of these directives.

By default, H2D is configured to support XDS compilers.

CTYPE (special)

This option defines size and default mapping of a C base type.

CTypeOption = ’-’ ’CTYPE’ ’=’ Type ’=’ size ’,’ qualident
Type = ’signed char’ | ’unsigned char’ |

’short int’ | ’unsigned short int’ |
’signed int’ | ’unsigned int’ |
’signed long int’ | ’unsigned long int’ |
’float’ | ’double’ |
’long float’ | ’long double’

48 CHAPTER 7. OPTIONS REFERENCE

size is the size ofType in bytes, andqualident is a Modula-2 type to
whichType should be translated by default:

-CTYPE = signed char = 1, CHAR

See5.3.1for more information.

M2TYPE (special)

This option defines a Modula-2 type.

M2TypeOption = ’-’ ’M2TYPE’ ’=’ qualident ’=’ size ’,’ Attr
Attr = ’BOOL’ | ’CHAR’ |

’REAL’ | ’SET’ |
’SIGNED’ | ’UNSIGNED’

qualident is a Modula-2 type being defined,size is its size in bytes,
andAttr is a family to which it belongs:

-M2TYPE = SYSTEM.INT16 = 2, SIGNED

See5.3.1for more information.

Appendix A

XDS

XDS is a family name for development systems featuring Modula-2 and Oberon-
2 programming languages, available for Windows and Linux on the IBM PC and
compatibles. XDS provides an uniform programming environment for all men-
tioned platforms and allows to design and implement truly portable software.

The XDS Modula-2 compiler implements ISO standard of Modula-2. The ISO
standard library set is accessible for both Modula-2 and Oberon-2.

All XDS implementations share the same platform-independent front-end for both
source languages. The output code can be either native code for the target platform
(Native XDS) or text in the ANSI C language (XDS-C). ANSI C code generation
enables you to cross-complile your programs for any platform.

XDS includes standard ISO and PIM libraries along with a set of utility libraries
and interfaces to the host operating system API (Win32 or POSIX/X11) and the
ANSI C library (XDS-C only).

Native XDS-x86 produces highly optimized Intel x86 code. It is available for
Windows and Linux. Windows version comes with an IDE, debugger, prfiles, and
other tools.

For more information about XDS, please visit our Web page at:

http://www.excelsior-usa.com/xds.html

49

Index

BACKEND , 28, 29, 44, 44, 46

CHANGEDEF , 44, 45
COMMENTPOS , 15, 44, 45
CPPCOMMENTS, 15, 44, 45
CSTDLIB , 30, 44, 45
CTYPE, 32, 47

DEFPFX, 30

GENDIRS, 24, 44, 45
GENENUM , 18, 19, 44, 45
GENLONGNAMES , 23, 41, 44, 46
GENMACRO , 29, 44, 46
GENROVARS, 35, 44, 46
GENSEP, 27, 44, 46
GENTREE, 44, 46
GENWIDTH , 44, 47

M2TYPE , 32, 33, 48
MACPFX , 29
MERGEALL , 24, 27, 28, 44, 47

options
BACKEND , 44
CHANGEDEF , 45
COMMENTPOS , 45
CPPCOMMENTS, 45
CSTDLIB , 45
CTYPE, 47
GENDIRS, 45
GENENUM , 45
GENLONGNAMES , 46
GENMACRO , 46
GENROVARS, 46

GENSEP, 46
GENTREE, 46
GENWIDTH , 47
M2TYPE , 48
MERGEALL , 47
PROGRESS, 47

PROGRESS, 44, 47
project files,37

redirection file,6
regular expressions,6

TREEEXT , 46

50

This page had been intentionally left blank.

Excelsior, LLC
6 Lavrenteva Ave. Suite 441
Novosibirsk 630090 Russia
Tel: +7 (3832) 39 78 24
Fax: +1 (509) 271 5205
Email: info@excelsior-usa.com
Web: http://www.excelsior-usa.com

	Introduction
	New in version 1.30
	Typographic conventions
	Language descriptions
	Source code fragments

	Configuring H2D
	Setting up system search path
	Working configuration
	Redirection file
	Configuration file
	Customizing H2D messages

	Getting Started
	Creating a working directory
	Invoking H2D
	H2D usage example
	Error reporting

	Translation Rules
	Comments
	Identifiers
	Types
	Derived types
	Enumeration

	Type synonyms
	Variables
	Function prototypes
	Non-standard qualifiers
	Preprocessor directives
	Macro definitions
	File inclusion
	Conditional compilation
	Other directives

	Non-standard preprocessor directives
	#merge
	#variant

	Module names

	Using H2D
	Headers merging
	Fitting a Modula-2 compiler
	Native code
	Convertor to C

	Modifying translation rules
	Base types mapping
	Pointer type function parameters
	Preserving constant names

	Project files
	Overview
	Project file contents
	!header
	!module
	!name

	Options Reference
	File extensions and prefixes
	Translation options
	Base types definition

	XDS

