
The Programming Language Oberon-2
H.Mössenböck, N. Wirth

Institut für Computersysteme,
ETH Zürich
October 1993

1 Introduction

Oberon-2 is a general-purpose language in the tradition of Oberon and Modula-
2. Its most important features are block structure, modularity, separate compi-
lation, static typing with strong type checking (also across module boundaries),
and type extension with type-bound procedures.

Type extension makes Oberon-2 an object-oriented language. An object is
a variable of an abstract data type consisting of private data (its state) and
procedures that operate on this data. Abstract data types are declared as
extensible records. Oberon-2 covers most terms of object-oriented languages
by the established vocabulary of imperative languages in order to minimize the
number of notions for similar concepts.

This report is not intended as a programmer’s tutorial. It is intentionally
kept concise. Its function is to serve as a reference for programmers, implemen-
tors, and manual writers. What remains unsaid is mostly left so intentionally,
either because it can be derived from stated rules of the language, or because
it would require to commit the definition when a general commitment appears
as unwise.

Section 12 defines some terms that are used to express the type checking
rules of Oberon-2. Where they appear in the text, they are written in italics to
indicate their special meaning (e.g. the same type).

2 Syntax

An extended Backus-Naur Formalism (EBNF) is used to describe the syntax of
Oberon-2: Alternatives are separated by |. Brackets [and] denote optionality
of the enclosed expression, and braces { and } denote its repetition (possibly 0
times). Non-terminal symbols start with an upper-case letter (e.g. Statement).
Terminal symbols either start with a lower-case letter (e.g. ident), or are written
all in upper-case letters (e.g. BEGIN), or are denoted by strings (e.g. ”:=”).

3 Vocabulary and Representation

The representation of (terminal) symbols in terms of characters is defined using
the ASCII set. Symbols are identifiers, numbers, strings, operators, and de-
limiters. The following lexical rules must be observed: Blanks and line breaks
must not occur within symbols (except in comments, and blanks in strings).
They are ignored unless they are essential to separate two consecutive symbols.
Capital and lower-case letters are considered as distinct.

1

1. Identifiers are sequences of letters and digits. The first character must be
a letter.

ident = letter {letter | digit}.

Examples:

x Scan Oberon2 GetSymbol firstLetter

2. Numbers are (unsigned) integer or real constants. The type of an integer
constant is the minimal type to which the constant value belongs (see 6.1). If
the constant is specified with the suffix H, the representation is hexadecimal
otherwise the representation is decimal.

A real number always contains a decimal point. Optionally it may also
contain a decimal scale factor. The letter E (or D) means ”times ten to the
power of”. A real number is of type REAL, unless it has a scale factor containing
the letter D. In this case it is of type LONGREAL.

number = integer | real.
integer = digit {digit} | digit{hexDigit}"H".
real = digit{digit}"."{digit} [ScaleFactor].
ScaleFactor = ("E" | "D") ["+" | "-"] digit {digit}.
hexDigit = digit |"A"|"B"|"C"|"D"|"E"|"F".
digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9".

Examples:

1991 INTEGER 1991
0DH SHORTINT 13
12.3 REAL 12.3
4.567E8 REAL 456700000
0.57712566D-6 LONGREAL 0.00000057712566

3. Character constants are denoted by the ordinal number of the character in
hexadecimal notation followed by the letter X.

character = digit {hexDigit} "X".

4. Strings are sequences of characters enclosed in single (’) or double (") quote
marks. The opening quote must be the same as the closing quote and must not
occur within the string. The number of characters in a string is called its length.
A string of length 1 can be used wherever a character constant is allowed and
vice versa.

string = ’"’ {char} ’"’ | "’" {char} "’".

Examples:

"Oberon-2" "Don’t worry!" "x"

2

5. Operators and delimiters are the special characters, character pairs, or re-
served words listed below. The reserved words consist exclusively of capital
letters and cannot be used as identifiers.

+ := ARRAY IMPORT RETURN
- ^ BEGIN IN THEN
* = BY IS TO
/ # CASE LOOP TYPE
~ < CONST MOD UNTIL
& > DIV MODULE VAR
. <= DO NIL WHILE
, >= ELSE OF WITH
; .. ELSIF OR
| : END POINTER
() EXIT PROCEDURE
[] FOR RECORD
{ } IF REPEAT

6. Comments may be inserted between any two symbols in a program. They
are arbitrary character sequences opened by the bracket (* and closed by *).
Comments may be nested. They do not affect the meaning of a program.

4 Declarations and scope rules

Every identifier occurring in a program must be introduced by a declaration,
unless it is a predeclared identifier. Declarations also specify certain permanent
properties of an object, such as whether it is a constant, a type, a variable, or
a procedure. The identifier is then used to refer to the associated object.

The scope of an object x extends textually from the point of its declaration
to the end of the block (module, procedure, or record) to which the declaration
belongs and hence to which the object is local. It excludes the scopes of equally
named objects which are declared in nested blocks. The scope rules are:

1. No identifier may denote more than one object within a given scope (i.e.
no identifier may be declared twice in a block);

2. An object may only be referenced within its scope;

3. A type T of the form POINTER TO T1 (see 6.4) can be declared before
the scope of T1. The declaration of T1 must follow in the same block to
which T is local;

4. Identifiers denoting record fields (see 6.3) or type-bound procedures (see
10.2) are valid in record designators only.

An identifier declared in a module block may be followed by an export mark
("*" or "-") in its declaration to indicate that it is exported. An identifier
x exported by a module M may be used in other modules, if they import M

3

(see section 11). The identifier is then denoted as M.x in these modules and is
called a qualified identifier. Identifiers marked with "-" in their declaration are
read-only in importing modules.

Qualident = [ident "."]ident.
IdentDef = ident [" * " | " - "].

The following identifiers are predeclared; their meaning is defined in the
indicated sections:

ABS (10.3) LEN (10.3)
ASH (10.3) LONG (10.3)
BOOLEAN (6.1) LONGINT (6.1)
CAP (10.3) LONGREAL (6.1)
CHAR (6.1) MAX (10.3)
CHR (10.3) MIN (10.3)
COPY (10.3) NEW (10.3)
DEC (10.3) ODD (10.3)
ENTIER (10.3) ORD (10.3)
EXCL (10.3) REAL (6.1)
FALSE (6.1) SET (6.1)
HALT (10.3) SHORT (10.3)
INC (10.3) SHORTINT (6.1)
INCL (10.3) SIZE (10.3)
INTEGER (6.1) TRUE (6.1)

5 Constant declarations

A constant declaration associates an identifier with a constant value.

ConstantDeclaration = IdentDef "=" ConstExpression.
ConstExpression = Expression.

A constant expression is an expression that can be evaluated by a mere
textual scan without actually executing the program. Its operands are constants
(section 8) or predeclared functions (section 10.3) that can be evaluated at
compile time. Examples of constant declarations are:

N = 100
limit = 2*N - 1
fullSet = {MIN(SET)..MAX(SET)}

6 Type declarations

A data type determines the set of values which variables of that type may
assume, and the operators that are applicable. A type declaration associates
an identifier with a type. In the case of structured types (arrays and records)
it also defines the structure of variables of this type.

TypeDeclaration = IdentDef "=" Type.
Type = Qualident | ArrayType | RecordType |

PointerType | ProcedureType.

4

Examples:

Table = ARRAY N OF REAL
Tree = POINTER TO Node
Node = RECORD

key: INTEGER;
left, right: Tree

END
CenterTree = POINTER TO CenterNode
CenterNode = RECORD (Node)

width: INTEGER;
subnode: Tree

END
Function = PROCEDURE(x: INTEGER): INTEGER

6.1 Basic types

The basic types are denoted by predeclared identifiers. The associated operators
are defined in 8.2 and the predeclared function procedures in 10.3 The values
of the given basic types are the following:

1. BOOLEAN the truth values TRUE and FALSE
2. CHAR the characters of the extended ASCII set

(0X..0FFX)
3. SHORTINT the integers between MIN(SHORTINT) and

MAX(SHORTINT)
4. INTEGER the integers between MIN(INTEGER) and

MAX(INTEGER)
5. LONGINT the integers between MIN(LONGINT) and

MAX(LONGINT)
6. REAL the real numbers between MIN(REAL) and

MAX(REAL)
7. LONGREAL the real numbers between MIN(LONGREAL)

and MAX(LONGREAL)
8. SET the sets of integers between 0 and

MAX(SET)

Types 3 to 5 are integer types, types 6 and 7 are real types, and together they
are called numeric types. They form a hierarchy; the larger type includes (the
values of) the smaller type:

LONGREAL ⊇ REAL ⊇ LONGINT ⊇ INTEGER ⊇ SHORTINT

6.2 Array types

An array is a structure consisting of a number of elements which are all of the
same type, called the element type. The number of elements of an array is
called its length. The elements of the array are designated by indices, which are
integers between 0 and the length minus 1.

5

ArrayType = ARRAY [Length { "," Length}] OF Type.
Length = ConstExpression.

A type of the form

ARRAY L0, L1, ..., Ln OF T

is understood as an abbreviation of

ARRAY L0 OF
ARRAY L1 OF
...
ARRAY Ln OF T

Arrays declared without length are called open arrays. They are restricted to
pointer base types (see 6.4), element types of open array types, and formal
parameter types (see 10.1). Examples:

ARRAY 10, N OF INTEGER
ARRAY OF CHAR

6.3 Record types

A record type is a structure consisting of a fixed number of elements, called
fields, with possibly different types. The record type declaration specifies the
name and type of each field. The scope of the field identifiers extends from
the point of their declaration to the end of the record type, but they are also
visible within designators referring to elements of record variables (see 8.1). If
a record type is exported, field identifiers that are to be visible outside the
declaring module must be marked. They are called public fields; unmarked
elements are called private fields.

RecordType = RECORD ["("BaseType")"]
FieldList{";" FieldList}

END.
BaseType = Qualident.
FieldList = [IdentList ":" Type].

Record types are extensible, i.e. a record type can be declared as an exten-
sion of another record type. In the example

T0 = RECORD x: INTEGER END
T1 = RECORD (T0) y: REAL END

T1 is a (direct) extension of T0 and T0 is the (direct) base type of T1 (see section
12). An extended type T1 consists of the fields of its base type and of the fields
which are declared in T1 (see section 6). All identifiers declared in the extended
record must be different from the identifiers declared in its base type record(s).
Examples of record type declarations:

RECORD
day, month, year: INTEGER

END

6

RECORD
name, firstname: ARRAY 32 OF CHAR;
age: INTEGER;
salary: REAL

END

6.4 Pointer types

Variables of a pointer type P assume as values pointers to variables of some
type T . T is called the pointer base type of P and must be a record or array
type. Pointer types adopt the extension relation of their pointer base types: if
a type T1 is an extension of T , and P1 is of type POINTER TO T1, then P1 is
also an extension of P .

PointerType = POINTER TO Type.

If p is a variable of type P = POINTER TO T , a call of the predeclared
procedure NEW(p) (see 10.3) allocates a variable of type T in free storage. If
T is a record type or an array type with fixed length, the allocation has to be
done with NEW(p); if T is an n-dimensional open array type the allocation has
to be done with NEW(p, e0, . . . , en−1) where T is allocated with lengths given by
the expressions e0, . . . , en−1. In either case a pointer to the allocated variable
is assigned to p. p is of type P . The referenced variable pˆ(pronounced as
p-referenced) is of type T . Any pointer variable may assume the value NIL,
which points to no variable at all.

6.5 Procedure types

Variables of a procedure type T have a procedure (or NIL) as value. If a
procedure P is assigned to a variable of type T , the formal parameter lists (see
section 10.1) of P and T must match (see 12). P must not be a predeclared or
type-bound procedure nor may it be local to another procedure.

ProcedureType = PROCEDURE [FormalParameters].

7 Variable declarations

Variable declarations introduce variables by defining an identifier and a data
type for them.

VariableDeclaration = IdentList ":" Type.

Record and pointer variables have both a static type (the type with which
they are declared - simply called their type) and a dynamic type (the type
they assume at run time). For pointers and variable parameters of record type
the dynamic type may be an extension of their static type. The static type
determines which fields of a record are accessible. The dynamic type is used to
call type-bound procedures (see 10.2).
Examples of variable declarations (refer to examples in 6):

7

i, j, k: INTEGER
x, y: REAL
p, q: BOOLEAN
s: SET
F: Function
a: ARRAY 100 OF REAL
w: ARRAY 16 OF RECORD

name : ARRAY 32 OF CHAR;
ccount: INTEGER

END
t, c: Tree

8 Expressions

Expressions are constructs denoting rules of computation whereby constants
and current values of variables are combined to compute other values by the ap-
plication of operators and function procedures. Expressions consist of operands
and operators. Parentheses may be used to express specific associations of
operators and operands.

8.1 Operands

With the exception of set constructors and literal constants (numbers, charac-
ter constants, or strings), operands are denoted by designators. A designator
consists of an identifier referring to a constant, variable, or procedure. This
identifier may possibly be qualified by a module identifier (see sections 4 and
11) and may be followed by selectors if the designated object is an element of
a structure.

Designator = Qualident { "." ident |
"[" ExpressionList "]" |
"^" | "(" Qualident ")" }.

ExpressionList = Expression {"," Expression}.

If a designates an array, then a[e] denotes that element of a whose index
is the current value of the expression e. The type of e must be an integer
type. A designator of the form a[e0, e1, . . . , en] stands for a[e0][e1] . . . [en]. If r
designates a record, then r.f denotes the field f of r or the procedure f bound
to the dynamic type of r (section 10.2). If p designates a pointer, pˆdenotes
the variable which is referenced by p. The designators pˆ.f and pˆ[e] may be
abbreviated as p.f and p[e], i.e. record and array selectors imply dereferencing.
If a or r are read-only, then also a[e] and r.f are read-only.

A type guard v(T) asserts that the dynamic type of v is T (or an extension
of T), i.e. program execution is aborted, if the dynamic type of v is not T (or
an extension of T). Within the designator, v is then regarded as having the
static type T . The guard is applicable, if

1. v is a variable parameter of record type or v is a pointer, and if

2. T is an extension of the static type of v

8

If the designated object is a constant or a variable, then the designator refers
to its current value. If it is a procedure, the designator refers to that procedure
unless it is followed by a (possibly empty) parameter list in which case it implies
an activation of that procedure and stands for the value resulting from its
execution. The actual parameters must correspond to the formal parameters
as in proper procedure calls (see 10.1).
Examples of designators (refer to examples in 7):

i (INTEGER)
a[i] (REAL)
w[3].name[i] (CHAR)
t.left.right (Tree)
t(CenterNode).subnode (Tree)

8.2 Operators

Four classes of operators with different precedences (binding strengths) are syn-
tactically distinguished in expressions. The operator ~ has the highest prece-
dence, followed by multiplication operators, addition operators, and relations.
Operators of the same precedence associate from left to right. For example,
x-y-z stands for (x-y)-z.

Expression = SimpleExpression
[Relation SimpleExpression].

SimpleExpression = ["+" | "-"] Term {AddOperator Term}.
Term = Factor {MulOperator Factor}.
Factor = Designator [ActualParameters] |

number | character | string | NIL |
Set | "(" Expression ")" | "~" Factor.

Set = "{"[Element {","Element}]"}".
Element = Expression [".."Expression].
ActualParameters = "(" [ExpressionList] ")".
Relation = "=" | "#" | "<" | "<=" | ">" | ">=" |

IN | IS.
AddOperator = "+" | "-" | OR.
MulOperator = "*" | "/" | DIV | MOD | "&".

The available operators are listed in the following tables. Some operators are
applicable to operands of various types, denoting different operations. In these
cases, the actual operation is identified by the type of the operands. The
operands must be expression compatible with respect to the operator (see 12).

8.2.1 Logical operators

OR logical disjunction p OR q ”if p then TRUE, else q”
& logical conjunction p & q ”if p then q, else FALSE”
~ negation ~p ”not p”

These operators apply to BOOLEAN operands and yield a BOOLEAN result.

9

8.2.2 Arithmetic operators

+ sum
- difference
* product
/ real quotient
DIV integer quotient
MOD modulus

The operators +, -, *, and / apply to operands of numeric types. The type
of the result is the type of that operand which includes the type of the other
operand, except for division (/), where the result is the smallest real type which
includes both operand types. When used as monadic operators, - denotes sign
inversion and + denotes the identity operation. The operators DIV and MOD
apply to integer operands only. They are related by the following formulas
defined for any x and positive divisors y:

x = (x DIV y) * y + (x MOD y)
0 <= (x MOD y) < y

Examples:

x y x DIV y x MOD y
5 3 1 2
-5 3 -2 1

8.2.3 Set Operators

+ union
- difference (x - y = x * (-y))
* intersection
/ symmetric set difference (x / y = (x-y) + (y-x))

Set operators apply to operands of type SET and yield a result of type SET.
The monadic minus sign denotes the complement of x, i.e. -x denotes the set of
integers between 0 and MAX(SET) which are not elements of x. Set operators
are not associative ((a+b)-c # a+(b-c)).

A set constructor defines the value of a set by listing its elements between
curly brackets. The elements must be integers in the range 0..MAX(SET). A
range a..b denotes all integers in the interval [a, b].

8.2.4 Relations

= equal
unequal
< less
<= less or equal
> greater
>= greater or equal
IN set membership
IS type test

10

Relations yield a BOOLEAN result. The relations =, #, <, <=, > and >= apply
to the numeric types, CHAR, strings, and character arrays containing 0X as a
terminator. The relations = and # also apply to BOOLEAN and SET, as well
as to pointer and procedure types (including the value NIL). x IN s stands for
”x is an element of s”. x must be of an integer type, and s of type SET. v IS T
stands for ”the dynamic type of v is T (or an extension of T)” and is called a
type test. It is applicable if

1. v is a variable parameter of record type or v is a pointer, and if

2. T is an extension of the static type of v

Examples of expressions (refer to examples in 7):

1991 INTEGER
i DIV 3 INTEGER
~p OR q BOOLEAN
(i+j) * (i-j) INTEGER
s - {8, 9, 13} SET
i + x REAL
a[i+j] * a[i-j] REAL
(0<=i) & (i<100) BOOLEAN
t.key = 0 BOOLEAN
k IN {i..j-1} BOOLEAN
w[i].name <= "John" BOOLEAN
t IS CenterNode BOOLEAN

9 Statements

Statements denote actions. There are elementary and structured statements.
Elementary statements are not composed of any parts that are themselves state-
ments. They are the assignment, the procedure call, the return, and the
exit statement. Structured statements are composed of parts that are them-
selves statements. They are used to express sequencing and conditional, se-
lective, and repetitive execution. A statement may also be empty, in which
case it denotes no action. The empty statement is included in order to relax
punctuation rules in statement sequences.

Statement =
[Assignment | ProcedureCall | IfStatement |

CaseStatement | WhileStatement | RepeatStatement |
ForStatement | LoopStatement | WithStatement |
EXIT | RETURN [Expression]

].

9.1 Assignments

Assignments replace the current value of a variable by a new value specified
by an expression. The expression must be assignment compatible with the
variable (see 12). The assignment operator is written as ”:=” and pronounced
as becomes.

11

Assignment = Designator ":=" Expression.

If an expression e of type Te is assigned to a variable v of type Tv, the
following happens:

1. if Tv and Te are record types, only those fields of Te are assigned which
also belong to Tv (projection); the dynamic type of v must be the same
as the static type of v and is not changed by the assignment;

2. if Tv and Te are pointer types, the dynamic type of v becomes the dynamic
type of e;

3. if Tv is ARRAY n OF CHAR and e is a string of length m < n, v[i]
becomes ei for i = 0..m− 1 and v[m] becomes 0X.

Examples of assignments (refer to examples in 7):

i := 0
p := i = j
x := i + 1
k := log2(i+j)
F := log2 (* see 10.1 *)
s := {2, 3, 5, 7, 11, 13}
a[i] := (x+y) * (x-y)
t.key := i
w[i+1].name := "John"
t := c

9.2 Procedure calls

A procedure call activates a procedure. It may contain a list of actual parame-
ters which replace the corresponding formal parameters defined in the procedure
declaration (see section 6.5). The correspondence is established by the positions
of the parameters in the actual and formal parameter lists. There are two kinds
of parameters: variable and value parameters.

If a formal parameter is a variable parameter, the corresponding actual pa-
rameter must be a designator denoting a variable. If it denotes an element
of a structured variable, the component selectors are evaluated when the for-
mal/actual parameter substitution takes place, i.e. before the execution of the
procedure. If a formal parameter is a value parameter, the corresponding actual
parameter must be an expression. This expression is evaluated before the pro-
cedure activation, and the resulting value is assigned to the formal parameter
(see also 10.1).

ProcedureCall = Designator [ActualParameters].

Examples:

WriteInt(i*2+1) (* see 10.1 *)
INC(w[k].count)
t.Insert("John") (* see 11 *)

12

9.3 Statement sequences

Statement sequences denote the sequence of actions specified by the component
statements which are separated by semicolons.

StatementSequence = Statement {";" Statement}.

9.4 If statements

IfStatement =
IF Expression THEN StatementSequence

{ ELSIF Expression THEN StatementSequence }
[ELSE StatementSequence]
END.

If statements specify the conditional execution of guarded statement se-
quences. The Boolean expression preceding a statement sequence is called its
guard. The guards are evaluated in sequence of occurrence, until one evaluates
to TRUE, whereafter its associated statement sequence is executed. If no guard
is satisfied, the statement sequence following the symbol ELSE is executed, if
there is one.
Example:

IF (ch >= "A") & (ch <= "Z") THEN ReadIdentifier
ELSIF (ch >= "0") & (ch <= "9") THEN ReadNumber
ELSIF (ch = " ’ ") OR (ch = ’"’) THEN ReadString
ELSE SpecialCharacter
END;

9.5 Case statements

Case statements specify the selection and execution of a statement sequence
according to the value of an expression. First the case expression is evaluated,
then that statement sequence is executed whose case label list contains the
obtained value. The case expression must either be of an integer type that
includes the types of all case labels, or both the case expression and the case
labels must be of type CHAR. Case labels are constants, and no value must
occur more than once. If the value of the expression does not occur as a label
of any case, the statement sequence following the symbol ELSE is selected, if
there is one, otherwise the program is aborted.

CaseStatement = CASE Expression OF Case {"|" Case}
[ELSE StatementSequence]
END.

Case = [CaseLabelList ":" StatementSequence].
CaseLabelList = CaseLabels {"," CaseLabels}.
CaseLabels = ConstExpression [".." ConstExpression].

Example:

CASE ch OF
"A" .. "Z": ReadIdentifier

| "0" .. "9": ReadNumber

13

| "’", ’"’ : ReadString
ELSE SpecialCharacter
END

9.6 While statements

While statements specify the repeated execution of a statement sequence while
the Boolean expression (its guard) yields TRUE. The guard is checked before
every execution of the statement sequence.

WhileStatement = WHILE Expression DO StatementSequence END.

Examples:

WHILE i > 0 DO i := i DIV 2; k := k + 1 END
WHILE (t # NIL) & (t.key # i) DO t := t.left END

9.7 Repeat statements

A repeat statement specifies the repeated execution of a statement sequence
until a condition specified by a Boolean expression is satisfied. The statement
sequence is executed at least once.

RepeatStatement = REPEAT StatementSequence UNTIL Expression.

9.8 For statements

A for statement specifies the repeated execution of a statement sequence for a
fixed number of times while a progression of values is assigned to an integer
variable called the control variable of the for statement.

ForStatement = FOR ident":="Expression TO Expression
[BY ConstExpression] DO StatementSequence
END.

The statement

FOR v := beg TO end BY step DO statements END

is equivalent to

temp := end; v := beg;
IF step > 0 THEN

WHILE v <= temp DO statements; v := v + step END
ELSE

WHILE v >= temp DO statements; v := v + step END
END;

temp has the same type as v. step must be a non-zero constant expression. If
step is not specified, it is assumed to be 1.
Examples:

FOR i := 0 TO 79 DO k := k + a[i] END
FOR i := 79 TO 1 BY -1 DO a[i] := a[i-1] END

14

9.9 Loop statements

A loop statement specifies the repeated execution of a statement sequence. It
is terminated upon execution of an exit statement within that sequence (see
9.10).

LoopStatement = LOOP StatementSequence END.

Example:

LOOP
ReadInt(i);
IF i < 0 THEN EXIT END;
WriteInt(i)

END

Loop statements are useful to express repetitions with several exit points or
cases where the exit condition is in the middle of the repeated statement se-
quence.

9.10 Return and exit statements

A return statement indicates the termination of a procedure. It is denoted by
the symbol RETURN, followed by an expression if the procedure is a function
procedure. The type of the expression must be assignment compatible (see 12)
with the result type specified in the procedure heading (see section 10).

Function procedures require the presence of a return statement indicating
the result value. In proper procedures, a return statement is implied by the
end of the procedure body. Any explicit return statement therefore appears as
an additional (probably exceptional) termination point.

An exit statement is denoted by the symbol EXIT. It specifies termination of
the enclosing loop statement and continuation with the statement following that
loop statement. Exit statements are contextually, although not syntactically
associated with the loop statement which contains them.

9.11 With statements

With statements execute a statement sequence depending on the result of a
type test and apply a type guard to every occurrence of the tested variable
within this statement sequence.

WithStatement = WITH Guard DO StatementSequence
{ "|" Guard DO StatementSequence }
[ELSE StatementSequence]
END.

Guard = Qualident ":" Qualident.

If v is a variable parameter of record type or a pointer variable, and if it is
of a static type T0, the statement

WITH v: T1 DO S1 |v: T2 DO S2 ELSE S3 END

15

has the following meaning: if the dynamic type of v is T1, then the statement
sequence S1 is executed where v is regarded as if it had the static type T1; else
if the dynamic type of v is T2, then S2 is executed where v is regarded as if it
had the static type T2; else S3 is executed. T1 and T2 must be extensions of
T0. If no type test is satisfied and if an else clause is missing the program is
aborted.
Example:

WITH t: CenterTree DO i := t.width; c := t.subnode END

10 Procedure declarations

A procedure declaration consists of a procedure heading and a procedure body.
The heading specifies the procedure identifier and the formal parameters. For
type-bound procedures it also specifies the receiver parameter. The body con-
tains declarations and statements. The procedure identifier is repeated at the
end of the procedure declaration.

There are two kinds of procedures: proper procedures and function proce-
dures. The latter are activated by a function designator as a constituent of an
expression and yield a result that is an operand of the expression. Proper pro-
cedures are activated by a procedure call. A procedure is a function procedure
if its formal parameters specify a result type. The body of a function procedure
must contain a return statement which defines its result.

All constants, variables, types, and procedures declared within a procedure
body are local to the procedure. Since procedures may be declared as local
objects too, procedure declarations may be nested. The call of a procedure
within its declaration implies recursive activation.

Objects declared in the environment of the procedure are also visible in those
parts of the procedure in which they are not concealed by a locally declared
object with the same name.

ProcedureDeclaration =
ProcedureHeading ";" ProcedureBody ident

ProcedureHeading =
PROCEDURE [Receiver] IdentDef [FormalParameters].

ProcedureBody =
DeclarationSequence [BEGIN StatementSequence] END.

DeclarationSequence =
{ CONST { ConstantDeclaration";" } |
TYPE { TypeDeclaration ";" } |
VAR { VariableDeclaration ";" }

} |
{ ProcedureDeclaration ";" | ForwardDeclaration ";" }.

ForwardDeclaration =
PROCEDURE "^"[Receiver] IdentDef [FormalParameters].

If a procedure declaration specifies a receiver parameter, the procedure is
considered to be bound to a type (see 10.2). A forward declaration serves to
allow forward references to a procedure whose actual declaration appears later

16

in the text. The formal parameter lists of the forward declaration and the
actual declaration must match (see 12).

10.1 Formal parameters

Formal parameters are identifiers declared in the formal parameter list of a
procedure. They correspond to actual parameters specified in the procedure
call. The correspondence between formal and actual parameters is established
when the procedure is called. There are two kinds of parameters, value and
variable parameters, indicated in the formal parameter list by the absence or
presence of the keyword VAR. Value parameters are local variables to which
the value of the corresponding actual parameter is assigned as an initial value.
Variable parameters correspond to actual parameters that are variables, and
they stand for these variables. The scope of a formal parameter extends from
its declaration to the end of the procedure block in which it is declared. A
function procedure without parameters must have an empty parameter list. It
must be called by a function designator whose actual parameter list is empty
too. The result type of a procedure can be neither a record nor an array.

FormalParameters = "(" [FPSection {";"FPSection}] ")"
[":" Qualident].

FPSection = [VAR] ident {"," ident} ":" Type.

Let Tf be the type of a formal parameter f (not an open array) and Ta

the type of the corresponding actual parameter a. For variable parameters, Ta

must be the same as Tf , or Tf must be a record type and Ta an extension of
Tf . For value parameters, a must be assignment compatible with f (see 12).
If Tf is an open array, then a must be array compatible with f (see 12). The
lengths of f are taken from a.
Examples of procedure declarations:

PROCEDURE ReadInt(VAR x: INTEGER);
VAR i: INTEGER; ch: CHAR;

BEGIN
i := 0;
Read(ch);
WHILE ("0" <= ch) & (ch >= "9") DO

i:= 10*i + (ORD(ch)-ORD("0"));
Read(ch)

END;
x := i;

END ReadInt

PROCEDURE WriteInt(x: INTEGER);
(* 0 <= x <= 100000 *)
VAR i: INTEGER; buf: ARRAY 5 OF INTEGER;

BEGIN
i := 0;
REPEAT

buf[i] := x MOD 10;

17

x := x DIV 10;
INC(i)

UNTIL x = 0;
REPEAT

DEC(i);
Write(CHR(buf[i] + ORD("0")))

UNTIL i = 0;
END WriteInt

PROCEDURE WriteString(s: ARRAY OF CHAR);
VAR i: INTEGER;

BEGIN
i := 0;
WHILE (i < LEN(s)) & (s[i] # 0X) DO

Write(s[i]);
INC(i)

END
END WriteString

PROCEDURE log2(x: INTEGER): INTEGER;
VAR y: INTEGER; (* assume x>0 *)

BEGIN
y := 0;
WHILE x > 1 DO x := x DIV 2; INC(y) END;
RETURN y

END log2

10.2 Type-bound procedures

Globally declared procedures may be associated with a record type declared in
the same module. The procedures are said to be bound to the record type. The
binding is expressed by the type of the receiver in the heading of a procedure
declaration. The receiver may be either a variable parameter of record type T
or a value parameter of type POINTER TO T (where T is a record type). The
procedure is bound to the type T and is considered local to it.

ProcedureHeading =
PROCEDURE [Receiver] IdentDef [FormalParameters].

Receiver = "(" [VAR] ident ":" ident ")".

If a procedure P is bound to a type T0, it is implicitly also bound to any
type T1 which is an extension of T0. However, a procedure P ′ (with the same
name as P) may be explicitly bound to T1 in which case it overrides the binding
of P . P ′ is considered a redefinition of P for T1. The formal parameters of P
and P ′ must match (see 12). If P and T1 are exported (see section 4) P ′ must
be exported too.

If v is a designator and P is a type-bound procedure, then v.P denotes that
procedure P which is bound to the dynamic type of v (dynamic binding). Note,
that this may be a different procedure than the one bound to the static type of

18

v. v is passed to P ′s receiver according to the parameter passing rules specified
in section 10.1.

If r is a receiver parameter declared with type T , r.Pˆdenotes the (redefined)
procedure P bound to the base type of T .

In a forward declaration of a type-bound procedure the receiver parameter
must be of the same type as in the actual procedure declaration. The formal
parameter lists of both declarations must match (12).
Examples:

PROCEDURE (t: Tree) Insert (node: Tree);
VAR p, father: Tree;

BEGIN
p := t;
REPEAT father := p;

IF node.key = p.key THEN RETURN END;
IF node.key < p.key THEN p := p.left
ELSE p := p.right
END

UNTIL p = NIL;
IF node.key < father.key THEN father.left := node
ELSE father.right := node
END;
node.left := NIL;
node.right := NIL

END Insert;

PROCEDURE (t: CenterTree) Insert (node: Tree);
(*redefinition*)

BEGIN
WriteInt(node(CenterTree).width);
t.Insert^(node)
(* calls the Insert procedure bound to Tree *)

END Insert;

10.3 Predeclared procedures

The following table lists the predeclared procedures. Some are generic proce-
dures, i.e. they apply to several types of operands. v stands for a variable, x
and n for expressions, and T for a type.

19

10.3.1 Function procedures

Name Argument type Result type Function

ABS(x) numeric type type of x absolute value
ASH(x,n) x,n: integer type LONGINT arithmetic shift (x ∗ 2n)
CAP(x) CHAR CHAR x is letter: corresponding

capital letter
CHR(x) integer type CHAR character with ordinal

number x
ENTIER(x) real type LONGINT largest integer not greater

than x
LEN(v,n) v: array; n: inte-

ger const.
LONGINT length of v in dimension n

(first dimension = 0)
LEN(v) v: array LONGINT the same as LEN(v,0)
LONG(x) SHORTINT INTEGER identity

INTEGER LONGINT
REAL LONGREAL

MAX(T) T = basic type T maximum value of type T
T = SET INTEGER maximum element of a set

MIN(T) T = basic type T minimum value of type T
T = SET INTEGER 0

ODD(x) integer type BOOLEAN x MOD 2 = 1
ORD(x) CHAR INTEGER ordinal number of x
SHORT(x) LONGINT INTEGER identity

INTEGER SHORTINT identity
LONGREAL REAL identity (truncation

possible)
SIZE(T) any type integer number of bytes required

by T

10.3.2 Proper procedures

Name Argument types Function

ASSERT(x) x: Boolean expression terminate program exe-
cution if not x

ASSERT(x,n) x: Boolean expression; n:
integer constant

terminate program exe-
cution if not x

COPY(x,v) x: character array, string;
v: character array

v := x

DEC(v) integer type v := v - 1
DEC(v,n) v, n: integer type v := v - n
EXCL(v,x) v: SET; x: integer type v := v - x
HALT(n) integer constant terminate program

execution

20

INC(v) integer type v := v + 1
INC(v,n) v, n: integer type v := v + n
INCL(v,x) v: SET; x: integer type v := v + x
NEW(v) pointer to record or fixed

array
allocate vˆ

NEW(v,x0,...,xn) v: pointer to open array;
xi: integer type

allocate vˆwith lengths
x0...xn

COPY allows the assignment of a string or a character array containing a
terminating 0X to another character array. If necessary, the assigned value is
truncated to the target length minus one. The target will always contain 0X as
a terminator. In ASSERT(x,n) and HALT(n), the interpretation of n is left to
the underlying system implementation.

11 Modules

A module is a collection of declarations of constants, types, variables, and
procedures, together with a sequence of statements for the purpose of assigning
initial values to the variables. A module constitutes a text that is compilable
as a unit.

Module = MODULE ident ";" [ImportList]
DeclarationSequence
[BEGIN StatementSequence]
END ident ".".

ImportList = IMPORT Import {"," Import} ";".
Import = [ident ":="] ident.

The import list specifies the names of the imported modules. If a module
A is imported by a module M and A exports an identifier x, then x is referred
to as A.x within M. If A is imported as B := A, the object x is referenced as
B.x. This allows short alias names in qualified identifiers. A module must not
import itself. Identifiers that are to be exported (i.e. that are to be visible in
client modules) must be marked by an export mark in their declaration (see
section 4).

The statement sequence following the symbol BEGIN is executed when the
module is added to a system (loaded), which is done after the imported modules
have been loaded. It follows that cyclic import of modules is illegal. Individual
(parameterless and exported) procedures can be activated from the system, and
these procedures serve as commands.

MODULE Trees;
(* exports:
Tree, Node, Insert, Search, Write, NewTree

*)
(* exports read-only: Node.name *)
IMPORT Texts, Oberon;
TYPE
Tree* = POINTER TO Node;
Node* = RECORD
name-: POINTER TO ARRAY OF CHAR;

21

left, right: Tree
END;

VAR w: Texts.Writer;

PROCEDURE (t: Tree) Insert* (name: ARRAY OF CHAR);
VAR p, father: Tree;

BEGIN
p := t;
REPEAT father := p;
IF name = p.name^ THEN RETURN END;
IF name < p.name^ THEN p := p.left
ELSE p := p.right
END

UNTIL p = NIL;
NEW(p); p.left := NIL; p.right := NIL;
NEW(p.name,LEN(name)+1);
COPY(name,p.name^);
IF name < father.name^ THEN father.left := p
ELSE father.right := p
END;

END Insert;

PROCEDURE (t: Tree) Search* (name: ARRAY OF CHAR): Tree;
VAR p: Tree;

BEGIN
p := t;
WHILE (p # NIL) & (name # p.name^) DO
IF name = p.name^ THEN p := p.left
ELSE p := p.right
END

END;
RETURN p

END Search;

PROCEDURE (t: Tree) Write*;
BEGIN
IF t.left # NIL THEN t.left.Write END;
Texts.WriteString(w, t.name^);
Texts.WriteLn(w);
Texts.Append(Oberon.Log, w.buf);
IF t.right # NIL THEN t.right.Write END

END Write;

PROCEDURE NewTree* (): Tree;
VAR t: Tree;

BEGIN
NEW(t); NEW(t.name, 1);
t.name[0] := 0X;
t.left := NIL; t.right := NIL;
RETURN t

END NewTree;

22

BEGIN
Texts.OpenWriter(w)

END Trees.

12 Definition of terms

Integer types SHORTINT, INTEGER, LONGINT
Real types REAL, LONGREAL
Numeric types integer types, real types

12.0.3 Same types

Two variables a and b with types Ta and Tb are of the same type if

1. Ta and Tb are both denoted by the same type identifier, or

2. Ta is declared to equal Tb in a type declaration of the form Ta = Tb, or

3. a and b appear in the same identifier list in a variable, record field, or
formal parameter declaration and are not open arrays.

12.0.4 Equal types

Two types Ta and Tb are equal if

1. Ta and Tb are the same type, or

2. Ta and Tb are open array types with equal element types, or

3. Ta and Tb are procedure types whose formal parameter lists match.

12.0.5 Type inclusion

Numeric types include (the values of) smaller numeric types according to the
following hierarchy

LONGREAL ⊇ REAL ⊇ LONGINT ⊇ INTEGER ⊇ SHORTINT

12.0.6 Type extension (base type)

Given a type declaration Tb = RECORD (Ta)... END, Tb is a direct extension
of Ta, and Ta is a direct base type of Tb. A type Tb is an extension of a type Ta

(Ta is a base type of Tb) if

1. Ta and Tb are the same types, or

2. Tb is a direct extension of an extension of Ta

If Pa = POINTER TO Ta and Pb = POINTER TO Tb, Pb is an extension of Pa

(Pa is a base type of Pb) if Tb is an extension of Ta.

23

12.0.7 Assignment compatible

An expression e of type Te is assignment compatible with a variable v of type
Tv if one of the following conditions hold:

1. Te and Tv are the same type;

2. Te and Tv are numeric types and Tv includes Te;

3. Te and Tv are record types and Te is an extension of Tv and the dynamic
type of v is Tv ;

4. Te and Tv are pointer types and Te is an extension of Tv;

5. Tv is a pointer or a procedure type and e is NIL;

6. Tv is ARRAY n OF CHAR, e is a string constant with m characters, and
m < n;

7. Tv is a procedure type and e is the name of a procedure whose formal
parameters match those of Tv.

12.0.8 Array compatible

An actual parameter a of type Ta is array compatible with a formal parameter
f of type Tf if

1. Tf and Ta are the same type, or

2. Tf is an open array, Ta is any array, and their element types are array
compatible, or

3. Tf is ARRAY OF CHAR and a is a string.

12.0.9 Expression compatible

For a given operator, the types of its operands are expression compatible if
they conform to the following table (which shows also the result type of the
expression). Character arrays to be compared must contain 0X as a terminator.
Type T1 must be an extension of type T0:

operator first operand second operand result type
+ - * numeric numeric smallest numeric type

including both operands
/ numeric numeric smallest real type in-

cluding both operands
+ - * / SET SET SET
DIV MOD integer integer smallest integer type in-

cluding both operands
OR & ~ BOOLEAN BOOLEAN BOOLEAN

24

= # < <= > >= numeric numeric BOOLEAN
CHAR CHAR BOOLEAN
character array,
string

character array,
string

BOOLEAN

= # BOOLEAN BOOLEAN BOOLEAN
SET SET BOOLEAN
NIL, POINTER
TO T0 or T1

NIL, POINTER
TO T0 or T1

BOOLEAN

procedure type T,
NIL

procedure type T,
NIL

BOOLEAN

IN integer SET BOOLEAN
IS pointer pointer BOOLEAN

record record BOOLEAN

12.1 Matching formal parameter lists

Two formal parameter lists match if

1. they have the same number of parameters, and

2. they have either the same function result type or none, and

3. parameters at corresponding positions have equal types, and

4. parameters at corresponding positions are both either value or variable
parameters.

13 Syntax of Oberon-2

Module = MODULE ident ";" [ImportList] DeclSeq
[BEGIN StatementSeq] END ident ".".

ImportList = IMPORT [ident ":="] ident
{"," [ident ":="] ident} ";".

DeclSeq = { CONST {ConstDecl ";" }
| TYPE {TypeDecl ";"}
| VAR {VarDecl ";"}} {ProcDecl ";"
| ForwardDecl ";"}.

ConstDecl = IdentDef "=" ConstExpr.
TypeDecl = IdentDef "=" Type.
VarDecl = IdentList ":" Type.
ProcDecl = PROCEDURE [Receiver] IdentDef

[FormalPars] ";" DeclSeq [BEGIN
StatementSeq] END ident.

ForwardDecl = PROCEDURE "^" [Receiver] IdentDef
[FormalPars].

FormalPars = "(" [FPSection {";" FPSection}] ")"
[":" Qualident].

FPSection = [VAR] ident {"," ident} ":" Type.
Receiver = "(" [VAR] ident ":" ident ")".
Type = Qualident

25

| ARRAY [ConstExpr {"," ConstExpr}] OF Type
| RECORD ["("Qualident")"] FieldList

{";" FieldList} END
| POINTER TO Type
| PROCEDURE [FormalPars]

FieldList = [IdentList ":" Type].
StatementSeq= Statement {";" Statement}.
Statement = [Designator ":=" Expr

| Designator ["(" [ExprList] ")"]
| IF Expr THEN StatementSeq
{ELSIF Expr THEN StatementSeq}
[ELSE StatementSeq] END
| CASE Expr OF Case {"|" Case}

[ELSE StatementSeq] END
| WHILE Expr DO StatementSeq END
| REPEAT StatementSeq UNTIL Expr
| FOR ident ":=" Expr TO Expr

[BY ConstExpr] DO StatementSeq END
| LOOP StatementSeq END
| WITH Guard DO StatementSeq
{"|" Guard DO StatementSeq}
[ELSE StatementSeq] END

| EXIT
| RETURN [Expr]].

Case = [CaseLabels {"," CaseLabels}
":" StatementSeq].

CaseLabels = ConstExpr [".." ConstExpr].
Guard = Qualident ":" Qualident.
ConstExpr = Expr.
Expr = SimpleExpr [Relation SimpleExpr].
SimpleExpr = ["+" | "-"] Term {AddOp Term}.
Term = Factor {MulOp Factor}.
Factor = Designator ["(" [ExprList] ")"]

| number | character | string | NIL
| Set | "(" Expr ")" | " ~ " Factor.

Set = "{" [Element {"," Element}] "}".
Element = Expr [".." Expr].
Relation = "=" | "#" | "<" | "<=" | ">" | ">="

| IN | IS.
AddOp = "+" | "-" | OR.
MulOp = " * " | "/" | DIV | MOD | "&".
Designator = Qualident {"." ident | "[" ExprList "]"

| "^" | "(" Qualident ")"}.
ExprList = Expr {"," Expr}.
IdentList = IdentDef {"," IdentDef}.
Qualident = [ident "."] ident.
IdentDef = ident [" * " | "-"].

26

14 The module SYSTEM

The module SYSTEM contains certain types and procedures that are necessary
to implement low-level operations particular to a given computer and/or imple-
mentation. These include for example facilities for accessing devices that are
controlled by the computer, and facilities to break the type compatibility rules
otherwise imposed by the language definition. It is strongly recommended to
restrict their use to specific modules (called low-level modules). Such modules
are inherently non-portable, but easily recognized due to the identifier SYS-
TEM appearing in their import list. The following specifications hold for the
implementation of Oberon-2 on the Ceres computer.

Module SYSTEM exports a type BYTE with the following characteristics:
Variables of type CHAR or SHORTINT can be assigned to variables of type
BYTE. If a formal variable parameter is of type ARRAY OF BYTE then the
corresponding actual parameter may be of any type.

Another type exported by module SYSTEM is the type PTR. Variables of
any pointer type may be assigned to variables of type PTR. If a formal variable
parameter is of type PTR, the actual parameter may be of any pointer type.

The procedures contained in module SYSTEM are listed in the following
tables. Most of them correspond to single instructions compiled as in-line code.
For details, the reader is referred to the processor manual. v stands for a
variable, x, y, a, and n for expressions, and T for a type.

14.0.1 Function procedures

Name Argument types Result type Function

ADR(v) any LONGINT address of variable v
BIT(a,n) a: LONGINT n:

integer
BOOLEAN bit n of Mem[a]

CC(n) integer constant BOOLEAN condition n (0 ≤ n ≤ 15)
LSH(x,n) x: integer,

CHAR, BYTE;
n: integer

type of x logical shift

ROT(x,n) x: integer,
CHAR, BYTE;
n: integer

type of x rotation

VAL(T,x) T, x: any type T x interpreted as of type T

27

14.0.2 Proper procedures

Name Argument types Function

GET(a,v) a: LONGINT; v: any ba-
sic type, pointer, proce-
dure type

v := Mem[a]

PUT(a,x) a: LONGINT; x: any ba-
sic type, pointer, proce-
dure type

Mem[a] :=x

GETREG(n,v) n: integer constant; v: any
basic type, pointer, proce-
dure type

v := Register n

PUTREG(n,x) n: integer constant; x: any
basic type, pointer, proce-
dure type

Register n := x

MOVE(a0,a1,n) a0, a1: LONGINT; n:
integer

Mem[a1..a1+n-1] :=
Mem[a0..a0+n-1]

NEW(v,n) v: any pointer; n: integer allocate storage block of
n bytes assign its address
to v

28

Index

ABS, 20
ASH, 20

CAP, 20
CHR, 20
COPY, 20

DEC, 20

ENTIER, 20
EXCL, 20

HALT, 20

INC, 20
INCL, 20

LEN, 20
LONG, 20

MAX, 20
memory management, 7
MIN, 20

NEW (O2), 20

ODD, 20
ORD (O2), 20

SHORT, 20
SIZE, 20
standard procedures

Oberon-2, 19
SYSTEM

ADR (O2), 27
BIT, 27
CC, 27
GET, 28
GETREG, 28
LSH, 27
MOVE, 28
NEW (O2), 28
PUT, 28
PUTREG, 28
ROT, 27
VAL, 27

29

