
XDS Family of Products

Native XDS-x86
for Linux Operating System

Version 2.51

User’s Guide

http://www.excelsior-usa.com

Copyright c© 1999-2001 Excelsior, LLC. All rights reserved.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Excelsior, LLC.

Excelsior’s software and documentation have been tested and reviewed. Nevertheless, Ex-
celsior makes no warranty or representation, either express or implied, with respect to the
software and documentation included with Excelsior product. In no event will Excelsior
be liable for direct, indirect, special, incidental or consequential damages resulting from
any defect in the software or documentation included with this product. In particular, Ex-
celsior shall have no liability for any programs or data used with this product, including
the cost of recovering programs or data.

XDS is a trademark of Excelsior, LLC.

All trademarks and copyrights mentioned in this documentation are the property of their
respective holders.

Contents

1 About XDS 1
1.1 Welcome to XDS. 1
1.2 Conventions used in this manual. 2

1.2.1 Language descriptions. 2
1.2.2 Source code fragments. 2

2 Getting started 3
2.1 Using the Modula-2 compiler. 3
2.2 Using the Oberon-2 compiler. 4
2.3 Error reporting . 5
2.4 Building a program. 5
2.5 Debugging a program. 6

3 Configuring the compiler 9
3.1 System search paths. 9
3.2 Working configuration . 9
3.3 XDS memory usage. 10
3.4 Directory hierarchies. 11
3.5 XDS search paths. 12

3.5.1 Redirection file. 12
3.5.2 Regular expression. 13

3.6 Options . 14
3.7 Configuration file. 15
3.8 Filename extensions. 16
3.9 Customizing compiler messages. 17
3.10 XDS and your C compiler. 18

4 Using the compiler 19
4.1 Invoking the compiler. 19

4.1.1 Precedence of compiler options. 19
4.2 XDS compilers operation modes. 20

i

ii CONTENTS

4.2.1 COMPILE mode. 20
4.2.2 MAKE mode . 21
4.2.3 PROJECT mode. 22
4.2.4 GEN mode. 22
4.2.5 BROWSE mode . 23
4.2.6 ALL submode . 23
4.2.7 BATCH submode. 23
4.2.8 OPTIONS submode. 24
4.2.9 EQUATIONS submode. 24

4.3 Files generated during compilation. 25
4.3.1 Modula-2 compiler. 25
4.3.2 Oberon-2 compiler. 25

4.4 Control file preprocessing. 25
4.5 Project files . 27
4.6 Make strategy. 29
4.7 Smart recompilation. 30
4.8 Template files. 31

4.8.1 Using equation values. 31
4.8.2 File name construction. 32
4.8.3 Iterators. 32
4.8.4 Examples. 33

5 Compiler options and equations 35
5.1 Options . 35
5.2 Options reference. 38
5.3 Equations. 48
5.4 Equations reference. 49
5.5 Error message format specification. 56
5.6 The system module COMPILER. 57

6 Compiler messages 59
6.1 Lexical errors. 59
6.2 Syntax errors . 61
6.3 Semantic errors. 62
6.4 Symbol files read/write errors. 80
6.5 Internal errors. 82
6.6 Warnings . 83
6.7 Pragma warnings. 86
6.8 Native XDS warnings. 86
6.9 Native XDS errors . 88
6.10 XDS-C warnings . 88

CONTENTS iii

7 XDS Modula-2 91
7.1 ISO Standard compliance. 91

7.1.1 Ordering of declarations. 91
7.2 New language’s features. 92

7.2.1 Lexis . 93
7.2.2 Complex types. 93
7.2.3 Sets and packedsets. 96
7.2.4 Strings . 97
7.2.5 Value constructors. 97
7.2.6 Multi-dimensional open arrays. 99
7.2.7 Procedure type declarations. 99
7.2.8 Procedure constants.100
7.2.9 Whole number division.100
7.2.10 Type conversions. .101
7.2.11 NEW and DISPOSE.102
7.2.12 Finalization. .103
7.2.13 Exceptions. .104
7.2.14 The system module EXCEPTIONS. 106
7.2.15 The system module M2EXCEPTION. 109
7.2.16 Termination. .113
7.2.17 Coroutines .113
7.2.18 Protection. .115

7.3 Standard procedures. .116
7.4 Compatibility .118

7.4.1 Expression compatibility.118
7.4.2 Assignment compatibility.119
7.4.3 Value parameter compatibility.120
7.4.4 Variable parameter compatibility.120
7.4.5 System parameter compatibility.120

7.5 The Modula-2 module SYSTEM.121
7.5.1 System types. .123
7.5.2 System functions. .125
7.5.3 System procedures. .127

7.6 Language extensions. .128
7.6.1 Lexical extensions. .129
7.6.2 Additional numeric types.130
7.6.3 Type casting .131
7.6.4 Assignment compatibility with BYTE. 132
7.6.5 Dynamic arrays. .132
7.6.6 Constant array constructors.133
7.6.7 Set complement. .134

iv CONTENTS

7.6.8 Read-only parameters.134
7.6.9 Variable number of parameters.135
7.6.10 Read-only export. .136
7.6.11 Renaming of imported modules.137
7.6.12 NEW and DISPOSE for dynamic arrays. 137
7.6.13 HALT .138
7.6.14 ASSERT .138

7.7 Source code directives. .139
7.7.1 Inline options and equations.139
7.7.2 Conditional compilation.140

8 XDS Oberon-2 143
8.1 The Oberon environment. .143

8.1.1 Program structure. .144
8.1.2 Creating a definition.144

8.2 Last changes to the language.145
8.2.1 ASSERT .145
8.2.2 Underscores in identifiers.145
8.2.3 Source code directives.146

8.3 Oakwood numeric extensions.146
8.3.1 Complex numbers. .146
8.3.2 In-line exponentiation.148

8.4 Using Modula-2 features. .148
8.5 Language extensions. .149

8.5.1 Comments .150
8.5.2 String concatenation.150
8.5.3 VAL function .150
8.5.4 Read-only parameters.150
8.5.5 Variable number of parameters.151
8.5.6 Value constructors. .151

8.6 The Oberon-2 module SYSTEM.151
8.6.1 Compatibility with BYTE152
8.6.2 Whole system types.152
8.6.3 NEW and DISPOSE.152
8.6.4 M2ADR .153

9 Run-time support 155
9.1 Memory management. .155
9.2 Postmortem history. .156
9.3 The oberonRTS module. .158

9.3.1 Types and variables. .158

CONTENTS v

9.3.2 Garbage collection. .159
9.3.3 Object finalization .159
9.3.4 Meta-language facilities.160
9.3.5 Module iterators .162

10 Multilanguage programming 165
10.1 Modula-2 and Oberon-2. .165

10.1.1 Basic types. .165
10.1.2 Data structures. .166
10.1.3 Garbage collection. .168

10.2 Direct language specification.168
10.3 Interfacing to C. .170

10.3.1 Foreign definition module.170
10.3.2 External procedures specification. 171

10.4 Relaxation of compatibility rules.171
10.4.1 Assignment compatibility.171
10.4.2 Parameter compatibility.172
10.4.3 Ignoring function result.173

10.5 Configuring XDS for a C Compiler.174
10.5.1 Possible problems. .175

11 Optimizing a program 177

12 Low-level programming 179
12.1 Data representation. .179

12.1.1 Modula-2 INTEGER and CARDINAL types. 179
12.1.2 Modula-2 BOOLEAN type.179
12.1.3 Modula-2 enumeration types.179
12.1.4 Modula-2 set types. .181
12.1.5 Pointer, address, and opaque types. 181
12.1.6 Procedure types. .181
12.1.7 Record types. .182
12.1.8 Array types. .182

12.2 Sequence parameters. .183
12.3 Calling and naming conventions.184

12.3.1 General considerations.185
12.3.2 Open arrays. .185
12.3.3 Oberon-2 records. .185
12.3.4 Result parameter. .185
12.3.5 Nested procedures. .186
12.3.6 Oberon-2 receivers. .186

vi CONTENTS

12.3.7 Sequence parameters.186
12.3.8 Order of parameters.186
12.3.9 Stack cleanup. .187
12.3.10 Register usage. .187
12.3.11 Naming conventions.187

13 Inline assembler 189
13.1 Implemented features. .189
13.2 Basic syntax. .189
13.3 Labels. .190
13.4 Accessing Modula-2/Oberon-2 objects.190
13.5 Known problems. .191
13.6 Potential problems. .192

A Limitations and restrictions 193

Chapter 1

About XDS

1.1 Welcome to XDS

XDSTM is a family name for professional Modula-2/Oberon-2 programming sys-
tems for Intel x86-based PCs (Windows and Linux editions are available). XDS
provides an uniform programming environment for the mentioned platforms and
allows design and implementation of portable software.

The system contains both Modula-2 and Oberon-2 compilers. These languages
are often called“safe” and“modular” . The principle innovation of the language
Modula-2 was the module concept, information hiding and separate compilation.

Oberon-2 is an object-oriented programming (OOP) language based on Modula-2.
With the introduction of object-oriented facilities, extensible project design be-
came much easier. At the same time, Oberon-2 is quite simple and easy to learn
and use, unlike other OOP languages, such as C++ or Smalltalk.

The XDS Modula-2 compiler implements ISO 10514 standard of Modula-2. The
ISO standard library set is accessible from both Modula-2 and Oberon-2.

XDS is based on a platform-independent front-end for both source languages
which performs all syntactic and semantic checks on the source program. The
compiler builds an internal representation of the compilation unit in memory and
performs platform-independent analysis and optimizations. After that the com-
piler emits output code. It can be either native code for the target platform or text
in the ANSI C language. ANSI C code generation allows you to cross compile
Modula-2/Oberon-2 for almost any platform.

Moving to a new language usually means throwing away or rewriting your exist-
ing library set which could have been the work of many years. XDS allows the

1

2 CHAPTER 1. ABOUT XDS

programmer to mix Modula-2, Oberon-2, C and Assembler modules and libraries
in a single project.

XDS includes standard ISO and PIM libraries along with a set of utility libraries
and an interface to the ANSI C library set.

XDS compilers produce highly optimized 32-bit code and debug information in
the stabs format. Definition modules for the POSIX API and the entire X Win-
dow/Motif API are included in the XDS distribution package.

1.2 Conventions used in this manual

1.2.1 Language descriptions

Where formal descriptions for language syntax constructions appear, an extended
Backus-Naur Formalism (EBNF) is used.

These descriptions are set in theCourier font.

Text = Text [{ Text }] | Text.

In EBNF, brackets ”[” and ”] ” denote optionality of the enclosed expression,
braces ”{ ” and ”} ” denote repetition (possibly 0 times), and the vertival line ”| ”
separates mutually exclusive variants.

Non-terminal symbols start with an upper case letter (Statement). Terminal
symbols either start with a lower case letter (ident), or are written in all upper
case letters (BEGIN), or are enclosed within quotation marks (e.g.":=").

1.2.2 Source code fragments

When fragments of a source code are used for examples or appear within a text
they are set in theCourier font.

MODULE Example;

IMPORT InOut;

BEGIN
InOut.WriteString("This is an example");
InOut.WriteLn;

END Example.

Chapter 2

Getting started

In this and following chapters we assume that XDS is properly installed and con-
figured (See Chapter3); the default file extensions are used.

Your XDS package contains a script file, xcwork , which may be used to prepare
a working directory. For more information, consult yourreadme.1st file from
the XDS on-line documentation.

2.1 Using the Modula-2 compiler

In the working directory, use a text editor to create a file calledhello.mod, con-
taining the following text:

MODULE hello;

IMPORT InOut;

BEGIN
InOut.WriteString("Hello World");
InOut.WriteLn;

END hello.

Type

xc hello.mod

at the command prompt.xc will know that the Modula-2 compiler should be
invoked for the source file with the extension.mod. The compiler heading line

3

4 CHAPTER 2. GETTING STARTED

will appear:

XDS Modula-2 version [code generator] "hello.mod"

showing which compiler has been invoked (including its version number), which
code generator is being used (in square brackets) and what is its version, and
finally the name of the source filexc has been asked to compile.

Assuming that you have correctly typed the source file, the compiler will then
display something like

no errors, no warnings, lines 15, time 1.09

showing the number of errors, the number of source lines and the compilation
time.

Note: The XDS compiler reports are user configurable. If the lines similar to the
above do not appear, check that theDECOR equation value contains letters ‘C’
(compiler heading) and ‘R’ (report).

2.2 Using the Oberon-2 compiler

In our bilingual system the Modula-2 source code just shown is also perfectly
valid as the Oberon-2 code. XDS allows you to use Modula-2 libraries when
programming in Oberon-2 (in our case theInOut module).

As in Modula-2, this source code in Oberon-2 constitutes atop-level moduleor
program module, but in Oberon-2, there is no syntactic distinction between a top-
level module and any other module. The Oberon-2 compiler must be specifically
told that this is a top-level module by using the optionMAIN .

Copy the source file to the filehello.ob2and type:

xc hello.ob2 +MAIN

The same sequence of reports will occur as that of the Modula-2 compiler, but the
Oberon-2 compiler will also report whether a new symbol file was generated or
not. It is also possible to override the default source file extension usingM2 and
O2 options:

xc hello.mod +O2 +MAIN

In this case, the Oberon-2 compiler will be invoked regardless of the file extension.

2.3. ERROR REPORTING 5

2.3 Error reporting

If either compiler detects an error in your code, an error description will be dis-
played. In most cases a copy of the source line will also be shown with a dollar
sign"$" placed directly before the point at which the error occurred. The format
in which XDS reports errors is user configurable (See5.5), by default it includes
a file name, a position (line and column numbers) at which the error occurred, an
error type indicator, which can be [E]rror, [W]arning or [F]ault, an error number,
and an error message.

Example

* [bf.mod 26.03 W310]
* infinite loop

$LOOP

2.4 Building a program

To have you program automatically linked, invoke the compiler in the MAKE
mode (see4.2.2):

xc =m hello.mod

In this mode, the compiler processes all modules which are imported by the mod-
ule specified on the command line, compiling them if necessary. Then, if the
specified module was a program module, the linker is invoked.

However, if your program consists of several modules, we recommend to write a
project file (see4.5). In the simplest case, it consists of a single line specifying a
name of a main module:

!module hello.mod

but it may also contain various option settings (see5). The following invocation

xc =p hello.prj

will compile modules constituting the project (if required) and then execute the
linker.

Here is a more complex project file:

% debug ON

6 CHAPTER 2. GETTING STARTED

-gendebug+
-genhistory+
-lineno+
% optimize for Pentium
-cpu = pentium
% response file name
-mkfname = wlink
-mkfext = lnk
% specify an alternate template file
-template = wlink.tem
% linker command line
-link = "wlink @%s",mkfname#mkfext;
% main module of the program
!module main.mod
% additional library
!module clib3s.lib

After successful compilation of the whole project the compiler creates a linker re-
sponse file using the specified template file (see4.8) and then executes a command
line specified by theLINK equation.

2.5 Debugging a program

XDS compilers generate debug information in the stabs format and allow you
to use any debugger compatible with that format (for example, GDB). However,
the postmorten historyfeature of XDS run-time support may be used in many
cases instead of debugger. To enable this feature, the optionLINENO should
be set on for all modules in the program and the optionGENHISTORY for the
main module of the program; the program also has to be linked with debug info
included. If your program was built with the above settings, the run-time system
dumps the stack of procedure calls on an abnormal termination into a file called
errinfo.$$$. The HIS utility reads that file and outputs the call stack in terms
of procedure names and line numbers using the debug info from your program’s
executable file.

Example

MODULE test;

2.5. DEBUGGING A PROGRAM 7

PROCEDURE Div(a,b: INTEGER): INTEGER;
BEGIN

RETURN a DIV b
END Div;

PROCEDURE Try;
VAR res: INTEGER;

BEGIN
res:=Div(1,0);

END Try;

BEGIN
Try;

END test.

When this program is running, an exception is raised and the run-time sys-
tem stores the exception location and a stack of procedure calls in a file
errinfo.$$$ and displays the following message:

#RTS: unhandled exception #6: zero or negative divisor

File errinfo.$$$ created.

Theerrinfo.$$$ is not human readable. The HIS utility, once invoked, reads
it along with the debug information from your program executable and outputs the
call stack in a more usable form:

#RTS: unhandled exception #6: zero or negative divisor
--
Source file LINE OFFSET PROCEDURE
--
test.mod 5 00000F Div
test.mod 11 000037 Try
test.mod 15 000061 main

The exception was raised in line 5 oftest.mod , theDiv procedure was called
from line 11, while theTry procedure was called from line 15 (module body).

Note: In some cases, the history may be inaccurate. See9.2for further details.

8 CHAPTER 2. GETTING STARTED

Chapter 3

Configuring the compiler

3.1 System search paths

In order for your operating system to know where to find the executable binary
files which constitute the XDS package, you must set your operating system
search paths appropriately. See the Read Me First file from your on-line docu-
mentation.

3.2 Working configuration

The core part of XDS is thexc utility, which combines the project subsystem with
Modula-2 and Oberon-2 compilers, accompanied with a set of system files1:

xc.red Search path redirection file (see3.5.1)
xc.cfg Configuration file (see3.7)
xc.msg Texts of error messages (see3.9)

Being invoked,xc tries to locate thexc.red file, first in the current directory
and then in the directory wherexc is placed (so calledmaster redirection file).

Other system files are sought by paths defined inxc.red . If xc.red is not
found, or it does not contain paths for a particular system file, that file is sought in
the current directory and then in the directory where thexc utility resides.

A configuration file contains settings that are relevant for all projects. Project

1A name of a system file is constructed from the name of the compiler utility and the corre-
spondent filename extension. If you rename thexc utility, you should also rename all system
files.

9

10 CHAPTER 3. CONFIGURING THE COMPILER

specific settings are defined in project files (See4.5). A so-called template file is
used to automate the program build process (See4.8).

A redirection file, a configuration file, and, optionally, a project file and a template
file constitute a working environment for a single execution of thexc utility. The
compiler preprocesses files of all these types as described in4.4.

Portable software development is one of the main goals of XDS. To achieve that
goal, not only the source texts should be portable between various platforms, but
the environment also. XDS introduces a portable notation for file names that
may be used in all system files and on the command line. The portable notation
combines DOS-like and Unix-like notations (file names are case sensitive):

[drive_letter ":"] unix_file_name

Examples

c:/xds/bin
/mnt/users/alex/cur_pro
cur_pro/sources

Along with thebase directorymacro (See4.4) this portable notation allows to
write all environment files in a platform independent and location independent
manner.

3.3 XDS memory usage

XDS compilers are written in Oberon-22. As any other Oberon-2 program, a
compiler uses garbage collector to deallocate memory. These days, most op-
erating systems, including Windows and Linux, provide virtual memory. If an
Oberon-2 program exceeds the amount of avaiable physical memory, the garbage
collector becomes inefficient. Thus, it is important to restrict the amount of mem-
ory that can be used by an Oberon-2 program. As a rule, such restriction is set
in the configuration or project file (See theHEAPLIMIT equation). You may
also let the run-time system determine the proper heap size at run time by setting
HEAPLIMIT to zero.

Similarly, the equationCOMPILERHEAP should be used to control the amount
of memory used by a compiler itself. That equation is set in the configuration file

2We use XDS in most of our developments.

3.4. DIRECTORY HIERARCHIES 11

(xc.cfg). We recommend to set it according to the amount of physical memory
in your computer:

RAM in megabytes COMPILERHEAP
32-64 16000000
64-128 48000000

more than 128 96000000

It may be necessary to increaseCOMPILERHEAP if you get the
”out of memory ” message (F950). It is very unlikely, ifCOMPILERHEAP
is set to 16 megabytes or more. Your compilation unit should be very large to
exceed this memory limit.Note: if you are using Win32 or X Window API defi-
nition modules, setCOMPILERHEAP to at least 16 megabytes.

Vice versa, if you notice unusually intensive disk activity when compiling your
program, it may indicate that the value of theCOMPILERHEAP equation is too
large for your system configuration.

SetCOMPILERHEAP to zero if would prefer the compiler to dynamically ad-
just heap size in accordance with system load.

See9.1for more information on XDS memory management.

3.4 Directory hierarchies

XDS compilers give you complete freedom over where you store both your source
code files and any files which compilers create for you. It is advisable to work in
a project oriented fashion — i.e. to have a separate directory hierarchy for each
independent project.

Due to the re-usable nature of modules written in Modula-2 or Oberon-2, it is
wise to keep a separate directory for those files which are to be made available to
several projects. We will call such files thelibrary files.

We recommend you to have a separate working directory for each project. You
can also create subdirectories to store symbol files and generated code files. We
recommend to use the supplied script or its customized version to create all sub-
directories and, optionally, a local redirection file or a project file. Refer to the
”Read Me First” file for more information about that script.

12 CHAPTER 3. CONFIGURING THE COMPILER

3.5 XDS search paths

Upon activation, xc looks for a file calledxc.red — a redirection file. That
file defines paths by which all other files are sought. If a redirection file was
not found in the current directory, the master redirection file is loaded from the
directory where xc executable is placed.

3.5.1 Redirection file

A redirection file consists of several lines of the form3:

pattern = directory {";" directory}

pattern is a regular expression with which names of files xc has to open or
create are compared. A pattern usually contains wildcard symbols ’*’ and ’?’,
where

Symbol Matches
* any (possibly empty) string
? any single character.

For a full description of regular expressions see3.5.2.

It is also possible to have comment lines in a redirection file. A comment line
should start with the ”%” symbol.

A portable notation (see3.2) is used for directory names or paths. A path may be
absolute or relative, i.e. may consist of full names such as

/usr/myproj/def

or of names relative to the current directory, such as

src/common

denoting the directorysrc/common which is a subdirectory of the current di-
rectory. A single dot as a pathname represents the current directory, a double
dot represents the parent, i.e. the directory which has the current directory as a
subdirectory.

The base directory macro$! can be used in a directory name. It denotes the path
to the redirection file. If the redirection file is placed in the/usr/alex directory
then$!/sym denotes the/usr/alex/sym directory, whereas$!/.. denotes
the/usr directory.

3See also4.4

3.5. XDS SEARCH PATHS 13

For any file, its name is sequentially matched with a pattern of each line. If a
match was found, the file is sought in the first of the directories listed on that line,
then in the second directory, and so on until either the file is found, or there are no
more directories to search or there are no more patterns to match.

If xc could not locate a file which is needed for correct operation, e.g. a necessary
symbol file, it terminates with an appropriate error message.

When creating a file,xc also uses redirection, and its behavior is determined by
theOVERWRITE option. If the option was set ON,xc first searches for the file
it is about to create using redirection. Then, if the file was found,xc overwrites
it. If no file of the same name as the one whichxc needs to create was found or
theOVERWRITE option was set OFF, then the file is be created in the directory
which appears first in the search path list which pattern matched the filename.

If no pattern matching a given filename can be found in thexc.red file, then the
file will be read from (or written to) the current working directory.

Note: If a pattern matching a given filename is found thenxc will not look into
the current directory, unless it is explicitly specified in the search path.

The following entry inxc.red would be appropriate for searching for the symbol
files (provided that symbol files have the extension.sym).

*.sym=sym;/usr/xds/sym;.

Given the above redirection, the compiler will first search for symbol files in the
directorysym which is a subdirectory of the current working directory; then in the
directory storing the XDS library symbol files and then in the current directory.

Example of a redirection file:

xc.msg = /xds/bin
*.mod = mod
*.def = def
*.ob2 = oberon
*.sym = sym; /xds/sym/x86

3.5.2 Regular expression

A regular expression is a string containing certain special symbols:

14 CHAPTER 3. CONFIGURING THE COMPILER

Sequence Denotes
* an arbitrary sequence of any characters, possibly empty

(equivalent to{\000-\377} expression)
? any single character

(equivalent to[\000-\377] expression)
[...] one of the listed characters
{...} an arbitrary sequence of the listed characters, possibly empty
\nnn the ASCII character with octal codennn , where n is[0-7]

& the logical operation AND
| the logical operation OR
ˆ the logical operation NOT

(...) the priority of operations

A sequence of the forma-b used within either[] or {} brackets denotes all
characters froma to b.

Examples

*.def
all files which extension is.def

project.*
files which name isproject with an arbitrary extension

.def|.mod
files which extension is either.def or .mod

{a-z }*X.def
files starting with any sequence of letters, ending in one final ”X” and having
the extension.def .

3.6 Options

A rich set ofxc options allows one to control the source language, code generation
and internal limits and settings. We distinguish between boolean options (or just
options) and equations. Anoptioncan be set ON (TRUE) or OFF (FALSE), while
anequationvalue is a string. In this chapter we describe only the syntax of setup
directive. The full list ofxc options and equations is provided in the Chapter5.

Options and equations may be set in a configuration file (see3.7), on the command
line (see4.2), in a project file (see4.5)), and in the source text (see7.7).

3.7. CONFIGURATION FILE 15

The same syntax of a setup directive is used in configuration and project files and
on the command line. The only difference is that arbitrary spaces are permitted in
files, but not on the command line. Option and equation names are case indepen-
dent.

SetupDirective = SetOption
| SetEquation
| DeclareOption
| DeclareEquation
| DeclareSynonym

SetOption = ’-’ name (’+’| ’-’)
SetEquation = ’-’ name ’=’ [value]
DeclareOption = ’-’ name ’:’ [’+’ | ’-’]
DeclareEquation = ’-’ name ’:=’ [value]
DeclareSynonym = ’-’ name ’::’ name

All options and equations used byxc are predeclared.

TheDeclareSynonym directive allows one to use a different name (e.g. shorter
name) for an option or equation.

The old version ofSetOption is also supported for convenience:

OldSetOption = ’+’ name | ’-’ name

Examples

Directive Meaning
-M2Extensions+ M2EXTENSION is set ON
-Oberon=o2 OBERON is set to"o2"
-debug: DEBUG is declared and set OFF
-Demo:+ DEMO is declared and set ON
-Vers:=1.0 VERS is declared and set to"1.0"
-A::genasm A is declared as a synonym forGENASM
+m2extensions M2EXTENSIONS is set OFF

3.7 Configuration file

A configuration file can be used to set the default values of options and equations
(see Chapter5) for all projects (or a set of projects). A non-empty line of a config-
uration file may contain a single compiler option or equation setup directive (see

16 CHAPTER 3. CONFIGURING THE COMPILER

3.6) or a comment. Arbitrary spaces are permitted. The ”%” character indicates a
comment; it causes the rest of a line to be discarded.Note: the comment character
can not be used when setting an equation.

The master configuration file, placed along with thexc utility, usually contains
default settings for the target platform and declarations of platform-specific op-
tions and equations, which may be used in project and template files.

% this is a comment line
% Set equation:

- BSDef = df
% Set predeclared options:

- RangeCheck - % turn range checks off
- M2EXTENSIONS + % allow Modula-2 extensions

% Declare new options:
-iPentium:+
-i80486:-
-i80386: % is equal to -i80386:-

% Declare synonym:
-N :: checknil
-N % disallow NIL checks

% end of configuration file

Figure 3.1: A sample configuration file

3.8 Filename extensions

xc allows you to define what you want to be the standard extensions for each
particular type of file. For instance, you may prefer your Oberon-2 source code
texts to end in.o2 instead of.ob2.

We recommend to either use the traditional extensions or at least the extensions
which describe the kind of file they refer to, and keep same extensions across all
your projects. For example, use.def and .mod for Modula-2 modules,.ob2 for
Oberon-2 modules, etc.

Certain other factors must also influence your decisions. Traditionally, Oberon-2
pseudo-definition modules (as created by a browser) are extended with a.def.
With XDS, this may conflict with the extension used for Modula-2 definition mod-
ules. Therefore, the XDS browser (see4.2.5) uses the extension.odf by default.

3.9. CUSTOMIZING COMPILER MESSAGES 17

The following filename extensions are usually defined in the configuration file:

DEF extension for Modula-2 definition modules
MOD extension for Modula-2 implementation modules
OBERON extension for Oberon-2 modules
BSDEF extension for Oberon-2 pseudo definition modules
CODE extension for generated code files
SYM extension for symbol files

See Table5.5for the full list of file extensions.

Example (file extension entries in xc.cfg):

-def = def
-mod = mod
-oberon = ob2
-sym = sym

3.9 Customizing compiler messages

The filexc.msg contains texts of error messages in the form

number text

The following is an extract from xc.msg:

001 illegal character
002 comment not closed; started at line %d
...
042 incompatible assignment
...

Some messages contain format specifiers for additional arguments. In the above
example, the message 002 contains a%dspecifier used to print a line number.

To use a language other than English for compiler messages it is sufficient to
translate xc.msg, preserving error numbers and the order of format specifiers.

18 CHAPTER 3. CONFIGURING THE COMPILER

3.10 XDS and your C compiler

XDS allows C object modules and libraries to be used in your projects. Differ-
ent C compilers use different alignment, naming and calling conventions.AT-
TENTION! Since XDS libraries on linux are built through GCC compiler it is
absolutely neccesaryto configure XDS for GCC. See10.5for more details.

Chapter 4

Using the compiler

4.1 Invoking the compiler

The XDS Modula-2 and Oberon-2 compilers are combined together with the make
subsystem and an Oberon-2 browser into a single utility,xc . When invoked with-
out parameters, the utility outputs a brief help information.

xc is invoked from the command line of the following form

xc { mode | option | name }

wherename, depending on the operationmode can be a module name, a source
file name, or a project file name. See4.2for a full description of operation modes.

option is a compiler setup directive (See3.6). All options are applied to all
operands, notwithstanding their relative order on the command line. On some
platforms, it may be necessary to enclose setup directives in quotation marks:

xc hello.mod ’-checkindex+’

See Chapter5 for the list of all compiler options and equations.

4.1.1 Precedence of compiler options

Thexc utility receives its options in the following order:

1. from a configuration filexc.cfg (See3.7)

2. from the command line (See4.2)

3. from a project file (if present) (See4.5)

19

20 CHAPTER 4. USING THE COMPILER

4. from a source text (not all options can be used there) (See7.7)

At any point during operation, the last value of an option is in effect. Thus, if the
equationOBERON was set to.ob2 in a configuration file, but then set to.o2 on
the command line, the compiler will use.o2as the default Oberon-2 extension.

4.2 XDS compilers operation modes

XDS Modula-2/Oberon-2 compilers have the following operation modes:
Mode Meaning
COMPILE Compile all modules given on the command line
PROJECT Make all projects given on the command line
MAKE Check dependencies and recompile
GEN Generate makefile for all projects
BROWSE Extract definitions from symbol files
HELP Print help and terminate

Both the PROJECT and MAKE modes have two optional operation submodes:
BATCH (see4.2.7) and ALL (see4.2.6). Two auxiliary operation submodes —
options (see4.2.8) and EQUATIONS (see4.2.9) can be used to inspect the set of
compiler options and equations and their values.

On the command line, the compiler mode is specified with the ”=” symbol fol-
lowed by a mode name. Mode names are not case sensitive, and specifying an
unique portion of a mode name is sufficient, thus

=PROJECTis equivalent to=p
=BROWSEis equivalent to=Bro

Operation modes and options can be placed on the command line in arbitrary
order, so the following two command lines are equivalent:

xc =make hello.mod =all -checknil+
xc -checknil+ =a =make hello.mod

4.2.1 COMPILE mode

xc [=compile] { FILENAME | OPTION }

COMPILE is the default mode, and can be invoked simply by supplyingxc with
a source module(s) to compile. Ifxc is invoked without a given mode, COMPILE
mode is assumed. In order to determine which compiler should be used,xc looks

4.2. XDS COMPILERS OPERATION MODES 21

at the extensions of the given source files. The default mapping of extensions is
given below :

.mod - Modula-2 implementation module

.def - Modula-2 definition module

.ob2 - Oberon-2 module

For example:

xc hello.mod

will invoke the Modula-2 compiler, whereas:

xc hello.ob2

will invoke the Oberon-2 compiler.

The user is able to reconfigure the extension mapping (See3.8). It is also possible
to override it from the command line using the optionsM2 andO2:

xc hello.mod +o2 (* invokes O2 compiler *)
xc hello.ob2 +m2 (* invokes M2 compiler *)

Note: In the rest of this manual, the COMPILE mode also refers to any case
in which the compilercompilesa source file, regardless of the actually specified
mode (which can be COMPILE, MAKE, or PROJECT). For instance, an option or
equation, which is stated to affect the compiler behaviour in the COMPILE mode,
is relevant to MAKE and PROJECT modes as well.

4.2.2 MAKE mode

xc =make [=batch] [=all] { FILENAME | OPTION }

In the MAKE mode the compiler determines module dependencies usingIMPORT
clauses and then recompiles all necessary modules. Starting from the files on the
command line, it tries to find an Oberon-2 module or a definition and implemen-
taion module for each imported module. It then does the same for each of the
imported modules until all modules are located. Note that a search is made for
source files only. If a source file is not found, the imported modules will not be
appended to the recompile list. See section4.6for more details.

When all modules are gathered, the compiler performs an action according to the
operation submode. If the BATCH submode (see4.2.7) was specified, it creates a
batch file of all necessary compilations, rather than actually compiling the source
code.

22 CHAPTER 4. USING THE COMPILER

If the ALL submode (see4.2.6) was specified, all gathered files are recompiled,
otherwise XDS recompiles only the necessary files. Thesmart recompilational-
gorithm is described in4.7.

Usually, a Modula-2 program module or an Oberon-2 top-level module is spec-
ified on the command line. In this case, if theLINK equation is set in either
configuration file orxc command line, the linker will be invoked automatically in
case of successful compilation. This feature allows you to build simple programs
without creating project files.

4.2.3 PROJECT mode

xc =project [=batch] [=all] { PROJECTFILE | OPTION }

The PROJECT mode is essentially the same as the MAKE mode except that the
modules to be ‘made’ are provided in a project file. A project file specifies a set of
options and a list of modules. See4.5 for further details. As in the MAKE mode,
ALL (see4.2.6) and BATCH (see4.2.7) submodes can be used.

If a file extension of a project file is omitted, XDS will use an extension given by
the equationPRJEXT (.prj by default).

It may be necessary to compile a single module in the environment specified in a
project file. It can be accomplished in the COMPILE operation mode using with
thePRJ equation:

xc -prj=myproject MyModule.mod

See also

• MAKE operation mode:4.2.2

• Make strategy:4.6

• Smart recompilation:4.7

4.2.4 GEN mode

xc =gen { PROJECTFILE | OPTION }

The GEN operation mode allows one to generate a file containing information
about your project. The most important usage is to generate a linker response file
(See2.4).

4.2. XDS COMPILERS OPERATION MODES 23

This operation mode can also be used to obtain additional information about your
project, e.g. a list of all modules, import lists, etc.

A so-called template file, specified by theTEMPLATE equation, is used in this
mode. A template file is a text file, some lines of which are marked with a certain
symbol. All the lines which are not marked are copied to the output file verbatim.
The marked lines are processed in a special way. See4.8for more information.

The compiler creates a file with a name specified by the equationMKFNAME . If
the equation is empty, the project file name is used. A file name is then concate-
nated with the extension specified by the equationMKFEXT .

4.2.5 BROWSE mode

xc =browse { MODULENAME | OPTION }

The BROWSE operation mode allows one to generate a pseudo definition module
for an Oberon-2 module. In this mode, the compiler reads a symbol file and pro-
duces a file which contains declarations of all objects exported from the Oberon-2
module, if a format resembling Modula-2 definition modules.

The configuration optionBSDEF specifies the extension of a generated file. If
this option is not set, then the default extension (.odf) will be used.

OptionsBSCLOSURE andBSREDEFINE can be used to control the form of a
generated file.Note: theBSTYLE equation (described in8.1.2) is ignored in this
operation mode, and the browse style is always set to DEF.

TheMAKEDEF option (See8.1.2) provides an alternative method of producing
pseudo definition modules, preserving so-calledexportedcomments if necessary.

4.2.6 ALL submode

In both PROJECT and MAKE modes, the compiler checks the time stamps of
the files concerned and recompiles only those files that are necessary (See4.7).
If the ALL submode was specified, the time stamps are ignored, and all files are
compiled.

4.2.7 BATCH submode

In the BATCH submode, the compiler creates a batch file of all necessary compi-
lations, rather than actually calling the compilers and compiling the source code.

24 CHAPTER 4. USING THE COMPILER

A batch file is a sequence of lines beginning with the compiler name, followed by
module names to recompile.

The compiler creates a batch file with a name determined by either:

1. The compiler optionBATNAME

2. The project file name (if given)

3. The nameout (if the name could not be determined by the above).

The name is then concatenated with the batch file extension specified by the equa-
tion BATEXT (.bat by default).

See also

• optionLONGNAME (5.1)

• equationBATWIDTH (5.3)

4.2.8 OPTIONS submode

The OPTIONS submode allows you to inspect the values of options which are
set in the configuration file, project file and on the command line. It can be used
together with COMPILE (see4.2.1), MAKE (see4.2.2), and PROJECT (see4.2.3)
modes.

The following command line prints (to the standard output) the list of all defined
options, including all pre-declared options, all options declared in the configura-
tion file, in the project filemy.prj and on the command line (xyz option):

xc =options -prj=my.prj -xyz:+

In the PROJECT mode options are listed for each project file given on the com-
mand line.

See also the EQUATIONS submode.

4.2.9 EQUATIONS submode

The EQUATIONS submode allows you to inspect the values of equations which
are set in the configuration file, project file and on the command line. It can be

4.3. FILES GENERATED DURING COMPILATION 25

used together with COMPILE (see4.2.1), MAKE (see4.2.2), and PROJECT (see
4.2.3) modes.

See also the OPTIONS submode.

4.3 Files generated during compilation

When applied to a file which contains a modulename, the compilers produce the
following files.

4.3.1 Modula-2 compiler

When applied to a definition module, the Modula-2 compiler produces asymbol
file (name.sym). The symbol file contains information required during compila-
tion of a module which imports the modulename.

When applied to an implementation module or a top level module, the Modula-2
compiler produces an object file (name.o).

4.3.2 Oberon-2 compiler

For all compiled modules, the Oberon-2 compiler produces asymbol file
(name.sym) and an object file (name.o). The symbol file (name.sym) contains
information required during compilation of a module which imports the module
name. If the compiler needs to overwrite an existing symbol file, it will only do
so if theCHANGESYM option is set ON.

Examples

Command line Generated files
xc Example.def Example.sym
xc Example.mod Example.o
xc Win.ob2 +CHANGESYM Win.sym

Win.o

4.4 Control file preprocessing

An XDS compiler may read the following control files during execution:

26 CHAPTER 4. USING THE COMPILER

• a redirection file (see3.5.1)

• a configuration file (see3.7)

• a project file (see4.5)

• a template file (see4.8)

All these files are preprocessed during read according to the following rules:

A control file is a plain text file containing a sequence of lines. The backslash
character ("\") at the end of a line denotes its continuation.

The following constructs are handled during control file preprocessing:

• macros of the kind$(name) . A macro expands to the value of the equation
nameor, if it does not exist, to the value of the environment variablename.

• thebase directorymacro ($!) This macro expands to the directory in which
the file containing it resides.

• a set of directives, denoted by the exclamation mark ("!") as a first non-
whitespace character on a line.

A directive has the following syntax (all keywords are case independent):

Directive = "!" "NEW" SetOption | SetEquation
| "!" "SET" SetOption | SetEquation
| "!" "MESSAGE" Expression
| "!" "IF" Expression "THEN"
| "!" "ELSIF" Expression "THEN"
| "!" "ELSE"
| "!" "END".

SetOption = name ("+" | "-").
SetEquation = name "=" string.

TheNEWdirective declares a new option or equation. TheSETdirective changes
the value of an existent option or equation. TheMESSAGEdirective prints
Expression value to the standard output. TheIF directive allows to process or
skip portions of files according to the value ofExpression . IF directives may
be nested.

4.5. PROJECT FILES 27

Expression = Simple [Relation Simple].
Simple = Term { "+" | OR Term }.
Relation = "=" | "#" | "<" | ">".
Term = Factor { AND Factor }.
Factor = "(" Expression ")".

| String
| NOT Factor
| DEFINED name
| name.

String = "’" { character } "’"
| ’"’ { character } ’"’.

An operand in an expression is either string, equation name, or option name. In
the case of equation, the value of equation is used. In the case of option, a string
"TRUE" or "FALSE" is used. The"+" operator denotes string concatenation.
Relation operators perform case insensitive string comparison. TheNOToperator
may be applied to a string with value"TRUE" or "FALSE" . The DEFINED
operator yields"TRUE" if an option or equationname is declared and"FALSE"
otherwise.

See also section5.6.

4.5 Project files

A project file has the following structure:

{SetupDirective}
{!module {FileName}}

Setup directives define options and equations that all modules which constitute
the project should be compiled with. See also3.6and4.4.

Every line in a project file can contain only one setup directive. The character
”%” indicated a comment; it causes the rest of a line to be discarded.Note: the
comment character can not be used in a string containing equation setting.

EachFileName is a name of a file which should be compiled, linked, or oth-
erwise processed when a project is being built, e.g. a source file, an additional
library, a resource file (on Windows), etc. The compiler processes only Modula-2
and Oberon-2 source files. The type of a file is determined by its extension (by de-
fault Modula-2/Oberon-2 source files extension is assumed). Files of other types
are taken into account only when a template file is processed (see4.8).

28 CHAPTER 4. USING THE COMPILER

The compiler recursively scans import lists of all specified Modula-2/Oberon-2
source modules and builds the full list of modules used in the project. Thus,
usually, a project file for an executable program would contain a single!module
directive for the file which contains the main program module and, optionally,
several!module directives for non-source files.

At least one!module directive should be specified in a project file.

A project file can contain severalLOOKUP equations, which allow you to define
additional search paths.

XDS compilers give you complete freedom over where to set options, equations
and redirection directives. However, it is recommended to specify only those
settings in the configuration and redirection files which are applied to all your
projects, and use project files for all project-specific options and redirection direc-
tives.

-lookup = *.mod = mod
-lookup = *.sym = sym; $(XDSDIR)/sym/C
% check project mode
!if not defined mode then

% by default use debug mode
!new mode = debug

!end
% report the project mode
!message "Making project in the " + mode + " mode"
% set options according to the mode
!if mode = debug then

- gendebug+
- checkrange+

!else
- gendebug-

!fi
% specify template file
- template = $!/templates/watcom.tem
!module hello
!module hello.res

Figure 4.1: A Sample Project File

Given the sample project file shown on Figure4.1, the compiler will search for
files with .mod and.sym extensions using search paths specified in the project
file beforepaths specified in a redirection file.

4.6. MAKE STRATEGY 29

A project file is specified explicitly in the PROJECT (see4.2.3) and GEN (see
4.2.4) operation modes. In these modes, all options and equations are set and then
the compiler proceeds through the module list to gather all modules constituting
a project (See4.6).

In the MAKE (see4.2.2) and COMPILE (see4.2.1) operation modes, a project file
can be specified using thePRJ equation. In this case, the module list is ignored,
but all options and equations from the project file are set.

The following command line forces the compiler to compile the mod-
ule hello.mod using options and equations specified in the project file
hello.prj :

xc hello.mod -prj=hello.prj

4.6 Make strategy

This section concerns MAKE (see4.2.2), PROJECT (see4.2.3), and GEN (see
4.2.4), operation modes. In these modes, an XDS compiler builds a set of all
modules that constitute the project, starting from the modules specified in a project
file (PROJECT and GEN) or on the command line (MAKE).

The MAKE mode is used in the following examples, but the comments also apply
to the PROJECT and GEN modes.

First, the compiler tries to find all given modules according to the following strat-
egy:

• If both filename extension and path are present, the compiler checks if the
given file exists.

xc =make mod/hello.mod

• If only an extension is specified, the compiler seeks the given file using
search paths.

xc =make hello.mod

• If no extension is specified, the compiler searches for files with the given
name and the Oberon-2 module extension, Modula-2 implementation mod-
ule extension, and Modula-2 definition module extension.

xc =make hello

An error is raised if more than one file was found, e.g. if bothhello.ob2
andhello.mod files exist.

30 CHAPTER 4. USING THE COMPILER

Starting from the given files, the compiler tries to find an Oberon-2 source module
or Modula-2 definition and implementation modules for each imported module.
It then tries to do the same for each of the imported modules until all the possi-
ble modules are located. For each module, the compiler checks correspondence
between the file name extension and the kind of the module.

4.7 Smart recompilation

In the MAKE (see4.2.2) and PROJECT (see4.2.3) modes, if the ALL (see4.2.6)
submode was not specified, an XDS compiler performssmart recompilationof
modules which are inconsistent with the available source code files. The complier
uses file modification time to determine which file has been changed. For each
module the decision (to recompile or not) is made only after the decision is made
for all modules on which it depends. A source file is (re)compiled if one or more
of the following conditions is true:

Modula-2 definition module

• the symbol file is missing

• the symbol file is present but its modification date is earlier than that
of the source file or one of the imported symbol files

Modula-2 implementation module

• the code file is missing

• the code file is present but the file modification date is earlier than that
of the source file or one of the imported symbol files (including its
own symbol file)

Modula-2 program module

• the code file is missing

• the code file is present but the file modification date is earlier than that
of the source file or one of the imported symbol files

Oberon-2 module

• the symbol file is missing

4.8. TEMPLATE FILES 31

• the symbol file is present but the modification date is earlier than that
of one of the imported symbol files

• the code file is missing

• the code file is present but the file modification date is earlier than that
of the source file or one of the imported symbol files

When theVERBOSE option is set ON, the compiler reports a reason for recompi-
lation of each module.Note: if an error occured during compilation of a Modula-2
definition module or an Oberon-2 module, all its client modules are not compiled
at all.

4.8 Template files

A template fileis used to build a ”makefile” in the PROJECT (see4.2.3) and GEN
(see4.2.4) operation modes, if the optionMAKEFILE is ON1.

The compiler copies lines from a template file into the output file verbatim, except
lines marked as requiring further attention. A single character (attention mark) is
specified by the equationATTENTION (default is ’!’)

A template file is also subject to preprocessing (see4.4).

A marked line (or template) has the following format2:

Template = { Sentence }.
Sentence = Item { "," Item } ";" | Iterator.
Item = Atom | [Atom | "ˆ"] "#" [Extension].
Atom = String | name.
String = ’"’ { character } ’"’

| "’" { character } "’".
Extension = [">"] Atom.
Iterator = "{" Set ":" { Sentence } "}".
Set = { Keyword | String }
Keyword = DEF | IMP | OBERON | MAIN

| C | HEADER | ASM | OBJ.

nameshould be a name of an equation. Not more than three items may be used in
a sentence. A first item in a sentence is a format string, while others are arguments.

1 ”MAKEFILE” is a historical name; a linker or library manager response file may be built as
well.

2The same syntax is used in theLINK equation.

32 CHAPTER 4. USING THE COMPILER

The XDS distribution contains a template filexc.tem which can be used to pro-
duce a linker response file.

4.8.1 Using equation values

In the simplest form, a template line may be used to output a value of an equation.
For example, if the template file contains the line

! "The current project is %s.\n",prj;

and the projectprj/test.prj is processed, the output will contain the line

The current project is prj/test.prj.

Note: the line

! prj;

is valid, but may produce unexpected results under systems in which the backslash
character (”\ ”) is used as a directory names separator (e.g. OS/2 or Windows):

prj est.prj

because"\t" in a format string is replaced with the tab character. Use the fol-
lowing form instead:

! "%s",prj;

4.8.2 File name construction

The "#" operator constructs a file name from a name and an extension, each
specified as an equation name or literal string. A file is then searched for according
to XDS search paths and the resulting name is substituted. For example, if the file
useful.lib resides in the directory ’../mylibs’ and the redirection file contains
the following line:

*.lib = /xds/lib;../mylibs

the line

! "useful"#"lib"

will produce

../mylibs/useful.lib

If the modifier ">" is specified, the compiler assumes that the file being con-
structed is an output file and creates its name according to the strategy for output

4.8. TEMPLATE FILES 33

files (See3.5.1and theOVERWRITE option).

The "#" operator is also used to represent the current value of an iterator (see
4.8.3). The form in which a name or extension is omitted can be used in an
iterator only.

The form "ˆ#" may be used in a second level iterator to represent the current
value of the first level iterator.

4.8.3 Iterators

Iterators are used to generate some text for all modules from a given set. Sen-
tences inside the first level of braces are repeated for all modules of the project,
while sentences inside the second level are repeated for all modules imported into
the module currently iterated at the first level. A set is a sequence of keywords
and strings. Each string denotes a specific module, while a keyword denotes all
modules of specific kind.

The meaning of keywords is as follows:
Keyword Meaning
DEF Modula-2 definition module
IMP Modula-2 implementation module
MAIN Modula-2 program module or Oberon-2 module

marked asMAIN
OBERON Oberon module
ASM assembler source text
OBJ object file

A keyword not listed above is treated as filename extension. Sentences are re-
peated for all files with that extension which are explicitly specified in the project
file using !module directives (see4.5). This allows, for instance, additional
libraries to be specified in a project file:

sample.prj:

-template = mytem.tem
!module Sample.mod
!module mylib.lib

mytem.tem:
. . .

! "%s","libxds"#"lib"

34 CHAPTER 4. USING THE COMPILER

! { lib: "+%s",#; }
! "\n"

. . .

generated file:
. . .

d:\xds\lib\x86\libxds.lib+mylib.lib
. . .

4.8.4 Examples

Consider a sample project which consists of a program moduleA, which imports
modulesB andC, andB, in turn, importsD (all modules are written in Modula-2):

A
/ \

B C
|
D

The following examples illustrate template files usage:

This template line lists all project modules for which source files are available:

! { imp oberon main: "%s ",#; }

For the sample project, it would generate the following line:

A.mod B.mod C.mod D.mod

To output both definition and implementation modules, the following lines may
be used:

! { def : "%s ",#; }
! { imp oberon main: "%s ",#; }

The output would be:

B.def C.def D.def A.mod B.mod C.mod D.mod

The last template line may be used to list all modules along with their import:

! { imp main: "%s\n",#; { def: " %s\n",#; } }

The output:

A.mod

4.8. TEMPLATE FILES 35

B.def
C.def

B.mod
D.def

C.mod
D.mod

36 CHAPTER 4. USING THE COMPILER

Chapter 5

Compiler options and equations

A rich set of XDS compiler options allows you to control the source language,
the generated code, and the internal limits and settings. We distinguish between
boolean options (or just options) and equations. An option can be set ON (TRUE)
or OFF (FALSE), while an equation value is a string.

5.1 Options

Options control the process of compilation, including language extensions, run-
time checks and code generation. An option can be set ON (TRUE) or OFF
(FALSE).

A compiler setup directive (See3.6) is used to set the option value or to declare a
new option.

Options may be set in a configuration file (see3.7), on the command line (see
4.2), in a project file (see4.5)). or in the source text (See7.7). At any point of
operation, the last value of an option is in effect.

Alphabetical list of all options along with their descriptions may be found in the
section5.2. See also tables5.1 (page36), 5.2 (page36), 5.3 (page37) and5.4
(page38).

37

38 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

Option Meaning
ASSERT enable ASSERT generation
CHECKDINDEX check of dynamic array bounds
CHECKDIV check for a positive divisor

(DIV and MOD)
CHECKINDEX check of static array bounds
CHECKNIL NIL pointer dereference check
CHECKPROC check of a formal procedure call
CHECKRANGE range checks

(range types and enumerations)
CHECKSET range check of set operations
CHECKTYPE dynamic type guards (Oberon-2 only)
COVERFLOW cardinal overflow check
IOVERFLOW integer overflow check

Table 5.1: Run-time checks

Option Meaning
M2ADDTYPES add SHORT and LONG types
M2BASE16 use 16-bits basic types in Modula-2
M2CMPSYM compare symbol files in Modula-2
M2EXTENSIONS enable Modula-2 extensions
O2ADDKWD enable additonal keywords in Oberon-2
O2EXTENSIONS enable Oberon-2 extensions
O2ISOPRAGMA enable ISO Modula-2 pragmas in Oberon
O2NUMEXT enable Oberon-2 scientific extensions
STORAGE enable default memory management in Modula-2
TOPSPEED enable Topspeed Modula-2-compatible extensions

Table 5.2: Source language control options

5.1. OPTIONS 39

Option Meaning
GEN C ANSI C code generation
GEN X86 code generation for 386/486/Pentium/PentiumPro

DBGNESTEDPROC generate information about procedure nesting
DBGQUALIDS generate qualified identifiers in debug info
DEFLIBS put the default library names into object files
DOREORDER perform instruction scheduling
GENASM generate assembly text
GENCPREF generate underscore prefixes
GENDEBUG generate code in the debug mode
GENFRAME always generate a procedure frame
GENHISTORY enable postmorten history
GENPTRINIT generate a local pointer initialization
LINENO generate line numbers in object files
NOHEADER disable generation of a header file
NOOPTIMIZE disable machine-independent opimizations
NOPTRALIAS ignore pointer aliasing
ONECODESEG generate one code segment
PROCINLINE enable in-line procedure expansion
SPACE favor code size over speed
VERSIONKEY append version key to the module initialization
VOLATILE declare variables as volatile

Table 5.3: Code generator control options

40 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

Option Meaning
BSCLOSURE browse control option
BSREDEFINE browse control option
CHANGESYM permission to change a symbol file
FATFS limit file names to 8.3
GCAUTO enables implicit call of the garbage collector
LONGNAME use long names in batch files
M2 force the Modula-2 compiler
MAIN mark an Oberon-2 main module
MAKEDEF generate definition
MAKEFILE generate makefile
O2 forces the Oberon-2 compiler
OVERWRITE create a file, always overwrites the old one
VERBOSE produce verbose messages
WERR treat warnings as errors
WOFF suppress warning messages
XCOMMENTS preserve exported comments

Table 5.4: Miscellaneous options

5.2 Options reference

This section lists all options in alphabetical order. Those options that may be arbi-
trarily placed in the source code are marked asinline options (See also7.7). There
are also options which can be placed in a source file, but only in a module header
(i.e. before any of the keywords"DEFINITION" , "IMPLEMENTATION", and
"MODULE") These options are marked asheader. If an option is not marked ei-
ther as header or inline, then the result of setting it in the source text is undefined.

Operation modes in which an option has effect are listed in square brackets ([])
after the option name; the character ’*’ stands for all operation modes. For ex-
ample, [browse] means that the option is used by the compiler in the BROWSE
operation mode only.

Note: in the MAKE (see4.2.2) and PROJECT (see4.2.3) modes the compiler
switches to the COMPILE (see4.2.1) mode to compile each module.

Run-time check options are ON by default. If not explicitly specified, other op-
tions are OFF (FALSE) by default.

GEN X86 [compile]

5.2. OPTIONS REFERENCE 41

The compiler sets this option ON, if the code generation for 386/486/Pen-
tium/PentiumPro is in operation.

The option can be used for compiling different text fragments for different
targets. See also7.7.2.

GEN C [compile]

The compiler sets this option ON, if the C code generation is in operation.

The option can be used for compiling different text fragments for different
targets. See also7.7.2.

ASSERT [compile] (inline)

If the option is OFF, the compiler ignores all calls of the standard procedure
ASSERT.

Warning: Ensure that allASSERTcalls in your program do not have side
effects (i.e. do not contain calls of other function procedures) before setting
this option OFF.

The option is ON by default.

BSCLOSURE [browse]

Include all visible methods.

If the option is set ON, the browser includes all defined and inherited type-
bound procedure declarations with all record declarations when creating a
pseudo-definition module. See also8.1.2.

BSREDEFINE [browse]

Include all redefined methods.

If the option is set ON, the browser includes original definitions of any
overwritten type-bound procedures with record declarations. See also8.1.2.

CHANGESYM [compile] (header)

Permission to change a module interface (a symbol file).

The Oberon-2 compiler creates a temporary symbol file every time an
Oberon-2 module is compiled, compares this symbol file with the exist-
ing one and overwrites it with the new one if necessary. When the option
is OFF (by default), the compiler reports an error if interface of a module
(and, hence, its symbol file) has been changed and does not replace the old
symbol file.

42 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

Note: if the M2CMPSYM option is set, the same is valid for compilation
of a Modula-2 definition module, i.e., theCHANGESYM option should
be set ON for the compilation to succeed if a module interface has been
changed.

CHECKDINDEX [compile] (inline)

A check of dynamic array bounds.

If the option is set ON, the compiler generates index checks for dynamic
arrays (POINTER TO ARRAY OF T).

The option is ON by default.

CHECKDIV [compile] (inline)

If the option is set ON, the compiler generates a check if a divisor is positive
in DIV andMODoperators.

The option is ON by default.

CHECKINDEX [compile] (inline)

A check of static array bounds.

If the option is set ON, the compiler generates index checks for all arrays
except dynamic (See theCHECKDINDEX option).

The option is ON by default.

CHECKNIL [compile] (inline)

If the option is set ON, the compiler generates NIL checks on all pointer
dereferences.

The option is ON by default.

CHECKPROC [compile] (inline)

If the option is set ON, the compiler generates a NIL check when calling a
procedure variable.

The option is ON by default.

CHECKRANGE [compile] (inline)

If the option is set ON, the compiler generates range checks for range types
and enumerations.

The option is ON by default.

5.2. OPTIONS REFERENCE 43

CHECKSET [compile] (inline)

If the option is set ON, the compiler generates range checks for set opera-
tions (INCL , EXCL, set aggregates).

The option is ON by default.

CHECKTYPE [compile, Oberon-2 only] (inline)

If the option is set ON, the compiler generates dynamic type guards.

The option is ON by default.

COVERFLOW [compile] (inline)

If the option is set ON, the compiler generates overflow checks for all car-
dinal (unsigned) arithmetic operators.

The option is ON by default.

DBGNESTEDPROC [compile]

If this option is set ON, the compiler includes procedure nesting data into
debug information (CodeView and HLL formats only, see theDBGFMT
equation).

This is a non-standard feature, so a third party debugger would not work
correctly with an executable compiled withDBGNESTEDPROCON. For
instance, MSVC does not display local variables of nested procedures.

This option is OFF by default.

DBGQUALIDS [compile]

If the option is set ON, the compiler prefixes names of Modula-2/Oberon-2
global variable with the name of the respective module and underscore in
debug information. This feature may help you distingushing identically
named exported variables from different modules in third-party debuggers
that do not support Modula-2/Oberon-2.

This option is OFF by default.

DEFLIBS [compile]

If the option is set ON, the compiler writes the default library names to the
generated object files.

The option is ON by default.

44 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

DOREORDER [compile] (header)

Setting this option ON enables theinstruction schedulingmechanism of
the x86 code generator. It reorders CPU instructions so that independent
instructions can be executed simultaneously whenever possible.

Note: this optimization significantly slows down the compiler, but results
in a code perfomance gain of 5-15%.

FATFS [*]

Forces the compiler to limit file names to FAT ”8.3” convention.

GCAUTO [compile,top-level module only] (header)

Enables implicit calls of the garbage collector in the generated program.
The option is ignored for all modules except the top-level module of the
program. We recommend to set the option in the project or configuration
file.

See also9.1.

GENASM [compile] (header)

If this option is set ON, the compiler generates text in the assembly language
instead of object files. The only assembler supported in the current version
is GNU Assembler.

GENCPREF [compile] (header)

If the option is set ON, the compiler uses underscore as a prefix for all public
names in object files.

GENDEBUG [compile] (header)

If the option is set ON, the compiler puts debug information into an object
file.

In some cases, switching the option ON may reduce code quality.

See also theDBGFMT equation.

GENFRAME [compile] (header)

If the option is set ON, the compiler always generates a stack frame. It may
be necessary to simplify debugging.

GENHISTORY [compile] (header)

If the option is set ON, the run-time system prints a stack of procedure calls
(a file name and a line number) on abnormal termination of your program.

5.2. OPTIONS REFERENCE 45

It should be set when compiling a main module of the program. In this case
the required part of the run-time system will be added to the program. The
optionLINENO should be set for all modules in the program.

See2.5for an example.

Note: In some cases the printed list may contain incorrect lines, i.e. proce-
dures that were not called in the given context (See9.2).

GENPTRINIT [compile, Oberon-2 only] (header)

If the option is set ON, the compiler generates code for initialization of all
local pointers, including variables, record fields and array elements. Values
of all non-pointer record fields and array elements are undefined.

The option is ON by default.

IOVERFLOW [compile] (inline)

If the option is set ON, the compiler generates overflow checks of all integer
(signed) arithmetic operators.

The option is ON by default.

LINENO [compile] (header)

If the option is set ON, the compiler inserts line number information into
object files. This option should be set ON to get the postmortem history
(See theGENHISTORY option) and for debugging.

LONGNAME [make,project]

Use long names.

If the option is set ON, the compiler uses full path as a prefix for all module
names in the generated batch files. See also4.2.7.

M2 [compile]

Force the Modula-2 compiler.

If the option is set ON, the Modula-2 compiler is invoked regardless of file
extension. The option is ignored in MAKE and PROJECT modes.

M2ADDTYPES [compile,Modula-2 only] (header)

Add short and long modifications of whole types.

If the option is set ON, the compiler recognizes the typesSHORTINT,
LONGINT, SHORTCARDandLONGCARDas pervasive identifiers .

Warning: Usage of additional types may cause problems with the software
portability to other compilers.

46 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

M2BASE16 [compile,Modula-2 only] (header)

If the option is set ON, the basic typesINTEGER, CARDINAL, and
BITSET are 16 bits wide in Modula-2. By default, they are 32 bits wide.

M2CMPSYM [compile,Modula-2 only]

If the option is set ON, the Modula-2 compiler compares the symbol
file generated for a definition module with the old version exactly as the
Oberon-2 compiler does. If the symbol files are equal, the old one is
preserved, otherwise the compiler overwrites symbol file, but only if the
CHANGESYM option is set ON.

M2EXTENSIONS [compile,Modula-2 only] (header)

If the option is set ON, the compiler allows XDS Modula-2 language exten-
sions (see7.6), such as line comment (”-- ”), read-only parameters, etc., to
be used in the source code.

Warning: Extensions usage may cause problems with porting to third-party
compilers.

MAIN [compile, Oberon-2 only] (header)

Mark the Oberon-2 main module.

If the option is set ON, the compiler generates a program entry point (‘main’
function) for the Oberon-2 module (See8.1.1). Recommended to be used
in a module header.

MAKEDEF [compile,Oberon-2 only]

Forces the Oberon-2 compiler to generate a (pseudo-) definition module af-
ter successful compilation of an Oberon-2 module. The compiler preserves
the so-calledexportedcomments (i.e. comments started with ‘(** ’) if the
XCOMMENTS option is set ON.

See8.1.2.

MAKEFILE [project]

Forces the compiler to generate a makefile after successful compilation of a
project. See also4.2.4and4.8.

NOHEADER [compile,make,project] (header)

This option is used by translators to C. Native code compilers recognize but
ignore it.

5.2. OPTIONS REFERENCE 47

NOOPTIMIZE [compile] If this option is set OFF (default), the machine-
independent optimizer is invoked before code generation. Setting it ON
causes less optimized, but still not straightforward code to be produced.

NOPTRALIAS [compile] (header)

If the option is set ON, the compiler assumes that there is no pointer aliasing,
i.e. there are no pointers bounded to non-structure variables. The only way
to get a pointer to a variable is to use the low-level facilities from the module
SYSTEM. We recommend to turn this option ON for all modules except
low-level ones.Note: the code quality is better if the option is ON.

O2 [compile]

Force Oberon-2 compiler.

If the option is set ON, the Oberon-2 compiler is invoked regardless of the
file extension. The option is ignored in MAKE and PROJECT modes.

O2ADDKWD [compile,Oberon-2 only] (header)

Allows Modula-2 exceptions (see7.2.13) and finalization (see7.2.12) to
be used in Oberon-2 programs, adding keywordsEXCEPT, RETRY, and
FINALLY .

Warning: Usage of this extension will prevent your program from porting
to other Oberon-2 compilers.

O2EXTENSIONS [compile,Oberon-2 only] (header)

If the option is set ON, the compiler allows Oberon-2 language extensions
to be used (See8.5).

Warning: Extensions usage will affect portability to third-party Oberon-2
compilers.

O2ISOPRAGMA [compile,Oberon-2 only]

If the option is set ON, the compiler allows the ISO Modula-2 style pragmas
<* *> to be used in Oberon-2. See8.2.3and7.7.

Warning: Usage of ISO Modula-2 pragmas may cause problems when
porting source code to third-party Oberon-2 compilers.

O2NUMEXT [compile,Oberon-2 only] (header)

If the option is set ON, the compiler allows the Oberon-2 scientific language
extensions to be used (See8.5), includingCOMPLEXandLONGCOMPLEX
types and the in-line exponentiation operator.

48 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

Warning: Usage of additional types may cause problems with portability
to other compilers.

ONECODESEG [compile]

If the option is ON, the compiler produces only one code segment which
contains all code of a module, otherwise it generates a separate code seg-
ment for each procedure.

Warning : Setting this option ON disables smart linking.

OVERWRITE [*]

The option changes the way the compiler selects a directory for output files.
If the option is OFF, the compiler always creates a file in the directory which
appears first in the search path list correspondent to a pattern matching the
file name. Otherwise, the compiler overwrites the old file, if it does exist in
any directory of that list. See also3.5.1.

PROCINLINE [compile]

If the option is ON, the compiler tries to expand procedures in-line. In-line
expansion of a procedure eliminates the overhead produced by a procedure
call, parameter passing, register saving, etc. In addition, more optimizations
become possible because the optimizer may process the actual parameters
used in a particular call.

A procedure is not expanded in-line under the following circumstances:

• the procedure is deemed too complex or too large by the compiler.

• there are too many calls of the procedure.

• the procedure is recursive.

SPACE [compile]

If the option is set ON, the compiler performs optimizations to produce
smaller code, otherwise (by default) to produce faster code.

STORAGE [compile, Modula-2 only] (header)

If the option is set ON, the compiler uses the default memory allocation and
deallocation procedures for the standard proceduresNEWandDISPOSE.

Warning: Usage of this option may cause problems with software portabil-
ity to other compilers.

5.2. OPTIONS REFERENCE 49

VERBOSE [make,project]

If the option is set ON, the compiler will report a reason for each module
(re)compilation (See4.7).

VERSIONKEY [compile]

This option may be used to perform version checks at link time. If the option
is set ON, the compiler generates a name of a module body as composition
of

• a module name

• a string ”_BEGIN_”

• a time stamp

If a Modula-2 definition module or an Oberon-2 module imported by differ-
ent compilation units has the same version, the same name is generated for
each call of the module body. In all other cases unresolved references will
be reported at link time.

If the option is OFF, the compiler generates module body names in a form:
<module_name>_BEGIN .

Note: the option should be set when compiling a Modula-2 definition mod-
ule or an Oberon-2 module.

VOLATILE [compile] (inline)

If this option appears to be switched ON during compilation of a variable
definition, the compiler will assumes that references to that variable may
have side effects or that the value of the variable may change in a way that
can not be determined at compile time. As a result, the optimizer will not
eliminate any operation involving that variable, and changes to the value of
the variable will be stored immediately.

WERR [*] (inline)

When the optionWERRnnn(e.g.WERR301) is set ON, the compiler treats
the warningnnn (301 in the above example) as error. See the xc.msg file
for warning texts and numbers.

-WERR+forces the compiler to treat all warnings as errors.

WOFF [*] (inline)

When the optionWOFFnnn(e.g. WOFF301) is set ON, the compiler does
not report the warningnnn (301 in the above example). See the xc.msg file
for warning texts and numbers.

50 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

-WOFF+disables all warnings.

XCOMMENTS [compile,Oberon-2 only]

If the option is set ON, the browser includes so-calledexportedcomments
(i.e. comments which start with ”(** ”) into a generated pseudo definition
module.

See also8.1.2.

5.3 Equations

An equationis a pair (name,value), wherevalue is in general case an arbitrary
string. Some equations have a limited set of valid values, some may not have the
empty string as a value.

A compiler setup directive (See3.6) is used to set an equation value or to declare
a new equation.

Equations may be set in a configuration file (see3.7), on the command line (see
4.2) and in a project file (see4.5)). Some equations may be set in the source text,
at an arbitrary position (marked asinline in the reference), or only in the module
header (marked asheader). At any point of operation, the most recent value of an
equation is in effect.

Alphabetical list of all equations may be found in the section5.4. See also tables
5.5(page48), 5.6(page49), 5.7(page50)

Name Default File type
BATEXT .bat recompilation batch file
BSDEF .odf pseudo-definition file created by browser
CODE .o object file
DEF .def Modula-2 definition module
MKFEXT .mkf makefile
MOD .mod Modula-2 implementation or main module
OBERON .ob2 Oberon-2 module
OBJEXT .o object file
PRJEXT .prj project file
SYM .sym symbol file

Table 5.5: File extensions

5.4. EQUATIONS REFERENCE 51

Name Default Meaning
ALIGNMENT 4 data alignment (please read details

below)
CC GCC C compiler compatibility
CODENAME TEXT Code segment name
CPU GENERIC CPU to optimize for
DATANAME DATA data segment name
DBGFMT see desc. debug information format
ENUMSIZE 4 default size of enumeration types
GCTHRESHOLD garbage collector threshold (obso-

lete)
HEAPLIMIT 0 generated program heap limit
MINCPU 386 CPU required for execution
OBJFMT ELF object file format
SETSIZE 4 default size of small set types
STACKLIMIT 0 generated program stack limit

Table 5.6: Code generator equations

5.4 Equations reference

Operation modes in which an equation has effect are enclosed in square brackets
([]) after the equation name; the character ’*’ stands for all operation modes.
For example [browse] means that the equation is used by the compiler in the
BROWSE operation mode only.Note: the compiler switches from the MAKE
and PROJECT mode to the COMPILE mode to compile a module.

ALIGNMENT [compile] (inline)

This equation sets thedata alignment. Valid values are: 1,2,4, or 8. See
12.1.7for further details.

Warning: Since XDS libraries are built through GCC which uses 4 byte
alignment, you should always keep ALIGNMENT set to 4, unless you ex-
actly know what you are doing. See10.5for more details.

ATTENTION [project,gen]

The equation defines an attention character which is used in template files
(”!” by default). See4.8.

BATEXT [make,project,batch submode]

52 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

Name Default Meaning
ATTENTION ! attention character in template files
BATNAME out batch file name
BATWIDTH 128 maximum line width in a batch file
BSTYLE DEF browse style (See8.1.2)
COMPILERHEAP heap limit of the compiler
COMPILERTHRES compiler’s garbage collector threshold

(obsolete)
DECOR hrtp control of compiler messages
ERRFMT See5.5 error message format
ERRLIM 16 maximum number of errors
FILE name of the file being compiled
LINK linker command line
LOOKUP lookup directive
MKFNAME makefile name
MODULE name of the module being compiled
PRJ project file name
PROJECT project name
TABSTOP 8 tabulation alignment
TEMPLATE template name (for makefile)

Table 5.7: Miscellaneous equations

5.4. EQUATIONS REFERENCE 53

Sets the file extension for recompilation batch files (by default.bat). See
4.2.7.

BATNAME [make,project,batch submode]

Sets the batch file name.

The name of the project file will be used if no batch file name is explicitly
specified. See4.2.7.

BATWIDTH [make,project,batch submode]

Sets the maximum width of a line in a generated batch file (by default 128).
See4.2.7.

BSDEF [browse]

Sets the file extension for pseudo-definition modules created by the browser
(by default.odf). See4.2.5.

BSTYLE [browse]

Sets thestyleof generated pseudo-definition modules. See8.1.2.

CC [compile]

Sets the C compiler compatibility mode. The correspondent calling and
naming conventions will be used for procedures and variables declared as
["C"] .

Currently the only valid value on Linux is ”GCC”.

If the value of the equation is undefined, ”GCC” is assumed.

See10.5for more details.

CODE [*]

Sets the file extension for code files generated by the compiler (by default
.o).

CODENAME [compile] (header)

Sets name for a code segment.

COMPILERTHRES [*]

This equation is left for compatibility; it is ignored by the compiler. In ver-
sions prior to 2.50, it was used to fine tune the compiler’s garbage collector.

See also3.3.

54 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

COMPILERHEAP [*]

Sets the maximum amount of heap memory (in bytes), that can be used by
the compiler. For systems with virtual memory, we recommend to use a
value which is less than the amount of physical memory.

Setting this equation to zero forces adaptive compiler heap size adjustment
according to system load.

CPU [compile]

Specifies on which Intel x86 family representative the resulting program
will be executed optimally.

Valid values: ”386”, ”486”, ”PENTIUM”, and ”PENTIUMPRO”. The
value must be ”greater of equal” than the value of theMINCPU equation.

There is also the special value ”GENERIC”, which means that the optimizer
should not perform code transformations that maysignificantlyreduce per-
formance on a particular CPU.

DATANAME [compile] (header)

Sets name for a data segment.

DBGFMT [compile]

Sets debug information format for output object files. Valid values are
”CodeView” and ”HLL”.

DECOR [*]

The equation controls output of the xc utility. The value of equation is a
string that contains any combination of letters ”h”, ”t”, ”r”, ”p” (capital
letters are also allowed). Each character turns on output of

h header line, which contains the name and version of the compiler’s front-
end and back-end

p progress messages

r compiler report: number of errors, lines, etc.

t the summary of compilation of multiple files

By default, the equation value is ”hrt”.

DEF [*]

Sets the file extension for Modula-2 definition modules (by default.def).

5.4. EQUATIONS REFERENCE 55

ENUMSIZE [compile](inline)

Sets the default size for enumeration types in bytes (1,2, or 4). If an enu-
meration type does not fit in the current default size, the smallest suitable
size will be taken.

ENV HOST [*]

A symbolic name of the host platform.

ENV TARGET [*]

This equation is always set to a symbolic name of the target platform
(CPU/operating system).

ERRFMT [*]

Sets the error message format. See5.5for details.

ERRLIM [*]

Sets the maximum number of errors allowed for one compilation unit (by
default 16).

FILE [compile]

The compiler sets this equation to the name of the currently compiled file.
See also theMODULE equation.

GCTHRESHOLD [compile,top-level module only]

This equation is left for compatibility; it is ignored by the compiler. In
versions prior to 2.50, it was used to fine tune the garbage collector.

See also9.1.

HEAPLIMIT [compile,top-level module only]

Sets the maximum amount of heap memory, that can be allocated by the
generated program. The value is set in bytes.

Setting this equation to zero enables the run-time system to dynamically
adjust heap size according to application’s memory demands and system
load.

The equation should be set when the top-level module of the program is
compiled. We recommend to set it in a project file or the configuration file.

See also9.1.

56 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

LINK [project]

Defines a command line, which will be executed after a successful comple-
tion of a project. As a rule, the equation is used for calling a linker or make
utility.

See2.4for examples.

LOOKUP [*]

Syntax:

-LOOKUP = pattern = directory {";" directory }

The equation can be used for defining additional search paths that would
complement those set in the redirection file. A configuration or project file
may contain severalLOOKUP equations; they are also permitted on the
command line.

See also3.5.1and4.5.

MINCPU [compile]

Specifies an Intel x86 family representative which (or higher) is requried for
the resulting program to be executed.

Valid values: ”GENERIC”, ”386”, ”486”, ”PENTIUM”, and ”PEN-
TIUMPRO”. For this equation, ”GENERIC” is equivalent to ”386”. The
value of theCPU equation must be ”greater of equal” than the value of this
equation.

MKFEXT [gen]

Sets the file extension for generated makefiles (by default.mkf). See4.2.4.

MKFNAME [gen]

Sets the name for a generated makefile. See4.2.4.

MOD [*]

Sets the file extension for Modula-2 implementation and program modules
(by default.mod).

MODULE [compile]

The compiler sets this equation to the name of the currently compiled mod-
ule. See also theFILE equation.

OBERON [*]

Sets the file extension for Oberon-2 modules (by default.ob2).

5.4. EQUATIONS REFERENCE 57

OBJEXT [*]

Sets the file extension for object files (by default.o).

OBJFMT [compile]

Sets format for output object files. Valid values are ”OMF”, ”COFF” and
”ELF”.

PRJ [compile,make,project]

In the COMPILE and MAKE operation modes, the equation defines a
project file to read settings from. In the PROJECT mode, the compiler sets
this equation to a project file name from the command line. See4.2.3.

PRJEXT [compile,make,project]

Sets the file extension for project files (by default.prj). See4.2.3.

PROJECT [compile,make,project]

If a project file name is defined, the compiler sets the equation to a project
name without a file path and extension. For example, if the project file name
is prj/Work.prj , the value of the equation is set toWork. The equation
may be used, for instance, in a template file to set the name of the executable
file.

SETSIZE [compile](inline)

Sets the default size for small (16 elements or less) set types in bytes (1,2, or
4). If a set type does not fit in the current default size, the smallest suitable
size will be taken.

STACKLIMIT [compile,top-level module only]

Sets the maximum size of the stack in a generated program. The value is set
in bytes.

The equation should be set when a top-level module of a program is com-
piled. We recommend to set the option in the project or configuration file.

Note: for some linkers the stack size should be also set as a linker option.

SYM [*]

Sets the file extension for symbol files (by default.sym). See4.3.

TABSTOP [gen]

When reading text files, the compiler replaces the ASCII TAB character
with the number of spaces required to align text (by defaultTABSTOP is

58 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

equal to 8). A wrong value may cause misplaced comments in a generated
pseudo-definition module, incorrect error location in an error message, etc.
We recommend to set this equation to the number used in your text editor.

TEMPLATE [gen]

Sets a name of a template file. See4.8.

5.5 Error message format specification

The format in which XDS reports errors is user configurable through theER-
RFMT equation. Its syntax is as follows:

{ string "," [argument] ";" }

Any format specification allowed in the C procedureprintf can be used in
string .

Argument Type Meaning
line integer position in a source text
column integer position in a source text
file string name of a source file
module string module name
errmsg string message text
errno integer error code
language string Oberon-2 or Modula-2
mode string ERROR or WARNING or FAULT
utility string name of an utility

Argument names are not case sensitive. By default, the error message format
includes the following clauses:

"(%s",file; — a file name
"%d",line; — a line number
",%d",column; — a column number
") [%.1s] ",mode; — the first letter of an error mode
"%s\n",errmsg; — an error message

If a warning is reported for the filetest.mod at line 5, column 6, the generated
error message will look like this:

(test.mod 5,6) [W] variable declared but never used

5.6. THE SYSTEM MODULE COMPILER 59

5.6 The system module COMPILER

The system moduleCOMPILERprovides two procedures which allow you to use
compile-time values of options and equations in your Modula-2 or Oberon-2 pro-
gram:

PROCEDURE OPTION(<constant string>): BOOLEAN;
PROCEDURE EQUATION(<constant string>): <constant string>;

Both this procedures are evaluated at compile-time and may be used in constant
expressions.

Note: TheCOMPILERmodule is non-standard.

Examples

Printf.printf("This program is optimized for the %s CPU\n",
COMPILER.EQUATION("CPU"));

IF COMPILER.OPTION("__GEN_C__") THEN
...

END;

60 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

Chapter 6

Compiler messages

This chapter gives explanation for compiler diagnostics. For each error, an error
number is provided along with a text of error message and an explanation. An
error message can contain a format specifier in the form%dfor a number or%s
for a string. In this case, an argument (or arguments) is described on the next line.

In most cases the compiler prints a source line in which the error was found. The
position of the error in the line is marked with a dollar sign placed directly before
the point at which the error occurred.

6.1 Lexical errors

E001
illegal character

All characters within the Modula-2 or Oberon-2 character sets are acceptable.
Control characters in the range0C to 37C are ignored. All other characters, e.g.
%are invalid.

E002
comment not closed; started at line %d (line number)

This error is reported if a closing comment bracket is omitted for a comment
started at the given line.

E003
illegal number

This error is reported in the following cases:

61

62 CHAPTER 6. COMPILER MESSAGES

• a numeric constant contains a character other than a digit (0..7 for octal
constants,0..9 for decimal,0..9,A..F for hexadecimal).

• an exponent indicator is not followed by an integer

• an illegal suffix is used after a number, e.g."X" in Modula-2 or"C" or
"B" in Oberon-2.

E004
string literal not closed or too long

This error usually occurs if a closing quote is omitted or does not match the open-
ing quote. Note that a string literal is limited to a single line and its size cannot
exceed 256 characters. In Modula-2, string concatenation may be used to build
long literal strings.

F005
unexpected end of file

Input file ends before end of a module.

E006
identifier too long

Length of an identifier exceeds compiler limit (127 characters).

F010
source text read error

A read error occurs while reading source text.

E012
character constant too large (377C or 0FFX is maximum)

The meaning of this message is obvious.

E171
illegal structure of conditional compilation options

This error is reported if a structure of conditionalIF statements is broken, e.g.
there is noIF for anEND, ELSE, or ELSIF clause or there is noENDfor anIF .

E172
conditional compilation option starts with incorrect
symbol

IF , ELSIF , ELSE, ENDor identifier expected.

F173
pragma not closed; started at line %d (line number)

6.2. SYNTAX ERRORS 63

This error is reported if a closing bracket"*>" is omitted for a pragma started at
the given line.

F174
unexpected end of file while skipping; see at %d (line
number)

Input file ended while the compiler was skipping source text according to the
conditional compilation statement. It may be a result of a missed<* END *>
clause. Check the pragma at the given line.

E175
invalid pragma syntax

Check the manual for the pragma syntax.

6.2 Syntax errors

E007
identifier expected

The compiler expects an identifier at the indicated position.

E008
expected symbol %s (symbol)

The compiler expects the given symbol at the indicated position. The symbol may
be one of the following:

| ; : . [] :=
() { } , = ..
DO END OF THEN TO UNTIL IMPORT
MODULE

E081
expected start of factor

The compiler expects start offactor at the indicated position, i.e. an identifier,
literal value, aggregate, left parenthesis, etc. See the syntax of the language for
more information.

E082
expected start of declaration

64 CHAPTER 6. COMPILER MESSAGES

The compiler expects start of declaration at the indicated position, i.e. one of
the keywords: "CONST", "VAR" , "TYPE" , "PROCEDURE", "BEGIN" , or
"END" .

E083
expected start of type

The compiler expects start of a type at the indicated position. See the syntax of
the language for more information.

E085
expected expression

The compiler expects expression at the indicated position.

E086
expected start of statement

The compiler expects start of a statement at the indicated position. See the syntax
of the language for more information.

6.3 Semantic errors

E020
undeclared identifier "%s" (name)

The given identifier has no definition in the current scope.

E021
type identifier "%s" shall not be used in declaring
itself (name)

An identifier being declared as a type shall not be used in declaring that type,
unless that type is a new pointer type or a new procedure type. This error will be
reported for the following example

TYPE
Rec = RECORD

next: POINTER TO Rec;
END;

use the following declarations instead:

TYPE

6.3. SEMANTIC ERRORS 65

Ptr = POINTER TO Rec;
Rec = RECORD

next: Ptr;
END;

E022
identifier "%s" was already defined at %s[%d.%d]
(name,file name,line,column)
E028
identifier "%s" was already defined in other module
(name)

An identifier being declared is already known in the current context (the name
used has some other meaning). If a file name and text position of previous defini-
tion are known, the compiler reports error 022 otherwise 028.

E023
procedure with forward declaration cannot be a code
procedure

A forward declaration of a procedure is followed by a declaration of a code pro-
cedure.

E024
recursive import not allowed

A module imports itself. Example:

MODULE xyz;

IMPORT xyz;

END xyz.

E025
unsatisfied exported object

An object exported from a local object is not defined there. Example:

MODULE M; (* local module *)

EXPORT Foo;

END M;

66 CHAPTER 6. COMPILER MESSAGES

E026
identifier "%s" is used in its own declaration, see
%s[%d.%d]

An identfier cannot be used in its own declaration, like in:

CONST c = 1;
PROCEDURE proc;

CONST c = c + 1;
END proc;

E027
illegal usage of module identifier "%s" (module name)

An identifier denoting module cannot be used at the indicated position.

E029
incompatible types: "%s" "%s" (type,type)
E030
incompatible types

The compiler reports this error in the following cases:

• operands in an expression are not expression compatible

• an expression is not compatible with the type of the variable in an assign-
ment statement

• an actual parameter is not compatible with the type of the formal parameter
in a procedure call

The compiler reports error 29 if it can display incompatible types and error 30
otherwise.

E031
identifier does not denote a type

An identifier denoting a type is expected at the indicated position.

E032
scalar type expected

The compiler expects a scalar type (real, integer, cardinal, range, enumeration,
CHAR, or BOOLEAN).

E033
ordinal type expected

6.3. SEMANTIC ERRORS 67

The compiler expects a value, variable, or type designator of ordinal type, i.e.
CHAR, BOOLEAN, enumeration, integer, or cardinal type or a subrange of one of
those types.

E034
invalid combination of parameters in type conversion

According to the language definition this combination of parameters in a call of
the standard procedureVAL is not valid.

E035
NEW: "%s" not known in this scope (ALLOCATE or DYNALLO-
CATE)

A call to NEWis treated as a call toALLOCATE(or DYNALLOCATEfor open
arrays). The required procedure is not visible in this scope. It must be either
imported or implemented.

Note: In XDS, the default memory managemet routines may be enabled by setting
theSTORAGE option ON.

E036
DISPOSE: "%s" not known in this scope (DEALLOCATE or
DYNDEALLOCATE)

A call to DISPOSEis treated as a call toDEALLOCATE(or DYNDEALLOCATE
for open arrays). The required procedure is not visible in this scope. It must be
either imported or implemented.

Note: In xds, the default memory managemet routines may be enabled by setting
theSTORAGE option ON.

E037
procedure "%s" should be a proper procedure (procedure
name)

In Modula-2, calls ofNEWandDISPOSEare substituted by calls ofALLOCATE
and DEALLOCATE(for dynamic arrays by calls ofDYNALLOCATEand
DYNDEALLOCATE). The error is reported if one of those procedures is declared
as a function.

E038
illegal number of parameters "%s" (procedure name)

In Modula-2, calls ofNEWandDISPOSEare substituted by calls ofALLOCATE
and DEALLOCATE(for dynamic arrays by calls ofDYNALLOCATEand
DYNDEALLOCATE). The error is reported if a number of parameters in the decla-
ration of a substitution procedure is wrong.

68 CHAPTER 6. COMPILER MESSAGES

E039
procedure "%s": %s parameter expected for "%s" (proce-
dure name,”VAR” or ”value”,parameter name)

In Modula-2, calls ofNEWandDISPOSEare substituted by calls ofALLOCATE
and DEALLOCATE(for dynamic arrays by calls ofDYNALLOCATEand
DYNDEALLOCATE). The error is reported if the kind (variable or value) of the
given parameter in the declaration of a substitution procedure is wrong.

E040
procedure "%s": type of parameter "%s" mismatch

In Modula-2, calls ofNEWandDISPOSEare substituted by calls ofALLOCATE
and DEALLOCATE(for dynamic arrays by calls ofDYNALLOCATEand
DYNDEALLOCATE). The error is reported if a type of the given parameter in the
declaration of a substitution procedure is wrong.

E041
guard or test type is not an extension of variable
type

In an Oberon-2 type test (v IS T) or type quard (v(T)), T should be an exten-
sion of the static type ofv .

E043
illegal result type of procedure

A type cannot be a result type of a function procedure (language or implementa-
tion restriction).

E044
incompatible result types

A result type of a procedure does not match those of a forward definition or defi-
nition of an overriden method.

E046
illegal usage of open array type

Open arrays (ARRAY OF) usage is restricted to pointer base types, element types
of open array types, and formal parameter types.

E047
fewer actual than formal parameters

The number of actual parameters in a procedure call is less than the number of
formal parameters.

E048

6.3. SEMANTIC ERRORS 69

more actual than formal parameters

The number of actual parameters in a procedure call is greater than the number of
formal parameters.

E049
sequence parameter should be of SYSTEM.BYTE or
SYSTEM.LOC type

The only valid types of a sequence parameter areSYSTEM.BYTE and
SYSTEM.LOC.

E050
object is not array
E051
object is not record
E052
object is not pointer
E053
object is not set

The compiler expects an object of the given type at the indicated position.

E054
object is not variable

The compiler expects a variable (designator) at the indicated position.

E055
object is not procedure: %s (procedure name)

The compiler expects a procedure designator at the indicated position.

E057
a call of super method is valid in method redifinition
only

A call of a super method (type-bound procedure bound to a base type) is valid
only in a redifinition of that method:

PROCEDURE (p: P) Foo;
BEGIN

p.Fooˆ
END Foo.

E058
type-bound procedure is not defined for the base type

70 CHAPTER 6. COMPILER MESSAGES

In a call of a super method (type-bound procedure bound to a base type)p.Fooˆ
eitherFoo is not defined for a base type ofp or there is no base type.

E059
object is neither a pointer nor a VAR-parameter record

The Oberon-2 compiler reports this error in the following cases:

• in a type testv IS T or type guardv(T) , v should be a designator de-
noting either pointer or variable parameter of a record type;T should be a
record or pointer type

• in a declaration of type-bound procedure a receiver may be either a variable
parameter of a record type or a value parameter of a pointer type.

E060
pointer not bound to record or array type

In Oberon-2, a pointer base type must be an array or record type. For instance, the
declarationTYPE P = POINTER TO INTEGERis invalid.

E061
dimension too large or negative

The second parameter of the LEN function is either negative or larger than the
maximum dimension of the given array.

E062
pointer not bound to record

The Oberon-2 compiler reports this error in the following cases:

• in a type testv IS T or type guardv(T) , if v is a pointer it should be a
pointer to record

• in a type-bound procedure declaration, if a receiver is a pointer, it should be
a pointer to record

E064
base type of open array aggregate should be a simple
type

A base type of an open array aggregate (ARRAY OF T{}) cannot be a record or
array type.

E065
the record type is from another module

6.3. SEMANTIC ERRORS 71

A procedure bound to a record type should be declared in the same module as the
record type.

E067
receiver type should be exported %s (name of type)

A receiver type for an exported type-bound procedure should also be exported.

E068
this type-bound procedure cannot be called from a
record

The receiver parameter of this type-bound procedure is of a pointer type, hence
it cannot be called from a designator of a record type. Note that if a receiver
parameter is of a record type, such type-bound procedure can be called from a
designator of a pointer type as well.

E069
wrong mode of receiver type

A mode of receiver type in a type-bound procedure redefinition does not match
the previous definition.

E071
non-Oberon type cannot be used in specific Oberon-2
construct

A (object of) non-Oberon type (imported from a non-Oberon module or declared
with direct language specification) cannot be used in specific Oberon-2 constructs
(type-bound procedures, type guards, etc).

E072
illegal order of redefinition of type-bound procedures

A type-bound procedure for an extended type is defined before a type-bound pro-
cedure with the same name for a base type.

E074
redefined type-bound procedure should be exported

A redefined type-bound procedure should be exported if both its receiver type and
redefining procedure are exported.

E075
function procedure without RETURN statement

A function procedure has noRETURNstatement and so cannot return a result.

E076

72 CHAPTER 6. COMPILER MESSAGES

value is required

The compiler expects an expression at the indicated position.

E078
SIZE (TSIZE) cannot be applied to an open array

Standard functionsSIZE andTSIZE cannot be used to evaluate size of an open
array designator or type in the standard mode. If language extensions are enabled,
the compiler allows to applySIZE to an open array designator, but not type.

E087
expression should be constant

The compiler cannot evaluate this expression at compile time. It should be con-
stant according to the language definition.

E088
identifier does not match block name

An identifier at the end of a procedure or module does not match the one in the
procedure or module header. The error may occur as a result of incorrect pairing
of ENDs with headers.

E089
procedure not implemented "%s"

An exported procedure or forward procedure is not declared. This error often
occurs due to comment misplacement.

E090
proper procedure is expected

A function is called as a proper procedure. It must be called in an expression.
A function result can be ignored for procedures defined as"C" , "Pascal" ,
"StdCall" or "SysCall" only. See10.2.

E091
call of proper procedure in expression

A proper procedure is called in an expression.

E092
code procedure is not allowed in definition module

E093
not allowed in definition module

The error is reported for a language feature that can not be used in definition
module, including:

6.3. SEMANTIC ERRORS 73

• local modules

• elaboration of an opaque type

• forward declaration

• procedure or module body

• read-only parameters

E094
allowed only in definition module

The error is reported for a language feature that can be used in definition module
only, i.e. read-only variables and record fields (extended Modula-2).

E095
allowed only in global scope

The error is reported for a language feature that can be used only in the global
module scope, including:

• elaboration of an opaque type (Modula-2)

• export marks (Oberon-2)

• type-bound procedure definition (Oberon-2)

E096
unsatisfied opaque type "%s"

An opaque type declared in a definition module must be elaborated in the imple-
mentation module.

E097
unsatisfied forward type "%s"

A typeT can be introduced in a declaration of a pointer type as in:

TYPE Foo = POINTER TO T;

This typeT must then be declared at the same scope.

E098
allowed only for value parameter

The error is reported for a language feature that can be applied to value parameter
only (not toVARparameters), such as a read-only parameter mark (see7.6.8).

74 CHAPTER 6. COMPILER MESSAGES

E099
RETURN allowed only in procedure body

In Oberon-2, theRETURNstatement is not allowed in a module body.

E100
illegal order of declarations

In Oberon-2. all constants, types and variables in one declaration sequence must
be declared before any procedure declaration.

E102
language extension is not allowed %s (specification)

The error is reported for a language feature that can be used only if language exten-
sions are switched on. See optionsM2EXTENSIONS andO2EXTENSIONS.

E107
shall not have a value less than 0

The error reported if a value of a (constant) expression cannot be negative, includ-
ing:

• second operand ofDIV andMOD

• repetition count in an array constructor (expr BY count)

E109
forward type cannot be opaque

A forward typeT (declared asTYPE Foo = POINTER TO T) cannot be elab-
orated as an opaque type, i.e. declared asTYPE T = <opaque type>).

E110
illegal length, %d was expected (expected number of elements)

Wrong number of elements in an array constructor.

E111
repetition counter must be an expression of a whole
number type

A repetition counter in an array constructor must be of a whole number type.

E112
expression for field "%s" was expected (field name)

The error is reported if a record constructor does not contain an expression for the
given field.

6.3. SEMANTIC ERRORS 75

E113
no variant is associated with the value of the
expression

The error is reported if a record constructor for a record type with variant part
does not have a variant for the given value of a record tag and theELSEclause is
omitted.

E114
cannot declare type-bound procedure: "%s" is declared
as a field

A type-bound procedure has the same name as a field already declared in that type
or one of its base types.

E116
field "%s" is not exported (field name)

The given field is not exported, put export mark into the declaration of the record
type.

E118
base type is not allowed for non-Oberon record

A record type can be defined as an extension of another type, only if it is an
Oberon-2 record type.

E119
variant fields are not allowed in Oberon record

A record with variant parts cannot be declared as an Oberon-2 record.

E120
field of Oberon type is not allowed in non-Oberon
record

This is considered an error because garbage collector does not trace non-Oberon
records and reference to an object may be lost.

E121
illegal use of type designator "%s"

A type designator cannot be used in a statement position.

E122
expression out of bounds

A value which can be checked at compile-time is out of range.

E123

76 CHAPTER 6. COMPILER MESSAGES

designator is read-only

A designator marked as read-only cannot be used in a position where its value
may be changed.

E124
low bound greater than high bound

A lower bound of a range is greater than high bound.

E125
EXIT not within LOOP statement

An EXIT statement specifies termination of the enclosingLOOPstatement. This
EXIT is not within anyLOOP.

E126
case label defined more then once

In a CASEstatement all labels must have different values. The label at the indi-
cated position is alfeady used in thisCASEstatement.

E128
FOR-loop control variable must be declared in the
local scope

A control variable of aFORloop must be declared locally in the procedure or
module which body contains the loop.

E129
more expressions than fields in a record type

In a record constructor there are more expressions than there are fields in the
record type (or in this variant of a variant record type).

E131
zero step in FOR statement

In aFORstatement, the step cannot be equal to zero.

E132
shall be an open array designator

If language extensions are OFF, the standard procedureHIGH can be applied to
open arrays only, otherwise to any array designator.

E133
implementation limit exceeded for set base type
(length > %d)

6.3. SEMANTIC ERRORS 77

The compiler restricts length of a base type of set
(MAX(base)-MIN(base)+1). Note, that the limit does not depend on
the low bound, so the following set types are valid:

SET OF [-256..-5]
SET OF [MAX(INTEGER)-512..MAX(INTEGER)]

E134
must be value of unsigned type

The compiler expects a parameter of this standard procedure to be a value of an
unsigned type.

E135
must be value of pointer type

The compiler expects a parameter of this standard procedure to be a value
of a pointer type. Note: the SYSTEM.ADDRESStype is defined as
POINTER TO LOC.

E136
must be type designator

The compiler expects a parameter of this standard procedure to be a type designa-
tor.

E137
numeric constant does not have a defined storage size

The compiler must know the size of a value in the given context. A numeric
constant cannot be used at the indicated position.

E139
must be (qualified) identifier which denotes variable

The ISO standard requires an ”entire designator” in this context, e.g. as a param-
eter of theSIZE function. It may be either a variable (which may be a formal
parameter) or a field of a record variable within aWITHstatement that applies to
that variable.

E140
interrupt procedures are not implemented yet

Oberon compilers from ETH implements so-called interrupt procedures, marked
by the symbol ”+”.

PROCEDURE + Foo;

In XDS, this feature is not implemented.

78 CHAPTER 6. COMPILER MESSAGES

E141
opaque type can not be defined as Oberon pointer

A Modula-2 opaque type cannot be elaborated as an Oberon-2 pointer. See Chap-
ter10.

E143
not allowed in Oberon

The compiler reports this error for language features that are vaild in Modula-2
but not in Oberon-2, including:

• enumeration types

• range types

• local modules

E144
pointer and record types are mixed in type test

In an Oberon-2 type testv IS T or a type guardv(T) , bothv andT must be
either pointers or records.

E145
control variable must not be a formal parameter

According to ISO Modula-2, a control variable in aFORstatement cannot be a
formal parameter (eitherVARor value).

E146
control variable cannot be exported

A variable used as a control variable in aFORstatement or an Oberon-2WITH
statement cannot be exported.

E147
control variable cannot be threatened

A control variable of aFORstatement or an Oberon-2WITHstatement has been
threatened inside the body of the statement, or in a nested procedure called from
the body. Threatening actions include assignment and passing as aVARparameter
to a user-defined or standard procedure (ADR, INC, DEC, etc). The compiler also
reports the error 158 to indicate the exact place of threatening.

E148
finalization is allowed only in module block

A procedure body can not contain a finalization part.

6.3. SEMANTIC ERRORS 79

E149
RETRY is allowed only in exceptional part of block

ThisRETRYstatement is outside an exceptional part of a block.

E150
wrong value of direct language specification

A value must be either one of the strings ("Modula" , "Oberon" ,
"C" ,"Pascal" , "SysCall" , or "StdCall") or the corresponding integer
value. We recommend to use strings, integer values are preserved for backward
compatibility.

E151
must be of integer type

The compiler expects a variable of an integer type.

E152
incompatible calling conventions: "%s" "%s"
E153
incompatible calling conventions

Two procedure types have different calling conventions. The error can reported in
the following cases:

• a procedure is assigned to a procedure variable

• a procedure is passed as a parameter

• two procedure values are compared

The compiler reports error 152 if it can show incompatible types and error 153
otherwise.

E154
procedure "%s" does not match previous definition:
was: %s now: %s (procedure name,proctype,proctype)
E155
procedure "%s" does not match previous definition (pro-
cedure name)

A procedure heading must have the same number of parameters, the same param-
eter modes (variable or value) and the same types as in the previous declaration.
A previous declaration may be one of the following:

• procedure declaration in a definition module

80 CHAPTER 6. COMPILER MESSAGES

• forward procedure declaration

• type-bound procedure declaration in a base type

The compiler reports error 154 if it can show incompatible types and error 155
otherwise.

E156
procedure designator is expected

A designator which appears to be called (e.g.Foo(...)) does not denote a
procedure.

E158
control variable "%s" is threatened here (variable name)

A control variable of aFORstatement or an Oberon-2WITH statement is threat-
ened at the indicated position. It means that its value may be changed. See also
error 147.

E159
type of aggregate is not set or array or record

An object which appears to be an aggregate (e.g.Foo{...}) begins with an
identifier which is not a set, record, or array type.

E160
invalid parameter specification: expected NIL

Only one special kind of variable parameter is implemented:VAR [NIL] . It
means thatNIL may be passed to this parameter.

E161
VAR [NIL] parameter expected

A parameter of theSYSTEM.VALID function must be aVAR [NIL] parameter.

E162
%s value should be in % {} (not "%s") (equation,set of valid val-
ues,new value)

This error is reported for a wrong setting ofALIGNMENT, ENUMSIZE, or
SETSIZE equation.

E163
control variable cannot not be volatile

A control variable of aFORstatement cannot be marked as volatile. See the
VOLATILE option.

6.3. SEMANTIC ERRORS 81

E200
not yet implemented

This language feature is not implemented yet.

E201
real overflow or underflow in constant expression

This error is to be reported if a real overflow (underflow) occurs during evaluation
of a constant expression.

E202
integer overflow in constant expression

The compiler uses 64-bits (signed) arithmetics for whole numbers. The error is
reported if an overflow occurs during evaluation of a constant expression. In the
following example, an error will be reported for the assignment statement, while
constant definition is valid.

MODULE Test;

CONST
VeryBigConstant = MAX(CARDINAL)*2; (* OK *)
TooBigConstant = VeryBigConstant*VeryBigConstant; (* OK *)

END Test.

E203
division by zero

The second operand of aDIV , MOD, REM, or "/" operator is zero.

E206
array length is too large or less then zero

The array length is either negative or exceeds implementation limit.

E208
CASE statement always fails

The error is reported if a case select expression can be evaluated at compile-
time and there is no variant corresponding to its value, and theELSE clause
is omitted. If not constantly evaluated, thisCASEstatement would cause the
caseSelectException exception at run-time.

E219
too many nested open array types (implementation limit

82 CHAPTER 6. COMPILER MESSAGES

%d) (implementation limit)

The compiler (more precisely, run-time support) puts a limit on the number of
nested open array types (or dimensions). Note, that there is no limit for arrays
with specified length, because such arrays do not require special support in run-
time system.

E220
heirarchy of record extensions too high
(implementation limit %d) (implementation limit)

The run-time system puts a limit on the level of record extensions. It is required
for efficient implementaion of type tests and type guards.

E221
procedure declaration nesting limit (%d) has been
exceeded (implementation limit)

The compiler puts a limit on the number of procedures nested inside each other.
When modules are nested inside procedures, only the level of procedure declara-
tions is counted.

E281
type-bound procedure is not valid as procedure value

A type-bound procedure cannot be assigned to a variable of procedure type.

E282
local procedure is not valid as procedure value "%s"
(procedure name)

A procedure local to another one cannot be assigned to a variable of procedure
type.

E283
code (or external) procedure is not valid as procedure
value

A code procedure and external procedure cannot be assigned to a variable of pro-
cedure type.

6.4 Symbol files read/write errors

F190
incorrect header in symbol file "%s" (module name)

6.4. SYMBOL FILES READ/WRITE ERRORS 83

A symbol file for the given module is corrupted. Recompile it.

F191
incorrect version of symbol file "%s" (%d instead of
%d) (module name, symfile version, current version)

The given symbol file is generated by a different version of the compiler. Re-
compile the respecitve source or use compatible versions of the compiler and/or
symbol file.

F192
key inconsistency of imported module "%s" (module name)

The error occurs if an interface of some module is changed but not all its clients
(modules that imports from it) were recompiled. For example, letA imports from
B andM; B in turn imports fromM:

DEFINITION MODULE M; DEFINITION MODULE B; MODULE A;
IMPORT M; IMPORT M,B;

END M. END B. END A.

Let us recompileM.def , B.def and thenM.def again. The error will be
reported when compilingA.mod , because version keys of moduleM imported
throughB is not equal to the version key ofMimported directly.

To fix the problem modules must be compiled in appropriate order. We recom-
mend to use the XDS compiler make facility, i.e. to compile your program in the
MAKE (see4.2.2) or PROJECT (see4.2.3) operation mode. If you always use the
make facility this error will never be reported.

F193
generation of new symbol file not allowed

The Oberon-2 compiler creates a temporary symbol file every time a module is
compiled, compares that symbol file with the existing one and overwrites it with
the new one if necessary. When theCHANGESYM option is OFF (by default),
the compiler reports an error if the symbol file (and hence the module interface)
had been changed and does not replace the old symbol file.

Note: if the M2CMPSYM option is set ON, the same applies to compilation of a
Modula-2 definition module, i.e., theCHANGESYM option should be set if the
module interface has been changed.

F194
module name does not match symbol file name "%s" (module
name)

84 CHAPTER 6. COMPILER MESSAGES

A module name used in anIMPORTclause must be equal to the actual name of
the module, written in the module heading.

F195
cannot read symbol file "%s" generated by %s (module
name, compiler name)

The symbol file for the given module is generated by another XDS compiler. Na-
tive code compilers can read symbol files generated byXDS-C on the same plat-
form, but not vice versa.

6.5 Internal errors

This section lists internal compiler errors. In some cases such a error may occur
as a result of inadequate recovery from previous errors in your source text. In any
case we recommend to provide us with a bug report, including:

• version of the compiler

• description of your environment (OS, CPU)

• minimal source text reproducing the error

F103
INTERNAL ERROR(ME): value expected
F104
INTERNAL ERROR(ME): designator expected
F105
INTERNAL ERROR(ME): statement expected
F106
INTERNAL ERROR(ME): node type = NIL
F142
INTERNAL ERROR(ME): can not generate code

F196
INTERNAL ERROR: incorrect sym ident %d while reading
symbol file "%s"
F197
INTERNAL ASSERT(%d) while reading symbol file "%s"

6.6. WARNINGS 85

6.6 Warnings

In many cases a warning may help you to find a bug or a serious drawback in your
source text. We recommend not to switch warnings off and carefully check all of
them. In many cases warnings have helped us to find and fix bugs very quickly
(note that XDS compilers are written in XDS Oberon-2 and Modula-2).

Warnings described in this section are reported by bothXDS-C andNative XDS.
Each of these products may report additional warnings. Native XDS compilers
fulfil more accurate analysis of the source code and report more warnings.

W300
variable declared but never used

This variable is of no use, it is not exported, assigned, passed as a parameter, or
used in an expression. The compiler will not allocate space for it.

W301
parameter is never used

This parameter is not used in the procedure.

W302
value was assigned but never used

The current version of the compiler does not report this warning.

W303
procedure declared but never used

This procedure is not exported, called or assigned. The compiler will not generate
it.

W304
possibly used before definition "%s" (variable name)

This warning is reported if a value of the variable may be undefined at the in-
dicated position. Note, that it is just a warning. The compiler may be mistaken
in complex contexts. In the following example,"y" will be assigned at the first
iteration, however, the compiler will report a warning, because it does not trace
execution of theFORstatement.

PROCEDURE Foo;
VAR x,y: INTEGER;

BEGIN
FOR x:=0 TO 2 DO

IF x = 0 THEN y:=1

86 CHAPTER 6. COMPILER MESSAGES

ELSE INC(y) (* warning is reported here *)
END;

END;
END Foo;

This warning is not reported for global variables.

W305
constant declared but never used

The current version of the compiler does not report this warning.

W310
infinite loop

Execution of this loop (LOOP, WHILEor REPEAT) will not terminate normally.
It means that statements after the loop will never be executed and the compiler
will not generate them. Check that the loop was intentionally made infinite.

W311
unreachable code

This code cannot be executed and the compiler will not generate it (dead code
elimination). It may be statements after aRETURN, ASSERT(FALSE), HALT,
infinite loop, statements under constantFALSE condition (IF FALSE THEN),
etc.

W312
loop is executed exactly once

It may be a loop like

FOR i:=1 TO 1 DO ... END;

or

LOOP ...; EXIT END;

Check that you wrote it intentionally.

W314
variable "%s" has compile time defined value here

The compiler was able to determine the run-time value of the given variable (due
to constant propagation) and will use it instead of accessing the variable. For the
following example

i:=5; IF i = 5 THEN S END;

the compiler will generate:

6.6. WARNINGS 87

i:=5; S;

This warning is not reported for global variables.

W315
NIL dereference

The compiler knows that a value of a pointer variable is NIL (due to constant
propagation), e.g:

p:=NIL;
pˆ.field:=1;

The code will be generated and will cause ”invalidLocation” exception at run-
time.

This warning is not reported for global variables.

W316
this SYSTEM procedure is not described in Modula-2 ISO
standard

This warning is reported in order to simplify porting your program to other
Modula-2 compilers.

W317
VAR parameter is used here, check that it is not
threatened inside WITH

A variable parameter of a pointer type is used as a control variable in an Oberon-2
WITHstatement. The compiler cannot check that it is not changed insideWITH.
In the the following example"ptr" and, hence,"p" becomesNIL insideWITH:

VAR ptr: P;

PROCEDURE proc(VAR p: P);
BEGIN

WITH p: P1 DO
ptr:=NIL;
p.i:=1;

END;
END proc;

BEGIN
proc(ptr);

END

88 CHAPTER 6. COMPILER MESSAGES

We recommend to avoid using variable parameters of pointer types inWITHstate-
ments.

W318
redundant FOR statement

TheFORstatement is redundant (and not generated) if its low and high bounds can
be evaluted at compile-time and it would be executed zero times, or if its body is
empty.

6.7 Pragma warnings

W320
undeclared option "%s"

An undeclared option is used. Its value is assumed to beFALSE.

W322
undeclared equation "%s"

An undeclared equation is used. Its value is undefined.

W321
option "%s" is already defined
W323
equation "%s" is already defined

The option (equation) is already defined, second declaration is ignored.

W390
obsolete pragma setting

The syntax used is obsolete. The next release of the compiler will not understand
it. We recommend to rewrite the clause using the new syntax.

6.8 Native XDS warnings

W900
redundant code eliminated

This warning is reported if a program fragment does not influence to the program
execution, e.g:

i:=1;

6.8. NATIVE XDS WARNINGS 89

i:=2;

The first assignemnt is redundant and will be deleted.

W901
redundant code not eliminated - can raise exception

The same as W900, but the redundant code is preserved because it can raise an
exception, e.g.:

i:=a DIV b; (* raises exception if b <= 0 *)
i:=2;

W902
constant condition eliminated

The warning is reported if a boolean condition can be evaluated at run-time, e.g.

IF (i=1) & (i=1) THEN (* the second condition is TRUE *)

or

j:=2;
IF (i=1) OR (j#2) THEN (* the second condition is FALSE *)

W903
function result is not used

The compiler ignores function result, like in:

IF Foo() THEN END;

W910
realValueException will be raised here
W911
wholeValueException will be raised here
W912
wholeDivException will be raised here
W913
indexException will be raised here
W914
rangeException will be raised here
W915
invalidLocation exception will be raised here

A warning from this group is reported if the compiler determines that the excep-
tion will be raised in the code corresponding to this program fragment. In this case
the fragment is omitted and the compiler generates a call of a run-time procedure
which will raise this exception.

90 CHAPTER 6. COMPILER MESSAGES

6.9 Native XDS errors

This section describes errors reported by a native code generator (back-end). The
code generator is invoked only if no errors were found by a language parser.

F950
out of memory

The compiler cannot generate your module. Try to increaseCOMPILER-
HEAP or try to compile this module separately (not in the MAKE (see4.2.2) or
PROJECT (see4.2.3) mode). Almost any module may be compiled ifCOMPIL-
ERHEAP is set to 16MB. Exceptions are very big modules or modules containing
large procedures (more than 500 lines). Note that the amount of memory required
for the code generator depends mostly on sizes of procedures, not of the module.

F951
expression(s) too complex

The compiler cannot generate this expression, it is too complex. Simplify the
expression.

F952
that type conversion is not implemented

The compiler cannot generate this type conversion.

6.10 XDS-C warnings

W350
non portable type cast: size is undefined

The compiler have to generate a type cast which may be unportable. Check that
the generated code is correct or pay some attention to your C compiler warnings.

W351
option NOHEADER is allowed only in C-modules
W352
option NOCODE is allowed only in C-modules

OptionsNOHEADER andNOCODE have meaning only for modules defined as
"C" , "StdCall" or "SysCall" . See10.2

W353
dependence cycle in C code

6.10. XDS-C WARNINGS 91

The generated code contains a dependance cycle. It means that some declaration
A depends onB and vice versa. It is not an error. The generated code may be
valid.

92 CHAPTER 6. COMPILER MESSAGES

Chapter 7

XDS Modula-2

This chapter covers details of the XDS implementation of the Modula-2 language.
In the standard mode1 XDS Modula-2 complies with ISO 10514 (See the state-
ment of compliance and further details in7.1). The compatibility rules are de-
scribed in7.4. The differences between ISO Modula-2 and the language described
in the 4th edition of Wirth’s “Programming in Modula-2” [PIM]are listed in7.2.
Language extensions are described in7.6.

7.1 ISO Standard compliance

XDS Modula-2 partially complies with the requirements of ISO 10514. The de-
tails of non-conformities are as follows:

• Not all libraries are available in the current release.

• The current release may impose some restrictions on using new language
features.

See ChapterA for further details.

7.1.1 Ordering of declarations

XDS Modula-2 is a so-called ‘single-pass’ implementation. It means that all
identifiers must be declared before use. According to the International Stan-
dard thisdeclare-before-useapproach is perfectly valid. The alternative approach,

1When optionsM2EXTENSIONS andM2ADDTYPES are OFF

93

94 CHAPTER 7. XDS MODULA-2

(declare-before-use-in-declarations), can be used in so-called ‘multi-pass’ imple-
mentations.

A forward declaration must be used to allow forward references to a procedure
which actual declaration appears later in the source text.

Example

PROCEDURE a(x: INTEGER); FORWARD;
(* FORWARD declaration *)

PROCEDURE b(x: INTEGER);
BEGIN

a(x-1);
END b;

PROCEDURE a(n: INTEGER);
(* proper procedure declaration *)
BEGIN

b(n-1);
END a;

To provide source compatibility between ‘single-pass’ and ‘multi-pass’ imple-
mentations, the Standard requires that all conforming ‘multi-pass’ implementa-
tions accept and correctly process theFORWARDdirective.

7.2 New language’s features

The language described in the International Standard varies in many details from
the one described in Wirth’s “Programming in Modula-2”[PIM].

The most important innovations are

• complex numbers

• module finalization

• exception handling

• array and record constructors

7.2. NEW LANGUAGE’S FEATURES 95

• four new system modules

• standard library

Note: The system modules (except the moduleSYSTEM) are not embedded in the
compiler and are implemented as separate modules.

7.2.1 Lexis

The ISO Modula-2 has some new keywords (table7.1, page93) and pervasive
identifiers (table7.2, page94), and provides alternatives for some symbols (table
7.3, page94). It also introduces the syntax for source code directives (or pragmas):

Pragma = "<*" pragma_body "*>"

The Standard does not specify a syntax ofpragma_body . In XDS, source code
directives are used for in-line option setting and for conditional compilation. See
7.7.1for further details.

AND ARRAY BEGIN
BY CASE CONST
DEFINITION DIV DO
ELSE ELSIF END
EXIT EXCEPT (see7.2.13) EXPORT
FINALLY (see7.2.12) FOR FORWARD (see7.1.1)
FROM IF IMPLEMENTATION
IMPORT IN LOOP
MOD MODULE NOT
OF OR PACKEDSET (see

7.2.3)
POINTER PROCEDURE QUALIFIED
RECORD REM (see7.2.9) RETRY (see7.2.13)
REPEAT RETURN SET
THEN TO TYPE
UNTIL VAR WHILE
WITH

Table 7.1: Modula-2 keywords

7.2.2 Complex types

TypesCOMPLEXandLONGCOMPLEXcan be used to represent complex numbers.
These types differ in a the range and precision. TheCOMPLEXtype is defined as

96 CHAPTER 7. XDS MODULA-2

ABS BITSET
BOOLEAN CARDINAL
CAP CHR
CHAR COMPLEX (7.2.2)
CMPLX (7.2.2) DEC
DISPOSE EXCL
FALSE FLOAT
HALT HIGH
IM (7.2.2) INC
INCL INT (7.2.10)
INTERRUPTIBLE (7.2.18) INTEGER
LENGTH (7.2.4) LFLOAT (7.2.10)
LONGCOMPLEX (7.2.2) LONGREAL
MAX MIN
NEW NIL
ODD ORD
PROC PROTECTION (7.2.18)
RE (7.2.2) REAL
SIZE TRUE
TRUNC UNINTERRUPTIBLE

(7.2.18)
VAL

Table 7.2: Modula-2 pervasive identifiers

Symbol Meaning Alternative
[left bracket (!
] right bracket !)
{ left brace (:
} right brace :)
| case separator !
ˆ dereference @

Table 7.3: Modula-2 alternative symbols

7.2. NEW LANGUAGE’S FEATURES 97

a (REAL,REAL) pair, whileLONGCOMPLEXconsists of a pair ofLONGREAL
values.

There is no notation for a complex literal. A complex value can be obtained by
applying the standard functionCMPLXto two reals. If bothCMPLXarguments are
real constants the result is the complex constant.

CONST i = CMPLX(0.0,1.0);

If both expressions are of theREAL type, or if one is of theREAL type and the
other is a real constant, the function returns aCOMPLEXvalue. If both expressions
are of theLONGREALtype, or if one is of theLONGREALtype and the other is
a real constant the function returns aLONGCOMPLEXvalue. The following table
summarizes the permitted types and the result type:

REAL LONGREAL real constant
REAL REAL error COMPLEX
LONGREAL error LONGCOMPLEX LONGCOMPLEX
real constant COMPLEX LONGCOMPLEX complex constant

Standard functionsREandIM can be used to obtain a real or imaginary part of a
value of a complex type. Both functions have one formal parameter. If the actual
parameter is of theCOMPLEXtype, both functions return aREALvalue; if the
parameter is of theLONGCOMPLEXtype, functions return aLONGREALvalue;
otherwise the parameter should be a complex constant and functions return a real
constant.

CONST one = IM(CMPLX(0.0,1.0));

There are four arithmetic binary operators for operands of a complex type: addi-
tion (+), subtraction (-), multiplication (*), and division (/). The following table
indicates the result of an operation for permitted combinations:

COMPLEX LONGCOMPLEX complex constant
COMPLEX COMPLEX error COMPLEX
LONGCOMPLEX error LONGCOMPLEX LONGCOMPLEX
complex constant COMPLEX LONGCOMPLEX complex constant

There are two arithmetic unary operators that can be applied to the values of a
complex type: identity (+) and negation (-). The result is of the operand’s type.

Two complex comparison operators are provided for operands of complex type:
equality (=) and inequality (<>).

98 CHAPTER 7. XDS MODULA-2

Example

PROCEDURE abs(z: COMPLEX): REAL;
BEGIN

RETURN RealMath.sqrt(RE(z)*RE(z)+IM(z)*IM(z))
END abs;

7.2.3 Sets and packedsets

A set or packedset2 type defines a new elementary type whose set of values is the
power set of an associated ordinal type called thebase typeof the set or packedset
type.

SetType = SET OF Type;
PackedsetType = PACKEDSET OF Type;

The International Standard does not require a specific representation for set types.
Packedset types representation has to be mapped to the individual bits of a particu-
lar underlying architecture. The standard typeBITSET is a predefined packedset
type.

The current XDS implementation does not distinguish between set and packedset
types. A set of at least 256 elements can be defined.

All set operators, namely union (+), difference (-), intersection (*), and symmet-
rical difference (/), can be applied to the values of both set and packedset types.

TYPE
CharSet = SET OF CHAR;
ByteSet = PACKEDSET OF [-127..128];

VAR
letters, digits, alphanum: CharSet;
neg, pos, zero : ByteSet;

. . .
letters := CharSet{’a’..’z’,’A’..’Z’};
digits := CharSet{’0’..’9’};
alphanum := letters + digits;

2Packedset types are innovated in the Standard.

7.2. NEW LANGUAGE’S FEATURES 99

neg := ByteSet{-127..-1}; pos := ByteSet{1..127};
zero := ByteSet{-127..128}-neg-pos;

7.2.4 Strings

For operands of the string literal type, the string concatenation operation is de-
fined, denoted by the symbol"+" . Note: a character number literal (e.g.15C)
denotes a value of a literal string type of length 1. The empty string is compatible
with the typeCHARand has a value equal to the string terminator (0C).

CONST
CR = 15C;
LF = 12C;
LineEnd = CR + LF;
Greeting = "hello " + "world" + LineEnd;

The new standard functionLENGTHcan be used to obtain the length of a string
value.

PROCEDURE LENGTH(s: ARRAY OF CHAR): CARDINAL;

7.2.5 Value constructors

A value constructor is an expression denoting a value of an array type, a record
type, or a set type. In case of array constructors and record constructors a list
of values, known asstructure components, is specified to define the values of
components of an array value or the fields of a record value. In case of a set
constructor, a list of members is specified, whose elements define the elements of
the set value.

ValueConstructor = ArrayValue
| RecordValue
| SetValue.

ArrayValue = TypeIdentifier "{"
ArrayComponent { "," ArrayComponent }
"}".

ArrayComponent = Component [BY RepeatCount].
Component = Expression.
RepeatCount = ConstExpression.

100 CHAPTER 7. XDS MODULA-2

RecordValue = TypeIdentifier "{"
Component { "," Component }
"}".

Set constructors are described in PIM.

The total number of components of an array constructor must be exactly the same
as the number of array’s elements (taking into account repetition factors). Each
component must be assignment compatible with the array base type.

The number of components of a record constructor must be exactly the same as
the number of fields. Each component must be an assignment compatible with the
type of the field.

A special case is a record constructor for a record with variant parts. If then-th
field is the tag field then-th component must be a constant expression. If there
is no ELSE variant part associated with the tag field, then the variant associated
with the value of expression should exist. If no variant is associated with the
value, then the fields of the ELSE variant part should be included in the sequence
of components.

The constructor’s components may themselves contain lists of elements, and such
nested constructs need not specify a type identifier. This relaxation is necessary
for multi-dimensional arrays, where the types of the inner components may be
anonymous.

Examples

TYPE
String = ARRAY [0..15] OF CHAR;
Person = RECORD

name: String;
age : CARDINAL;

END;
Vector = ARRAY [0..2] OF INTEGER;
Matrix = ARRAY [0..2] OF Vector;

VAR
string: String;
person: Person;
vector: Vector;
matrix: Matrix;

7.2. NEW LANGUAGE’S FEATURES 101

. . .
BEGIN

. . .
string:=String{" " BY 16};
person:=Person{"Alex",32};
vector:=Vector{1,2,3};
matrix:=Matrix{vector,{4,5,6},Vector{7,8,9}};
matrix:=Matrix{vector BY 3};

7.2.6 Multi-dimensional open arrays

According to the International Standard, parameters of a multi-dimensional open
array type are allowed:

PROCEDURE Foo(VAR matrix: ARRAY OF ARRAY OF REAL);
VAR i,j: CARDINAL;

BEGIN
FOR i:=0 TO HIGH(matrix) DO

FOR j:=0 TO HIGH(matrix[i]) DO
... matrix[i,j] ...

END;
END;

END Foo;

VAR a: ARRAY [0..2],[0..2] OF REAL;

BEGIN
Foo(a);

END ...

7.2.7 Procedure type declarations

A procedure type identifier may be used in declaration of the type itself. This
feature is used in the Standard Library. See, for example, modulesConvTypes
andWholeConv .

TYPE
Scan = PROCEDURE (CHAR; VAR Scan);
Func = PROCEDURE (INTEGER): Func;

102 CHAPTER 7. XDS MODULA-2

7.2.8 Procedure constants

A constant expression may contain values of procedure types, or structured values
whose components are values of procedure types. Procedure constants may be
used as a mechanism for procedure renaming. In a definition module it is possible
to export a renamed version of the imported procedure.

Examples

TYPE ProcTable = ARRAY [0..3] OF PROC;

CONST
WS = STextIO.WriteString;
Table = ProcTable{Up,Down,Left,Right};

7.2.9 Whole number division

Along with DIV andMODthe International Standard includes two additional op-
erators for whole number division: ‘/ ’ andREM.

OperatorsDIV andMODare defined for positive divisors only, while ‘/ ’ andREM
can be used for both negative and positive divisors.

The language exceptionwholeDivException (See7.2.13) is raised if:

• the second operand is zero (for all four operators)

• the second operand ofDIV or MODis negative.

For the givenlval andrval

quotient := lval / rval;
remainder := lval REM rval;

the following is true (for all non-zero values ofrval):

• lval = rval * quotient + remainder

• the value ofremainder is either zero, or an integer of the same sign as
lval and of a smaller absolute value thanrval .

7.2. NEW LANGUAGE’S FEATURES 103

For the givenlval andrval

quotient := lval DIV rval;
modulus := lval MOD rval;

the following is true (for all positive values ofrval):

• lval = rval * quotient + modules

• the value ofmodulus is a non-negative integer less thanrval .

Operations are exemplified in the following table:

op 31op10 31op (-10) (-31)op10 (-31)op (-10)
/ 3 -3 -3 3

REM 1 1 -1 -1
DIV 3 exception -4 exception
MOD 1 exception 9 exception

7.2.10 Type conversions

The language includes the following type conversion functions:CHR, FLOAT,
INT , LFLOAT, ORD, TRUNCandVAL. The functionsINT andLFLOATare not
described in PIM.

All the type conversion functions (exceptVAL) have a single parameter and can
be expressed in terms of theVAL function.

Function Parameter Equals to
CHR(x) whole VAL(CHAR,x)
FLOAT(x) real or whole VAL(REAL,x)
INT(x) real or ordinal VAL(INTEGER,x)
LFLOAT(x) real or whole VAL(LONGREAL,x)
ORD(x) ordinal VAL(CARDINAL,x)
TRUNC(x) real VAL(CARDINAL,x)

The functionVALcan be used to obtain a value of the specified scalar type from an
expression of a scalar type. The function has two parameters. The first parameter
should be a type parameter that denotes a scalar type. If the type is a subrange
type, the result ofVAL has the host type of the subrange type, otherwise it has the
type denoted by the type parameter.

The second parameter should be an expression of a scalar type and at least one of
the restriction shall hold:

104 CHAPTER 7. XDS MODULA-2

• the result type and the type of the expression are identical

• both the result type and the type of the expression are whole or real

• the result type or the type of the expression is a whole type

In the following table,
√

denotes a valid combination of types and× denotes an
invalid combination:

the type of the type denoted by the type parameter
expression whole real CHAR BOOLEANenumeration
whole type

√ √ √ √ √

real type
√ √

× × ×
CHAR

√
×

√
× ×

BOOLEAN
√

× ×
√

×
enumeration

√
× × ×

√

An exception is raised if the value ofx is outside the range of the typeT in
the call VAL(T,x) . If x is of a real type, the callsVAL(INTEGER,x) and
VAL(CARDINAL,x) both truncate the value ofx .

7.2.11 NEW and DISPOSE

The standard proceduresNEWandDISPOSEare back in the language. Calls of
NEWandDISPOSEare substituted by calls ofALLOCATEandDEALLOCATE
which should be visible at the current scope. The compiler checks compatibility
of these substitution procedures with the expected formal type:

PROCEDURE ALLOCATE(VAR a: ADDRESS; size: CARDINAL);
PROCEDURE DEALLOCATE(VAR a: ADDRESS; size: CARDINAL);

As a rule, the proceduresALLOCATEandDEALLOCATEdeclared in the module
Storage are used. These procedures are made visible by including the import
list:

FROM Storage IMPORT ALLOCATE, DEALLOCATE;

When language extensions are enabled, the proceduresNEWandDISPOSEcan
be applied to dynamic arrays. See7.6.12for further details.

See also theSTORAGE option.

7.2. NEW LANGUAGE’S FEATURES 105

7.2.12 Finalization

A special mechanism calledfinalizationis provided to perform certain operations
during program termination.

A module declaration contains an optional finalization body, which is executed
during program termination for static modules (See7.2.16) or dynamic module
finalization.

ModuleBody = [BEGIN BlockBody
[FINALLY BlockBody]] END

BlockBody = NormalPart
[EXCEPT ExceptionalPart].

NormalPart = StatementSequence.
ExceptionalPart = StatementSequence.

Note: theRETURNstatement can be used in aBlockBody .

Consider the following example:

MODULE Test;

. . .

VAR cid: StreamFile.ChanId;

BEGIN
StreamFile.Open(cid,"tmp",flags,res);
Process(cid);

FINALLY
StreamFile.Close(cid);

END Test

If the Test module is declared in a procedure block, then the initialization body
will be executed on a call of the procedure, while the finalization body is executed
upon return from the procedure.

If the Test module is a static module, its finalization will be executed during
program termination.

In any case, finalization bodies are executed in reverse order with respect to their
initializations.

In the following example, finalization of a local module is used to restore context:

106 CHAPTER 7. XDS MODULA-2

VAR state: State;

PROCEDURE Foo;

MODULE AutoSave;
IMPORT state, State;
VAR save: State;

BEGIN
save:=state; (* save state *)
state:=fooState;

FINALLY
state:=save; (* restore state *)

END AutoSave;

BEGIN
... process ...

END Foo;

The initialization part of theAutoSave module will be executed before any state-
ment in theFoo body and finalization part will be executed directly before return-
ing from a call ofFoo.

7.2.13 Exceptions

An exception handling mechanism is now included in the language. Both user-
defined exceptions and language exceptions can be handled. There is no spe-
cial exception type; an exception is identified by a pair: exception source value
and cardinal value. Two keywords (EXCEPTandRETRY) are added to the lan-
guage. The essential part of exception handling is provided in two system mod-
ules:EXCEPTIONSandM2EXCEPTION.

TheEXCEPTIONSmodule provides facilities for raising and identifying the user-
defined exceptions, for reporting their occurrence, and for making enquiries con-
cerning the execution state of the current coroutine.

The M2EXCEPTIONmodule provides facilities for identifying language excep-
tions that have been raised.

A procedure body, an initialization or finalization part of a module body may
contain an exceptional part.

BlockBody = NormalPart [EXCEPT ExceptionalPart].

7.2. NEW LANGUAGE’S FEATURES 107

NormalPart = StatementSequence.
ExceptionalPart = StatementSequence.

Example:

PROCEDURE Div(a,b: INTEGER): INTEGER;
BEGIN

RETURN a DIV b (* try to divide *)
EXCEPT

RETURN MAX(INTEGER) (* if exception *)
END Fly;

When an exception is raised (explicitly or implicitly) the ‘nearest’ (in terms of
procedure calls) exceptional part in the current coroutine receives control. Each
coroutine is executed initially in the normal state. If an exception is raised, the
coroutine state switches to the exceptional state. If there is no exceptional part,
raising of an exception is a termination event (See7.2.16).

A procedure with an exceptional part is executed in the normal state. The state
is restored after block execution. A procedure without an exceptional part is exe-
cuted in the state of the caller.

If an exception is raised in the state of exceptional execution it is re-raised in the
calling context. In this case finalization of local modules and restoring protection
(See7.2.18) will not take place.

An additional statement (RETRY) can be used in the exceptional part. Execution
of the RETRYstatement causes the normal part to be re-executed in the normal
state.

Execution of theRETURNstatement in the exceptional part causes switch to the
normal state.

If neither RETURNnor RETRYwas executed in the exceptional part, the excep-
tional completion will occur. In this case after finalization of local modules (if
any) and restoring protection state (if necessary), the exception will be re-raised.

Example

PROCEDURE Foo;
BEGIN

TryFoo(...);
EXCEPT

108 CHAPTER 7. XDS MODULA-2

IF CanBeRepaired() THEN
Repair;
RETRY; (* re-execute the normal part *)

ELSIF CanBeProcessed() THEN
Process;
RETURN; (* exception is handled *)

ELSE
(* exception will be automatically re-raised *)

END;
END Foo;

7.2.14 The system module EXCEPTIONS

The moduleEXCEPTIONSprovides facilities for raising user’s exceptions and
for making enquiries concerning the current execution state.

User-defined exceptions are identified uniquely by a pair (exception source, num-
ber). When the source of a used-defined exception is a separate module, it prevents
the defined exceptions of the module from being raised directly by other sources.
See e.g. the moduleStorage .

TYPE ExceptionSource;

Values of the opaque typeExceptionSource are used to identify the source
of exceptions raised; they should be allocated before usage.

TYPE ExceptionNumber = CARDINAL;

Values of the typeExceptionNumber are used to distinguish between different
exceptions of one source.

PROCEDURE AllocateSource(VAR newSource: ExceptionSource);

The procedure allocates an unique value of the typeExceptionSource . The
procedure is normally called during initialization of a module, and the resulting
value is then used in all calls ofRAISE. If an unique value cannot be allocated
the language exceptionexException is raised (See7.2.15).

PROCEDURE RAISE(source: ExceptionSource;
number: ExceptionNumber;

message: ARRAY OF CHAR);

A call to RAISE associates the given values of exceptionsource , number , and
message with the current context and raises an exception.

7.2. NEW LANGUAGE’S FEATURES 109

The functionCurrentNumber can be used to obtain the exception number for
the current exception.

PROCEDURE CurrentNumber
(source: ExceptionSource): ExceptionNumber;

If the calling coroutine is in the exceptional execution state because of raising an
exception fromsource , the procedure returns the corresponding number, and
otherwise raises an exception.

The procedureGetMessage can be used to obtain the message passed when an
exception was raised. This may give further information about the nature of the
exception.

PROCEDURE GetMessage(VAR text: ARRAY OF CHAR);

If the calling coroutine is in the exceptional execution state, the procedure returns
the (possibly truncated) string associated with the current context. Otherwise, in
the normal execution state, it returns the empty string.

PROCEDURE IsCurrentSource
(source: ExceptionSource): BOOLEAN;

If the current coroutine is in the exceptional execution state because of raising an
exception fromsource , the procedure returnsTRUE, andFALSEotherwise.

PROCEDURE IsExceptionalExecution (): BOOLEAN;

If the current coroutine is in the exceptional execution state because of raising an
exception, the procedure returnsTRUE, andFALSEotherwise.

The following example illustrates the recommended form of a library module and
usage of procedures fromEXCEPTIONS.

DEFINITION MODULE FooLib;

PROCEDURE Foo;
(* Raises Foo exception if necessary *)

PROCEDURE IsFooException(): BOOLEAN;
(* Returns TRUE, if the calling coroutine is in

exceptional state because of the raising of
an exception from Foo, and otherwise returns FALSE.

110 CHAPTER 7. XDS MODULA-2

*)

END FooLib.

IMPLEMENTATION MODULE FooLib;

IMPORT EXCEPTIONS;

VAR source: EXCEPTIONS.ExceptionSource;

PROCEDURE Foo;
BEGIN

TryFoo(...);
IF NOT done THEN

EXCEPTIONS.RAISE(source,0,"Foo exception");
END;

END Foo;

PROCEDURE IsFooException(): BOOLEAN;
BEGIN

RETURN EXCEPTIONS.IsCurrentSource(source)
END IsLibException;

BEGIN
EXCEPTIONS.AllocateSource(source)

END FooLib.

If we want to distinguish the exceptions raised in theFooLib we will append an
enumeration type and an additional enquiry procedure in theFooLib definition:

TYPE FooExceptions = (fault, problem);

PROCEDURE FooException(): FooExceptions;

TheFooException procedure can be implemented as follows:

PROCEDURE FooException(): FooExceptions;
BEGIN

RETURN VAL(FooExceptions,
EXCEPTIONS.CurrentNumber(source))

END FooException;

7.2. NEW LANGUAGE’S FEATURES 111

TheClient module illustrates the usage of the library moduleFooLib :

MODULE Client;

IMPORT FooLib, EXCEPTIONS, STextIO;

PROCEDURE ReportException;
VAR s: ARRAY [0..63] OF CHAR;

BEGIN
EXCEPTIONS.GetMessage(s);
STextIO.WriteString(s);
STextIO.WriteLn;

END ReportException;

PROCEDURE TryFoo;
BEGIN

FooLib.Foo;
EXCEPT

IF FooLib.IsFooException() THEN
ReportException;
RETURN; (* exception is handled *)

ELSE
(* Exception will be re-raised *)

END
END TryFoo;

END Client.

7.2.15 The system module M2EXCEPTION

The system moduleM2EXCEPTIONprovides language exceptions identification
facilities. The language (which includes the system modules) is regarded as one
source of exceptions.

The module exports the enumeration typeM2Exceptions , used to distinguish
language exceptions, and two enquiry functions.

TYPE
M2Exceptions =

(indexException, rangeException,

112 CHAPTER 7. XDS MODULA-2

caseSelectException, invalidLocation,
functionException, wholeValueException,
wholeDivException, realValueException,
realDivException, complexValueException,
complexDivException, protException,
sysException, coException,
exException

);

PROCEDURE IsM2Exception(): BOOLEAN;

If the current coroutine is in the exceptional execution state because of the raising
of a language exception, the procedure returnsTRUE, andFALSEotherwise.

PROCEDURE M2Exception(): M2Exceptions;

If the current coroutine is in the exceptional execution state because of the raising
of a language exception, the procedure returns the corresponding enumeration
value, and otherwise raises an exception.

The following description lists all language exceptions (in alphabetical order)
along with the circumstances under which they are detected.Note: Compiler
options can be used to control detection of some exceptions (See Chapter5). De-
tection of some exceptions is not required by the Standard, however such excep-
tions can be detected on some platforms (See ChapterA).

caseSelectException

Case selector is out of range and theELSEclause does not exist.

coException

The system moduleCOROUTINES (see7.2.17) exceptions:

• RETURN from a coroutine other than the main coroutine

• size of the supplied workspace is smaller than the minimum required
(See description of the procedureNEWCOROUTINE)

• the caller is not attached to the source of interrupts (See description of
the procedureHANDLER)

• coroutine workspace overflow

complexDivException

Divide by zero in a complex number expression.

7.2. NEW LANGUAGE’S FEATURES 113

complexValueException

Overflow in evaluation of a complex number expression.

exException

A system moduleEXCEPTIONS or M2EXCEPTION exception:

• exception identity is enquired in the normal execution state (See
CurrentNumber)

• exception identity enquiry to a wrong source (SeeCurrentNumber)

• no further exception source values can be allocated (See
AllocateSource)

functionException

No RETURNstatement before the end of a function.

indexException

Array index out of range. See optionsCHECKINDEX andCHECKDIN-
DEX.

invalidLocation

Attempt to dereferenceNIL or an uninitialized pointer. See the option
CHECKNIL .

protException

The given protection is less restrictive than the current protection.

rangeException

Range exception (See theCHECKRANGE option):

• assignment value is out of range of the target’s type

• structure component value is out of range

• expression cannot be converted to the new type

• value to be included/excluded is not of the base type of the set (See
also theCHECKSET option)

• return value is out of range

• set value is out of range (See also theCHECKSET option)

• tag value is out of range (in a variant record).

114 CHAPTER 7. XDS MODULA-2

realDivException

Divide by zero in a real number expression.

realValueException

Overflow in evaluation of a real number expression.

sysException

The system moduleSYSTEM exceptions.Note: All these exceptions are
non-mandatory.

• invalid use ofADDADR, SUBADRor DIFADR

• the result ofMAKEADRis out of the address range

• alignment problem withCAST

• the result ofCASTis not a valid representation for the target type

wholeDivException

Whole division exception:

• divided by zero in evaluation of a whole number expression

• the second operand ofDIV or MODis negative (See theCHECKDIV
option)

wholeValueException

Overflow in evaluation of a whole number expression.

An example of language exception handling

PROCEDURE Div(a,b: INTEGER): INTEGER;
BEGIN

RETURN a DIV b
EXCEPT

IF IsM2Exception() THEN
IF M2Exception() = wholeDivException THEN

IF a < 0 THEN RETURN MIN(INTEGER)
ELSE RETURN MAX(INTEGER)
END;

END;
END;

END Div;

7.2. NEW LANGUAGE’S FEATURES 115

7.2.16 Termination

During the program termination, finalizations of those static modules that have
started initialization are executed in reverse order with respect to their initializa-
tions (See also7.2.12). The static modules are the program module, the imple-
mentation modules, and any local modules declared in the module blocks of these
modules.

Program termination starts from the first occurrence of the following event:

1. end of the program module body is reached

2. aRETURNstatement is executed in the program module body

3. the standard procedureHALT is called

4. an exception was raised and is not handled

The system moduleTERMINATION provides facilities for enquiries concerning
the occurrence of termination events.

PROCEDURE IsTerminating(): BOOLEAN;

ReturnsTRUEif any coroutine has inititated program termination andFALSE
otherwise.

PROCEDURE HasHalted(): BOOLEAN;

ReturnsTRUEif a call of HALThas been made andFALSEotherwise.

7.2.17 Coroutines

The system moduleCOROUTINESprovides facilities for coroutines creation, ex-
plicit control transfer between coroutines, and interrupts handling.Note: Some
features can be unavailable in the current release. See ChapterA for details.

Values of the typeCOROUTINEare created dynamically by a call of
NEWCOROUTINEand identify the coroutine in subsequent operations. A par-
ticular coroutine is identified by the same value of the coroutine type throughout
the lifetime of that coroutine.

TYPE COROUTINE;

The correspondent type was calledPROCESSin PIM. From the third edition of
PIM, theADDRESStype was used to identify a coroutine.

116 CHAPTER 7. XDS MODULA-2

PROCEDURE NEWCOROUTINE(
procBody: PROC;
workspace: SYSTEM.ADDRESS;
size: CARDINAL;
VAR cr: COROUTINE
[; initProtection: PROTECTION]);

Creates a new coroutine whose body is given byprocBody , and returns the
identity of the coroutine incr . workspace is a pointer to the work space al-
located to the coroutine;size specifies the size of that workspace in terms of
SYSTEM.LOC. initProtection is an optional parameter that specifies the
initial protection level of the coroutine.

An exception is raised (SeecoException) if the value ofsize is less than the
minimum workspace size.

If the optional parameter is omitted, the initial protection of the coroutine is given
by the current protection of the caller.

The created coroutine is initialized in such a way that when control is first trans-
ferred to that coroutine, the procedure given byprocBody is called in a normal
state. The exception (coException) is raised when theprocBody procedure
attempts to return to its caller. Since the caller has no exception handler, raising
this exception is a termination event.

The procedureTRANSFERcan be used to transfer control from one coroutine to
another.

PROCEDURE TRANSFER (VAR from: COROUTINE; to: COROUTINE);

Returns the identity of the calling coroutine infrom and transfers control to the
coroutine specified byto .

PROCEDURE CURRENT (): COROUTINE;

Returns the identity of the calling coroutine.

Interrupt handling

TheINTERRUPTSOURCEtype is used to identify interrupts.

TYPE INTERRUPTSOURCE = INTEGER;

Programs that use the interrupt handling facilities may be non-portable since the
type is implementation-defined.

PROCEDURE ATTACH(source: INTERRUPTSOURCE);

7.2. NEW LANGUAGE’S FEATURES 117

Associates the specified source of interrupts with the calling coroutine. More than
one source of interrupts may be associated with a single coroutine.

PROCEDURE DETACH(source: INTERRUPTSOURCE);

Dissociates the specified source of interrupts from the calling coroutine. The call
has no effect if the coroutine is not associated with source.

PROCEDURE IsATTACHED(source: INTERRUPTSOURCE): BOOLEAN;

Returns TRUE if and only if the specified source of interrupts is currently associ-
ated with a coroutine; otherwise returns FALSE.

PROCEDURE HANDLER(source: INTERRUPTSOURCE): COROUTINE;

Returns the coroutine, if any, that is associated with the source of interrupts. The
result is undefined if there is no coroutine associated with the source.

PROCEDURE IOTRANSFER(VAR from: COROUTINE;
to: COROUTINE);

Returns the identity of the calling coroutine infrom and transfers control to the
coroutine specified byto . On occurrence of an interrupt, associated with the
caller, control is transferred back to the caller, andfrom returns the identity of
the interrupted coroutine. An exception is raised if the calling coroutine is not
associated with a source of interrupts.

Protection

See section7.2.18for information about the typePROTECTION.

PROCEDURE LISTEN(prot: PROTECTION);

Momentarily changes protection of the calling coroutine toprot , usually lower-
ing it so as to allow an interrupt request to be granted.

PROCEDURE PROT(): PROTECTION;

Returns protection of the calling coroutine.

7.2.18 Protection

A program module, implementation module or local module may specify, by in-
cluding protection in its heading, that execution of the enclosed statement se-
quence is protected.

118 CHAPTER 7. XDS MODULA-2

ModuleHeading = MODULE ident [Protection] ";".
Protection = [ConstExpression].

A module with protection in its heading is called a directly protected module.
A directly protected procedure is an exported procedure declared in a protected
module.

Protection of a module is provided by surrounding the externally accessible pro-
cedures and module body by calls of access control procedures. The value of the
protection expression is passed to the call of access control procedures as an actual
parameter.

The protection expression should be of thePROTECTION type. The
PROTECTION type is an elementary type with at least two values:
INTERRUPTIBLE andUNINTERRUPTIBLE.

Operators<, >, <= and>= can be used to compare values of thePROTECTION
type. If x is a value ofPROTECTIONtype, thenx satisfies the conditions:

UNINTERRUPTIBLE≤ x ≤ INTERRUPTIBLE

7.3 Standard procedures

Procedure Meaning√
ASSERT(x[,n]) Terminates the program if x6=TRUE (See

7.6.14)√
COPY(x,v) Copies a string:v := x
DEC(v[,n]) v := v - n , default n=1
DISPOSE(v) Deallocates vˆ (See7.2.11)
EXCL(v,n) v := v - {n}
HALT Terminates program execution (See7.6.13)
INC(v[,n]) v := v + n , default n=1
INCL(v,n) v := v + {n}
NEW(v) Allocates vˆ (See7.2.11)√
NEW(v, x0... xn) Allocates vˆ of lengthx0...xn (See7.6.12)

Table 7.4: Modula-2 proper procedures

This section briefly describes the set of standard procedures and functions. Some
of them are not defined in the International Standard and are available only if the

7.3. STANDARD PROCEDURES 119

Function Meaning
ABS(x) Absolute value ofx√
ASH(x,n) Arithmetic shift
CAP(x) Corresponding capital letter
CHR(x) Character with the ordinal numberx
CMPLX(x,y) Complex number with real partx and imaginary

party√
ENTIER(x) Largest integer not greater thanx
FLOAT(x) VAL(REAL,x)
HIGH(v) High bound of the index ofv
IM(x) Imaginary part of a complexx
INT(x) VAL(INTEGER,x)√
LEN(v[,n]) Length of an array in the dimensionn (de-

fault=0)
LENGTH(x) String length
LFLOAT(x) VAL(LONGREAL,x)
MAX(T) Maximum value of typeT
MIN(T) Minimum value of typeT
ODD(x) x MOD 2 = 1
ORD(x) VAL(CARDINAL,x)
RE(x) Real part of a complexx
SIZE(T) The number of storage units, required by a vari-

able of typeT
TRUNC(x) Truncation to the integral part
VAL(T,x) Type conversion

Table 7.5: Modula-2 function procedures

optionM2EXTENSIONS is set. The procedureHALT (see7.6.13) may have an
additional parameter, if the extensions are enabled .

In the tables (7.4 and7.5) of predefined procedures,v stands for a designator,x,
y andn — for expressions,T — for a type. Non-standard procedures are marked
with

√
.

The procedureCOPYand the functionsASH, ENTIER andLEN are described in
The Oberon-2 Report.

120 CHAPTER 7. XDS MODULA-2

7.4 Compatibility

This section describes compatibility between entities of different types. There are
three forms of compatibility:

• expression compatibility (specifying the types that may be combined in ex-
pressions);

• assignment compatibility (specifying the type of a value that may be as-
signed to a variable);

• parameter compatibility (specifying the type of an actual parameter that
may be passed to a formal parameter).

The rules for parameter compatibility are relaxed in the case where a formal pa-
rameter is of a system storage type. This variation is known as the system param-
eter compatibility.

In most cases the compatibility rules are the same as described in PIM. However,
we suppose to explicitly list all the rules.

7.4.1 Expression compatibility

Two expressionsa andb of typesTa andTb areexpression compatibleif any of
the following statement is true:

a. The typesTa andTb are identical.Note: If a type is a subrange type, then
only its host type matters, therefore values of subranges of the same host
type are expression compatible with each other and with the host type.

b. A type of one expression is a complex type, and the other expression is a
complex constant.

c. A type of one expression is a real type, and the other expression is a real
constant.

d. A type of one expression is a whole type, and the other expression is a whole
constant.

e. A type of one expression is character, and the other expression is a string
literal of length 0 or 1. See also7.2.4.

7.4. COMPATIBILITY 121

VAR
char: CHAR;
...
WHILE (char # ’’) & (char # ".") DO
...

7.4.2 Assignment compatibility

An expressione of typeTe is assignment compatiblewith the variablev of type
Tv if one of the following conditions holds3:

a. Tv is identical to the typeTe, and the type is not an open array type.

b. Tv is a subrange of the typeTe.

c. Tv is the CARDINAL type or a subrange of the CARDINAL type andTe is
the INTEGER type ore is a whole constant.

d. Tv is the INTEGER type or a subrange of the INTEGER type andTe is the
CARDINAL type ore is a whole constant.

e. Tv is a real type ande is a real constant.

f. Tv is a complex type ande is a complex constant.

g. Tv is a pointer type ande is NIL.

h. Tv is a procedure type ande is the designator of a procedure which has the
same structure as the procedure typeTv and which has been declared at level
0.

i. Tv is the character type or a subrange of the character type ande is a string
literal of length 0 or 1.

j. Tv is an array type having the character type as its component type, ande is
a string literal of length less then or equal to the number of components in
arrays of typeTv

4.

k. Tv is the address type andTe is a pointer type orTe is the address type and
Tv is a pointer type.

3 For an expression of a subrange type only host type matters.
4A string literal is not assignment compatible with an array whose component’s type is a sub-

range of the character type.

122 CHAPTER 7. XDS MODULA-2

7.4.3 Value parameter compatibility

A formal type isvalue parameter compatiblewith an actual expression if any of
the following statements is true:

a. The formal type is constructed from a system storage type and is system
parameter compatible with the expression.

b. The formal parameter is an open array, the actual parameter is an array type
and the component type of the formal type is value parameter compatible
with the component type of the actual type5.

c. The formal type is assignment compatible with the actual parameter.

7.4.4 Variable parameter compatibility

A formal type isvariable parameter compatiblewith an actual variable if any of
the following statements is true:

a. The formal type is constructed from a system storage type and is system
parameter compatible with the expression.

b. The formal parameter is an open array, the actual parameter is an array type
and the component’s type of the formal type is variable parameter compati-
ble with the component’s type of the actual parameter type.

c. The formal type is identical to the actual parameter type.

7.4.5 System parameter compatibility

A formal type issystem parameter compatiblewith an actual parameter if any of
the following statements is true:

a. The formal parameter is of the SYSTEM.LOC type and the actual parameter
is of any typeT such thatSIZE(T) is equal to 1.

b. The formal parameter is of the type

ARRAY [0..n-1] OF SYSTEM.LOC

and the actual parameter is of any typeT such thatSIZE(T) is equal ton.

5A formal array parameter with the component’s typeT is not parameter compatible with the
actual parameter of typeT .

7.5. THE MODULA-2 MODULE SYSTEM 123

c. The formal parameter is of the open array type

ARRAY OF SYSTEM.LOC

and the actual parameter is of any type but not numeric literal.

d. The formal parameter is of the multi-dimensional open array type

ARRAY OF ARRAY [0..n-1] OF SYSTEM.LOC

and the actual parameter is of any typeT such thatSIZE(T) is a multiple
of n.

7.5 The Modula-2 module SYSTEM

The moduleSYSTEM provides the low-level facilities for gaining an access to
the address and underlying storage of variables, performing address arithmetic
operations and manipulating the representation of values. Program that use these
facilities may be non-portable.

This module does not exist in the same sense as other libraries but is hard-coded
into the compiler itself. To use the facilities provided, however, identifiers must
be imported in a usual way.

Some of theSYSTEM module procedures are generic procedures that cannot be
explicitly declared, i.e. they apply to classes of operand types or have several
possible forms of a parameter list .

TheSYSTEM module is the only module specified in the International Standard
that can be extended in the implementation. The XDSSYSTEM module provides
additional types and procedures.

Note: The moduleSYSTEM is different in Oberon-2. See8.6for details.

DEFINITION MODULE SYSTEM;

CONST
BITSPERLOC = 8;
LOCSPERWORD = 4;
LOCSPERBYTE = 1;

TYPE
LOC;
ADDRESS = POINTER TO LOC;
WORD = ARRAY [0 .. LOCSPERWORD-1] OF LOC;

124 CHAPTER 7. XDS MODULA-2

BYTE = LOC;

PROCEDURE ADDADR(addr: ADDRESS; offset: CARDINAL): ADDRESS;
PROCEDURE SUBADR(addr: ADDRESS; offset: CARDINAL): ADDRESS;
PROCEDURE DIFADR(addr1, addr2: ADDRESS): INTEGER;

PROCEDURE MAKEADR(val: <whole type>): ADDRESS;

PROCEDURE ADR(VAR v: <anytype>): ADDRESS;

PROCEDURE REF(VAR v: <anytype>): POINTER TO <type of the parameter>;

PROCEDURE ROTATE(val: <a packedset type>;
num: INTEGER): <type of the first parameter>;

PROCEDURE SHIFT(val: <a packedset type>;
num: INTEGER): <type of the first parameter>;

PROCEDURE CAST(<targettype>;
val: <anytype>): <targettype>;

PROCEDURE TSIZE (<type>; ...): CARDINAL;

(*--- *)
(* -------------- non-standard features ----------------- *)

TYPE
INT8 = <integer 8-bits type>;
INT16 = <integer 16-bits type>;
INT32 = <integer 32-bits type>;
CARD8 = <cardinal 8-bits type>;
CARD16 = <cardinal 16-bits type>;
CARD32 = <cardinal 32-bits type>;
BOOL8 = <boolean 8-bits type>;
BOOL16 = <boolean 16-bits type>;
BOOL32 = <boolean 32-bits type>;
INDEX = <type of index>
DIFADR_TYPE = <type that DIFADR function returns>

TYPE (* for use in Oberon *)
INT = <Modula-2 INTEGER type>;
CARD = <Modula-2 CARDINAL type>;

7.5. THE MODULA-2 MODULE SYSTEM 125

TYPE (* for interfacing to C *)
int = <C int type>;
unsigned = <C unsigned type>;
size_t = <C size_t type>;
void = <C void type>;

PROCEDURE MOVE(src,dest: ADDRESS; size: CARDINAL);
PROCEDURE FILL(adr : ADDRESS; val : BYTE; size : CARDINAL;);

PROCEDURE GET(adr: ADDRESS; VAR var: SimpleType);
PROCEDURE PUT(adr: ADDRESS; var: SimpleType);

PROCEDURE CC(n: CARDINAL): BOOLEAN;

END SYSTEM.

7.5.1 System types

LOC

Values of theLOC type are the uninterpreted contents of the smallest
addressable unit of a storage in implementation. The value of the call
TSIZE(LOC) is therefore equal to one.

The typeLOCwas introduced as a mechanism to resolve the problems with
BYTEandWORDtypes. Its introduction allows a consistent handling of both
these types, and enables alsoWORD-like types to be further introduced, eg:

TYPE WORD16 = ARRAY [0..1] OF SYSTEM.LOC;

The only operation directly defined for theLOC type is an assignment.
There are special rules affecting parameter compatibility for system stor-
age types. See7.4.5for further details.

BYTE

BYTEis defined asLOCand has all the properties of the typeLOC.

WORD

The typeWORDis defined as

CONST LOCSPERWORD = 4;
TYPE WORD = ARRAY [0..LOCSPERWORD-1] OF LOC;

and the value of the callTSIZE(WORD) is equal toLOCSPERWORD.

126 CHAPTER 7. XDS MODULA-2

The only operation directly defined for theWORDtype is an assignment.
There are special rules affecting parameter compatibility for system storage
types. See7.4.5for further details.

ADDRESS

The typeADDRESSis defined as

TYPE ADDRESS = POINTER TO LOC;

TheADDRESStype is an assignment compatible with all pointer types and
vice versa (See7.4.2). A formal variable parameter of theADDRESStype
is a parameter compatible with an actual parameter of any pointer type.

Variables of typeADDRESSare no longer expression compatible with
CARDINAL (as it was in PIM) and they cannot directly occur in expres-
sions that include arithmetic operators. FunctionsADDADR, SUBADRand
DIFADRwere introduced for address arithmetic.

Whole system types

TypesINT8 , CARD8, INT16 , CARD16, INT32 , CARD32are guaranteed
to contain 8, 16, or 32 bits respectively.

These types are introduced to simplify constructing the interfaces for
foreign libraries (See Chapter10). Types SHORTINT, LONGINT,
SHORTCARD, LONGCARDare synonyms ofINT8 , INT32 , CARD8,
CARD32, respectively (See also theM2ADDTYPES option).
Types INTEGER and CARDINAL are synonyms ofINT16 /INT32 ,
CARD16/CARD32, depending on the target platform. See also the
M2BASE16option.

These types are not described in the International Standard.

Boolean system types

Types BOOL8, BOOL16, and BOOL32 are guaranteed to contain 8,16
and 32 bits respectively. By default the compiler usesBOOL8type for
BOOLEAN. In some cases (e.g. in the interface to the Windows API)
BOOL16or BOOL32should be used instead.

These types are not described in the International Standard.

Bitset system types

Types SET8, SET16, and SET32 are guaranteed to contain 8,16 and
32 bits respectively. The predefined typeBITSET is a synonym for
SYSTEM.SET16or SYSTEM.SET32, depending on the target platform.
See also theM2BASE16option.

7.5. THE MODULA-2 MODULE SYSTEM 127

These types are not described in the International Standard.

Modula-2 whole types

TypesINT andCARDare equal to Modula-2INTEGERandCARDINAL
types, respectively. These types can be used in Oberon-2 in order to use
Modula-2 procedures in a portable way. See10.1for further details.

These types are not described in the International Standard.

Interface to C

Types int , unsigned , size_t and void are introduced to simplify
interfacing to C libraries. See10.3for further details.

7.5.2 System functions

PROCEDURE ADDADR(addr: ADDRESS;
offs: CARDINAL): ADDRESS;

Returns an address given by(addr + offs) . The subsequent use of the cal-
culated address may raise an exception.

PROCEDURE SUBADR(addr: ADDRESS;
offs: CARDINAL): ADDRESS;

Returns an address given by(addr - offs) . The subsequent use of the cal-
culated address may raise an exception.

PROCEDURE DIFADR(addr1,addr2: ADDRESS): INTEGER;

Returns the difference between addresses(addr1 - addr2) .

PROCEDURE MAKEADR(val: <whole type>): ADDRESS;

The function is used to construct a value of the ADDRESS type from the value of
a whole type.

Note: The International Standard does not define the number and types of the
parameters. Programs that use this procedure may be non-portable.

PROCEDURE ADR(VAR v: <any type>): ADDRESS;

Returns the address of the variablev .

PROCEDURE CAST(<type>; x: <any type>): <type>;

The functionCASTcan be used (as a type transfer function) to interpret a value

128 CHAPTER 7. XDS MODULA-2

of any type other than a numeric literal value as a value of another type6.

The value of the callCAST(Type,val) is an unchecked conversion ofval to
the typeType . If SIZE(val) = TSIZE(Type) , the bit pattern representa-
tion of the result is the same as the bit pattern representation ofval ; otherwise
the result and the value ofval have the same bit pattern representation for a size
equal to the smaller of the numbers of storage units.

The given implementation may forbid some combinations of parameter types.

Note: In Oberon-2 module SYSTEM, the respective procedure is calledVAL.

PROCEDURE TSIZE(Type; ...): CARDINAL;

Returns the number of storage units (LOCs) used to store the value of the specified
type. The extra parameters, if present, are used to distinguish variants in a variant
record and must be constant expressions7.

Example

TYPE
R = RECORD

CASE i: INTEGER OF
|1: r: REAL;
|2: b: BOOLEAN;

END;
END;

... TSIZE(R,1) ...

The value ofTSIZE(T) is equal toSIZE(T) .

Packedset functions

Values of packedset types are represented as sequences of bits8. The bit number 0
is the least significant bit for a given platform. The following is true, wherev is a
variable of the typeCARDINAL:

6The International Standard forbids the use of the PIM style type transfer, likeCARDINAL(x) .
7Those constant expressions are ignored in the current release.
8The current implementation does not distinguish between set and packedset types.

7.5. THE MODULA-2 MODULE SYSTEM 129

CAST(CARDINAL,BITSET{0}) = VAL(CARDINAL,1)
SHIFT(CAST(BITSET,v),1) = v * 2
SHIFT(CAST(BITSET,v),-1) = v DIV 2

Note: The functionsROTATEandSHIFT can be applied to a set with size less
than or equal to the size ofBITSET .

PROCEDURE ROTATE(x: T; n: integer): T;

Returns the value ofx rotatedn bits to the left (for positiven) or to the right (for
negativen).

PROCEDURE SHIFT(x: T; n: integer): T;

Returns the value ofx logically shiftedn bits to the left (for positiven) or to the
right (for negativen).

Warning: The result ofSHIFT(x,n) , wheren is greater than the number of
elements inT, is undefined.

Non-standard functions

PROCEDURE CC(n: whole constant): BOOLEAN;

Returns TRUE if the corresponding condition flag is set. The function is not
implemented in the current release.

PROCEDURE REF(VAR v: <anytype>):
POINTER TO <type of the parameter>;

Returns the pointer to the variablev . See also10.4.2.

PROCEDURE BIT(adr: T; bit: INTEGER): BOOLEAN;

Returns bitn of Mem[adr] . T is either ADDRESS or whole type.

7.5.3 System procedures

Note: all these procedures are non-standard.

PROCEDURE MOVE (src, dst: ADDRESS; size: CARDINAL);

Copiessize bytes from the memory location specified bysrc to the memory
location specified bydst .

Warning: No check for area overlap is performed. The behaviour of
SYSTEM.MOVEin case of overlapping areas is undefined.

130 CHAPTER 7. XDS MODULA-2

PROCEDURE FILL(adr : ADDRESS; val : BYTE; size : CARDINAL;);

Fills the memory block of sizesize starting from the memory location specified
by adr with the value ofval using a very efficient code.

PROCEDURE GET (adr: ADDRESS; VAR v: SimpleType);
PROCEDURE PUT (adr: ADDRESS; x: SimpleType);

Gets/puts a value from/to address specified byadr . The second parameter cannot
be of a record or array type.

VAR i: INTEGER;

GET (128, i); (* get system cell value *)
i := i+20; (* change it *)
PUT (128, i); (* and put back *)

PROCEDURE CODE(...);

The procedure is intended to embed a sequence of machine instructions directly
into the generated code. The procedure is not implemented in the current release.

7.6 Language extensions

Warning: Using extensions may cause problems with software portability to
other compilers.

In the standard mode the XDS Modula-2 compiler is ISO compliant (See7.1).
A set of language extensions may be enabled using theM2EXTENSIONS and
M2ADDTYPES options.

The main purposes of supporting the language extensions are:

• to improve interfacing with other languages (See Chapter10)

• to simplify migration from Modula-2 to Oberon-2

• to implement some useful features not found in ISO Modula-2

• to provide backward compatibility with previous releases

7.6. LANGUAGE EXTENSIONS 131

7.6.1 Lexical extensions

Comments

NOTE: Only valid when optionM2EXTENSIONS is set.

As well as(**) , there is another valid format for comments in the source texts.
The portion of a line from “-- ” to the end is considered as a comment.

VAR i: INTEGER; -- this is a comment
--(*

i:=0; (* this line will be compiled *)
--*)

Numeric constants

NOTE: Only valid when optionM2EXTENSIONS is set.

Both Modula-2 and Oberon-2 syntax rules for the numeric and character repre-
sentations may be used.

Number = ["+" | "-"] Integer | Real.
Integer = digit { digit }

| octalDigit { octalDigit } "B"
| digit { hexDigit } "X".

Real = digit { digit } "." { digit } [ScaleFactor].
ScaleFactor = ("E" | "D") ["+" | "-"] digit {digit}.

Character = ’"’ char ’"’ | "’" char "’"
| digit {hexDigit} "H"
| octalDigit {octalDigit} "C".

Examples

1991 1991 (decimal)
0DH 13 (decimal)
15B 13 (decimal)
41X "A"
101C "A"

Note: the symbol ”D” in a ScaleFactor denotes aLONGREALvalue.

132 CHAPTER 7. XDS MODULA-2

7.6.2 Additional numeric types

NOTE: Only valid when optionM2ADDTYPES is set.

The compiler optionM2ADDTYPES introduces the following additional nu-
meric types:

1. SHORTINT integers between−128 and127
2. LONGINT integers between−231 and231 − 1
3. SHORTCARD unsigned integers between0 and255
4. LONGCARD unsigned integers between0 and232 − 1

The following terms for groups of types will be used:

Real typesfor (REAL, LONGREAL)
Integer typesfor (SHORTINT, INTEGER, LONGINT)
Cardinal typesfor (SHORTCARD, CARDINAL, LONGCARD)
Whole typesfor integerandcardinal types
Numeric typesfor wholeandreal types

All integer types are implemented as subranges of internal compiler integer types.
Therefore, according to the compatibility rules (See7.4), the values of differ-
ent integer types can be mixed in the expressions. The same holds for cardinal
types. A mixture of integer and cardinal types is not allowed in expressions. As in
Oberon-2, the numeric types form a hierarchy, and larger types include (i.e. can
accept the values of) smaller types:

LONGREAL⊆ REAL⊂ whole types

Type compatibility in expressions is extended according to the following rules
(See7.4.1):

• The type of the result of an arithmetic or relation operation is the smallest
type which includes the types of both operands.

• Before the operation, the values of both operands are converted to the re-
sult’s type.

For instance, if the following variables are defined:

7.6. LANGUAGE EXTENSIONS 133

s: SHORTCARD;
c: CARDINAL;
i: INTEGER;
l: LONGINT;
r: REAL;
lr: LONGREAL;

then

Expression Meaning Result type
s + c VAL(CARDINAL,s) + c CARDINAL
l * i l * VAL(LONGINT,i) LONGINT
r + 1 r + VAL(REAL,1) REAL
r = s r = VAL(REAL,s) BOOLEAN
r + lr VAL(LONGREAL,r) + lr LONGREAL
c + i not allowed

The assignment compatibility rules are also extended (See7.4.2), so an expres-
sione of typeTe is assignment compatible with a variablev of typeTv if Te and
Tv are of numeric types andTv includesTe. Cardinal types and integer types
are assignment compatible. The compiler generates the range checks whenever
necessary.

Examples (see declarations above):

Statement Comment
i:=c; INTEGER andCARDINALare assignment compatible
i:=s; INTEGER andSHORTCARDare assignment compatible
l:=i; LONGINT andINTEGERare subranges of the same host type
r:=i; REAL ⊂ INTEGER
r:=c; REAL ⊂ CARDINAL
lr:=r; LONGREAL ⊆ REAL

7.6.3 Type casting

NOTE: Only valid when optionM2EXTENSIONS is set.

In ISO Modula-2, the second parameter of theSYSTEM.CASTprocedure can not
be a numeric literal. XDS provides numeric literal casting as an extension:

134 CHAPTER 7. XDS MODULA-2

VAR
c: CARDINAL;

BEGIN
(* Ok if M2EXTENSIONS is ON *)
c := SYSTEM.CAST(CARDINAL,-1);

7.6.4 Assignment compatibility with BYTE

NOTE: Only valid when optionM2EXTENSIONS is set.

An expression of type CHAR, BOOLEAN, SHORTCARD, SHORTINT,
SYSTEM.INT8, or SYSTEM.CARD8can be assigned to a variable of type
BYTEor passed as an actual parameters to a formal parameter of typeBYTE.

7.6.5 Dynamic arrays

NOTE: Only valid when optionM2EXTENSIONS is set.

XDS allows Oberon-2 style dynamic arrays to be used according to the Oberon-2
rules.

An open array is an array type with no lower and upper bound specified, i.e.
ARRAY OF SomeType. Open arrays may be used only in procedure parameter
lists or as a pointer base type.

TYPE String = POINTER TO ARRAY OF CHAR;

Neither variables nor record fields may be of open array type.

If the designator type is formally an open array, then the only operations allowed
with it are indexing and passing it to a procedure.

The extended versions of standard proceduresNEWandDISPOSEcan be used to
create and delete the dynamic arrays (See7.6.12).

Example

TYPE
VECTOR = ARRAY OF REAL;

(* 1-dim open array *)
Vector = POINTER TO VECTOR;

7.6. LANGUAGE EXTENSIONS 135

(* pointer to open array *)
MATRIX = ARRAY OF VECTOR;

(* 2-dim open array *)
Matrix = POINTER TO MATRIX;

(* pointer to this *)

VAR
v: Vector;
m: Matrix;

PROCEDURE ClearVector(VAR v: VECTOR);
VAR i: CARDINAL;

BEGIN
FOR i := 0 TO HIGH (v) DO v[i] := 0 END;

END ClearVector;

PROCEDURE ClearMatrix(VAR m: Matrix);
VAR i: CARDINAL;

BEGIN
FOR i := 0 TO HIGH (m) DO ClearVector(m[i]) END;

END ClearMatrix;

PROCEDURE Test;
BEGIN

NEW(v, 10);
NEW(m, 10, 20);
ClearVector(vˆ);
ClearMatrix(mˆ);
vˆ[0] := 1;
mˆ[1][1] := 2;
mˆ[2,2] := 1000;
DISPOSE(v);
DISPOSE(m);

END Test;

7.6.6 Constant array constructors

NOTE: Only valid when optionM2EXTENSIONS is set.

XDS allows the declaration of constant arrays in the form

136 CHAPTER 7. XDS MODULA-2

ARRAY OF QualIdent "{" ExprList "}"

QualIdent should refer to a basic type, range or enumeration type, and all
expressions withinExprList should be of that type.

Note: structured types and non-constant expressions are not allowed.

The actual type of such a constant isARRAY [0..n] OF QualIdent , where
n+1 is the number of expressions inExprList .

CONST table = ARRAY OF INTEGER {1, 2+3, 3};

Constant arrays are subject to the same rules as all other constants, and may be
read as a normal array.

In some cases constructors of this form are more convenient than ISO standard
value constructors (See7.2.5), because you do not need to declare a type and to
calculate manually the number of expressions. However, to make your programs
more portable, we recommend to use the standard features.

7.6.7 Set complement

NOTE: Only valid when optionM2EXTENSIONS is set.

As in Oberon-2, an unary minus applied to a set denotes the complement of that
set, i.e.−x is the set of all values which are not the elements ofx.

TYPE SmallSet = SET OF [0..5];
VAR x, y: SmallSet;
BEGIN

x := SmallSet{1,3,5};
y := -x; (* y = {0, 2, 4} *)
y := SmallSet{0..5} - x; (* y = {0, 2, 4} *)

END;

7.6.8 Read-only parameters

NOTE: Only valid when optionM2EXTENSIONS is set.

In a formal parameter section, the symbol"-" may be placed after the name
of a value parameter. Such a parameter is calledread-only; its value can not be
changed in the procedure body. Read-only parameters do not need to be copied

7.6. LANGUAGE EXTENSIONS 137

before procedure activation; this enables procedures with structured parameters to
be more effective.

For ARRAYand RECORDread-only parameters, the array elements and record
fields are protected. Read-only parameters cannot be used in definition modules.

We recommend to use read-only parameters with care. The compiler does not
check that the read-only parameter is not modified via another parameter or a
global variable.

Example

PROCEDURE Foo(VAR dest: ARRAY OF CHAR;
source-: ARRAY OF CHAR);

BEGIN
dest[0]:=’a’;
dest[1]:=source[0];

END Foo;

The callFoo(x,x) would produce a wrong result, because the firstFoo state-
ment changes the value ofsource[0] (source is not copied and points to the
same location asdest).

7.6.9 Variable number of parameters

NOTE: Only valid when optionM2EXTENSIONS is set.

The last formal parameter of a procedure may be declared as a “sequence of bytes”
(SEQ-parameter). In a procedure call, any (possibly empty) sequence of actual
parameters of any types may be substituted in place of that parameter. Only the
declaration

SEQ name: SYSTEM.BYTE

is allowed. A procedure may have only one SEQ parameter, and it must be the
last element of the formal parameters list.

Within the procedure, sequence parameters are very similar to open array param-
eters. This means that :

• theHIGH function can be applied to the parameter;

• aSEQactual parameter may be subsequently passed to another procedure

138 CHAPTER 7. XDS MODULA-2

• the i -th byte of the sequences can be accessed ass[i] , like an array
element.

An array of bytes, which is passed to a procedure as a formal SEQ-parameter, is
formed as follows:

• values of all actual parameters forming the sequence are represented as de-
scribed below and concatenated into an array in their textual order

• integer values are converted toLONGINT

• BOOLEAN, CHAR, cardinal and enumeration values are converted to
LONGCARD

• values of range types are converted according to their base types

• real values are converted toLONGREAL

• values of pointer, opaque and procedure types are converted toADDRESS

• a structured value (record or array) is interpreted as an array of bytes and
passed as a sequence of:

– the address of the structure

– a zero 32-bit word (reserved for future extensions)

– size of the structure (in LOCs) minus one

See12.2for further information.

7.6.10 Read-only export

NOTE: Only valid when optionM2EXTENSIONS is set.

The Oberon-2 read-only export symbol ”-”, being specified after a variable or
field identifier in a definition module will define the identifier as read-only for any
client. Only the module in which a read-only variable or field is declared may
change its value.

The compiler will not allow the value of a read-only exported object to be changed
explicitly (by an assignment) or implicitly (by passing it as a VAR parameter).

For read-only variables of an array or record type, both array elements and record
fields are also read-only.

7.6. LANGUAGE EXTENSIONS 139

Example (an excerpt from a definition module):

TYPE Rec = RECORD
n-: INTEGER;
m : INTEGER;

END;

VAR
in-: FILE;
x-: Rec;

7.6.11 Renaming of imported modules

NOTE: Only valid when optionM2EXTENSIONS is set.

An imported module can be renamed inside the importing module. The real name
of the module becomes invisible.

Import = IMPORT [Ident ":="] Ident
{ "," [Ident ":="] ident } ";".

Example

MODULE test;
IMPORT vw := VirtualWorkstation;

VAR ws: vw.Station;

BEGIN
ws := vw.open();

END test.

7.6.12 NEW and DISPOSE for dynamic arrays

Standard proceduresNEWandDISPOSEcan be applied to variables of a dynamic
array type (See7.6.5). ProceduresDYNALLOCATEandDYNDEALLOCATEhave
to be visible in the calling context. Their headers and semantics are described
below.

140 CHAPTER 7. XDS MODULA-2

PROCEDURE DYNALLOCATE(VAR a: ADDRESS;
size: CARDINAL;

len: ARRAY OF CARDINAL);

The procedure must allocate a dynamic array and return its address ina. size is
the size of the array base type (the size of an element) andlen[i] is the length
of the array ini-th dimension.

PROCEDURE DYNDEALLOCATE(VAR a: ADDRESS;
size,dim: CARDINAL);

The procedure must deallocate a dynamic array, wheresize is the size of an
element anddim is the number of dimensions.

Note: In most cases, default implementation of these procedures may be used.
TheSTORAGE option controls whether the default memory management should
be enabled.

A dynamic array is represented as a pointer to a so-calledarray descriptor(See
12.1.8).

7.6.13 HALT

NOTE: Only valid when optionM2EXTENSIONS is set.

An optional integer parameter is allowed for theHALTprocedure.

PROCEDURE HALT ([code: INTEGER]);

HALT terminates the program execution with an optional return code. Consult
your operating system/environment documentation for more details.

7.6.14 ASSERT

NOTE: Only valid when optionM2EXTENSIONS is set.

The procedureASSERTchecks its boolean parameter and terminates the program
if it is not TRUE. The second optional parameter denotestask termination code.
If it is omitted, a standard value is assumed.

PROCEDURE ASSERT(cond: BOOLEAN [; code: INTEGER]);

7.7. SOURCE CODE DIRECTIVES 141

A call ASSERT(expr,code) is equivalent to

IF NOT expr THEN HALT(code) END;

7.7 Source code directives

Source code directives (or pragmas) are used to set compilation options in the
source text and to select specific pieces of the source text to be compiled (condi-
tional compilation). The ISO Modula-2 standard does not describe pragma syntax.
XDS supports source code directives in both Modula-2 and Oberon-2. The syntax
described inThe Oakwood Guidelines for the Oberon-2 Compiler Developersis
used.

7.7.1 Inline options and equations

In some cases it is more desirable to set a compiler option or equation within the
source text. Some compiler options, such asMAIN , are more meaningful in the
source file before the module header, and some, such as run-time checks, even
between statements.

XDS allows options to be changed in the source text by using standard ISO
pseudo comments<* ... *> 9 Some options can only be placed in the source
text before the module header (i.e. before keywordsIMPLEMENTATION,
DEFINITION , andMODULE). These options will be ignored if found elsewhere
in the source text. See5.2for more details.

The format of an inline option or equation setting is described by the following
syntax:

Pragma = "<*" PragmaBody "*>"
PragmaBody = PUSH | POP | NewStyle | OldStyle
NewStyle = [NEW] name ["+" | "-" | "=" string]
OldStyle = ("+" | "-") name

NewStyle is proposed as the Oakwood standard for Oberon-2,OldStyle
is the style used in the previous XDS releases. All option names are case-
independent. IfOldStyle is used, there should be no space between<* and

9The old pragma style(*$..*) is supported to provide backward compatibility, but the com-
piler reports the “obsolete syntax” warning.

142 CHAPTER 7. XDS MODULA-2

+ or - OldStyle does not allow to declare a new option or equation and to
change an equation value.

In all cases, the symbol+ sets the corresponding option ON, and the symbol-
sets it OFF.

PUSHand POPkeywords may be used to save and restore the whole state of
options and equations.

Examples

PROCEDURE Length(VAR a: ARRAY OF CHAR): CARDINAL;
VAR i: CARDINAL;

BEGIN
<* PUSH *> (* save state *)
<* CHECKINDEX - *> (* turn CHECKINDEX off *)
i := 0;
WHILE (i<=HIGH(a)) & (a[i]#0C) DO INC(i) END;
<* POP *> (* restore state *)
RETURN i;

END Length;

<* ALIGNMENT = "2" *>
TYPE

R = RECORD (* This record is 6 bytes long *)
f1: CHAR;
f2: CARDINAL;

END;

7.7.2 Conditional compilation

It is possible to use conditional compilation with Modula-2 and Oberon-210 com-
pilers via the standard ISO pragma notation<* *> . Conditional compilation
statements can be placed anywhere in the source code. The syntax of the condi-
tional compilationIF statement follows:

IfStatement = <* IF Expression THEN *> text
{ <* ELSIF Expression THEN *> text }
[<* ELSE *> text]

10only if theO2ISOPRAGMA option is set ON

7.7. SOURCE CODE DIRECTIVES 143

<* END *>
Expression = SimpleExpression

[("=" | "#") SimpleExpression].
SimpleExpression = Term { "OR" Term}.
Term = Factor { "&" Factor}.
Factor = Ident | string |

"DEFINED" "(" Ident ")" |
"(" Expression ")" |
"˜" Factor | "NOT" Factor.

Ident = option | equation.

An operand in an expression is either a name of an option or equation or a string
literal. An option has the string value"TRUE" , if it is currently set ON and
"FALSE" , if it is currently set off or was not defined at all. The compiler will
report a warning if an undeclared option or equation is used as a conditional com-
pilation identifier.

The comparison operators ”=” and ”#” are not case sensitive.

See also the section5.6.

Examples

IMPORT lib :=
<* IF __GEN_X86__ THEN *> MyX86Lib;
<* ELSIF __GEN_C__ THEN *> MyCLib;
<* ELSE *> *** Unknown ***
<* END *>

CONST Win = <* IF Windows THEN *> TRUE
<* ELSE *> FALSE
<* END *>;

<* IF DEFINED(Debug) & (DebugLevel = "2") THEN *>
PrintDebugInformation;

<* END *>;

<* IF target_os = "OS2" THEN *>
Strings.Capitalize(filename);
<* IF NOT HPFS THEN *>

TruncateFileName(filename);

144 CHAPTER 7. XDS MODULA-2

<* END *>
<* END *>

Chapter 8

XDS Oberon-2

This chapter includes the details of the Oberon-2 language which are specific for
this implementation. In the standard mode1 XDS Oberon-2 is fully compatible
with ETH compilers (SeeThe Oberon-2 Report). The last changes to the language
are described in8.2.

To provide a smooth path from Modula-2 to Oberon-2 XDS allows all Modula-2
data types to be used in Oberon-2 modules (See8.4).

Several language extensions are implemented in the language according toThe
Oakwood Guidelines for the Oberon-2 Compiler Developers2 (See8.3). Other
language extensions are described in8.5. As XDS is a truly multi-lingual system,
special features were introduced to provide interfacing to foreign languages (See
Chapter10).

8.1 The Oberon environment

The Oberon-2 language was originally designed for use in an environment that
providescommand activation, garbage collection,and dynamic loadingof the
modules. Not being a part of the language, these features still contribute to the
power of Oberon-2.

The garbage collector and command activation are implemented in the Oberon
Run-Time Support and can be used in any program. The dynamic loader is not
provided in the current release. See9.3for further information.

1When the optionsO2EXTENSIONS andO2NUMEXT are OFF.
2These guidelines have been produced by a group of Oberon-2 compiler developers, including

ETH developers, after a meeting at the Oakwood Hotel in Croydon, UK in June 1993.

145

146 CHAPTER 8. XDS OBERON-2

8.1.1 Program structure

In an Oberon-2 environment, any declared parameterless procedure can be con-
sidered as a main procedure and can be called by its name (a qualified identifier
of the formModuleName.ProcName).

Due to the nature of XDS, and its freedom from the Oberon system, a different
approach had to be found to declare the ‘top level’ or program modules.

The module which contains the top level of your program must be compiled it with
the MAIN option set. This will generate an entry point to your program. Only
one module per program shall be compiled with the option set. It is recommended
to set it in the module header:

<*+ MAIN *>
MODULE hello;

IMPORT InOut;

BEGIN
InOut.WriteString ("Hello World!");
InOut.WriteLn;

END hello.

8.1.2 Creating a definition

XDS provides two different ways to create a definition for an Oberon-2 module:

• theBROWSE operation mode (see4.2.5) creates a definition module from
a symbol file

• theMAKEDEF option forces the Oberon-2 compiler to generate a (pseudo)
definition module after successful compilation of an Oberon-2 module.

TheMAKEDEF option provides additional services: the compiler will preserve
the so-calledexportedcomments (i.e. comments which start with ‘(**’) if the
XCOMMENTS option is ON.

The generated pseudo-definition module contains all exported declarations in the
order of their appearance in the source text. All exported comments are placed at
the appropriate positions.

8.2. LAST CHANGES TO THE LANGUAGE 147

A definition can be generated in threestyles. TheBSTYLE equation can be used
to choose one of the styles:DEF (default),DOC or MOD .

The DEF style

This produces an ETH-style definition module. Alltype-bound procedures
(methods) and relative comments are shown as parts of the corresponding
record types.

This is the only style for which theBSREDEFINE and BSCLOSURE
options are applicable.

The DOC style

This produces a pseudo-definition module in which methods are shown as
parts of the appropriate record types (ignoring comments) and at the posi-
tions at which they occur in the source text.

The MOD style

This attempts to produce a file which can be compiled as an Oberon-2 mod-
ule after slight modification (i.e. the file will contain ”END procname”,
etc.)

8.2 Last changes to the language

8.2.1 ASSERT

The procedureASSERTchecks its boolean parameter and terminates the program
if it is not TRUE. The second optional parameter denotes atask termination code.
If omitted, a standard value is assumed.

PROCEDURE ASSERT(cond: BOOLEAN [; code: INTEGER]);

A call ASSERT(expr,code) is equivalent to

IF NOT expr THEN HALT(code) END;

8.2.2 Underscores in identifiers

According to theOakwood Guidelinesan underscore (”_”) may be used in iden-
tifiers (as a letter).

ident = (letter | "_") { letter | digit | "_" }

148 CHAPTER 8. XDS OBERON-2

We recommend to use underscores with care, as it may cause problems with soft-
ware portability to other compilers. This feature may be important for interfacing
to foreign languages (See Chapter10).

8.2.3 Source code directives

Source code directives (or pragmas) are used to set compilation options in
the source text and to select specific pieces of the source text to be compiled
(conditional compilation). According to theOakwood Guidelinesall directives
are contained in ISO Modula-2 style pseudo comments using angled brackets
<* ... *> .

The additional language constructs should not be considered to be part of the
Oberon-2 language. They define a separate compiler control language that coexist
with Oberon-2. The optionO2ISOPRAGMA allows pragmas to be used.

The syntax of the directives is the same for Modula-2 and Oberon-2. See7.7 for
further details.

8.3 Oakwood numeric extensions

XDS Oberon-2 supports two extensions which are of importance for scientific
programming, namely

• complex numbers

• in-line exponentiation operator

TheO2NUMEXT option should be set to use these extensions.

8.3.1 Complex numbers

NOTE: Only valid when optionO2NUMEXT is set.

Two additional types are included in the type hierarchy if theO2NUMEXT option
is set:

COMPLEX defined as (REAL,REAL)
LONGCOMPLEXdefined as (LONGREAL,LONGREAL)

8.3. OAKWOOD NUMERIC EXTENSIONS 149

All numeric types form a (partial) hierarchy

whole types⊂ REAL ⊆ COMPLEX
LONGREAL

⊆ LONGCOMPLEX

A common mathematical notation is used for complex number literals:

number = integer | real | complex
complex = real "i"

A literal of the form5.0i denotes a complex number with real part equal to zero
and an imaginary part equal to5.0. Complex constants with a non-zero real part
can be described using arithmetic operators.

CONST
i = 1.i;
x = 1. + 1.i;

For the declarations

VAR
c: COMPLEX;
l: LONGCOMPLEX;
r: REAL;
x: INTEGER;

the following statements are valid:

c:=i+r;
l:=c;
l:=c*r;
l:=l*c;

New conversion functionsREand IM can be used to obtain a real or imaginary
part of a value of a complex type. Both functions have one parameter. If the
parameter is of theCOMPLEXtype, both functions return aREALvalue; if the
parameter is of theLONGCOMPLEXtype, functions return aLONGREALvalue;
otherwise the parameter should be a complex constant and functions return a real
constant.

A complex value can be formed by applying the standard functionCMPLXto
two reals. If bothCMPLXarguments are real constants, the result is a complex
constant.

150 CHAPTER 8. XDS OBERON-2

CONST i = CMPLX(0.0,1.0);

If both expressions are of theREALtype, the function returns aCOMPLEXvalue,
otherwise it returns aLONGCOMPLEXvalue.

8.3.2 In-line exponentiation

NOTE: Only valid when optionO2NUMEXT is set.

The exponentiation operator** provides a convenient notation for arithmetic ex-
pressions, which does not involve function calls. It is an arithmetic operator which
has a higher precedence than multiplication operators.

Term = Exponent { MulOp Exponent }.
Exponent = Factor { "**" Factor }.

Note: the operator is right-associated:

a ∗ ∗b ∗ ∗c is evaluated asa ∗ ∗(b ∗ ∗c)

The left operand of the exponentiation (a**b) should be any numeric value (in-
cluding complex), while the right operand should be of a real or integer type. The
result type does not depend of the type of right operand and is defined by the table:

Left operand type Result type
an integer type REAL
REAL REAL
LONGREAL LONGREAL
COMPLEX COMPLEX
LONGCOMPLEX LONGCOMPLEX

8.4 Using Modula-2 features

All Modula-2 types and corresponding operations can be used in Oberon-2, in-
cluding enumeration types, range types, records with variant parts, sets, etc.

Important Notes:

• It is not allowed to declare Modula-2 types in an Oberon-2 module.

8.5. LANGUAGE EXTENSIONS 151

• A module using Modula-2 features is likely to be non-portable to other com-
pilers.

Example

(*MODULA-2*) DEFINITION MODULE UsefulTypes;

TYPE
TranslationTable = ARRAY CHAR OF CHAR;
Color = (red,green,blue);
Colors = SET OF Color;

END UsefulTypes.

(*OBERON-2*) MODULE UsingM2;

IMPORT UsefulTypes;

TYPE
TranslationTable* = UsefulTypes.TranslationTable;

VAR colors*: UsefulTypes.Color;

BEGIN
colors:=UsefulTypes.Colors{UsefulTypes.red};

END UsingM2.

8.5 Language extensions

Warning: Using extensions may cause problems with the software portability to
other compilers.

In the standard mode, the XDS Oberon-2 compiler is fully compatible with ETH
compilers (See also8.2). TheO2EXTENSIONS option enables some language
extensions. The main purposes of language extensions are

• to improve interfacing to other languages (See Chapter10).

• to provide backward compatibility with the previous versions of XDS.

152 CHAPTER 8. XDS OBERON-2

See also

• Source language directives (8.2.3)

• Oakwood numeric extensions (8.3).

8.5.1 Comments

NOTE: Only valid when optionO2EXTENSIONS is set.

As well as ”(**) ”, there is another valid format for comments in source texts.
The portion of a line from ”-- ” to the end of line is considered a comment.

VAR j: INTEGER; -- this is a comment

8.5.2 String concatenation

NOTE: Only valid when optionO2EXTENSIONS is set.

The symbol ”+” can be used for constant string and characters concatenation. See
7.2.4for more details.

8.5.3 VAL function

NOTE: Only valid when optionO2EXTENSIONS is set.

The functionVAL can be used to obtain a value of the specified scalar type from
an expression of a scalar type. See7.2.10for more details.

PROCEDURE VAL(Type; expr: ScalarType): Type;

The function can be applied to any scalar types, including system fixed size types
(See8.6.2).

8.5.4 Read-only parameters

NOTE: Only valid when optionO2EXTENSIONS is set.

8.6. THE OBERON-2 MODULE SYSTEM 153

In a formal parameter section, the symbol"-" may appear after a name of a value
parameter. That parameter is calledread-only; its value can not be changed in the
procedure’s body. Read-only parameters need not to be copied before the pro-
cedure activation; this enables procedures with structured parameters to be more
effective. Read-only parameters can not be used in a procedure type declaration.

We recommend to use read-only parameters with care. The compiler does not
check that the read-only parameter is not modified via another parameter or a
global variable.

Example

PROCEDURE Foo(VAR dest: ARRAY OF CHAR;
source-: ARRAY OF CHAR);

BEGIN
dest[0]:=’a’;
dest[1]:=source[0];

END Foo;

The callFoo(x,x) would produce a wrong result, because the first statement
changes the value ofsource[0] (source is not copied and points to the same
location asdest).

8.5.5 Variable number of parameters

NOTE: Only valid when optionO2EXTENSIONS is set.

Everything contained in the section7.6.9is applicable to Oberon-2.

8.5.6 Value constructors

NOTE: Only valid when optionO2EXTENSIONS is set.

Everything contained in the section7.2.5is applicable to Oberon-2.

8.6 The Oberon-2 module SYSTEM

Low-level facilities are provided by the moduleSYSTEM. This module does not
exist in the same sense as other library modules; it is hard-coded into the compiler

154 CHAPTER 8. XDS OBERON-2

itself. However, to use the provided facilities, it must be imported in the usual
way.

Some procedures in the moduleSYSTEMare generic procedures that cannot be
explicitly declared, i.e. they apply to classes of operand types.

XDS Oberon-2 compiler implements all system features described inThe
Oberon-2 Report(exceptGETREG, PUTREG, andCC) and allows one to access
all features, described in the Modula-2 International Standard Modula-2 (See7.5).
In this section we describe only features specific for this implementation.

8.6.1 Compatibility with BYTE

Expressions of typesCHAR, BOOLEAN, SHORTINTandSYSTEM.CARD8can
be assigned to variables of typeBYTEor passed as actual parameters to formal
parameters of typeBYTE.

If a formal procedure parameter has typeARRAY OF BYTE, then the correspond-
ing actual parameter may be of any type, except numeric literals.

8.6.2 Whole system types

ModuleSYSTEMcontains the signed typesINT8 , INT16 , INT32 , and unsigned
typesCARD8, CARD16, CARD32, which are guaranteed to contain exactly 8, 16,
or 32 bits respectively. These types were introduced to simplify consstructing
the interfaces to foreign libraries (See Chapter10). The basic typesSHORTINT,
INTEGER, LONGINTare synonyms ofINT8 , INT16 , andINT32 respectively.

The unsigned types form a hierarchy whereby larger types include (the values of)
smaller types.

SYSTEM.CARD32⊇ SYSTEM.CARD16⊇ SYSTEM.CARD8

The whole hierarchy of numeric types (See also8.3.1):

LONGREAL⊇ REAL⊇
{

signed types
unsigned types

8.6.3 NEW and DISPOSE

The procedureSYSTEM.NEWcan be used to allocate the system memory, i.e.
memory which is not the subject of garbage collection.SYSTEM.NEWis a generic

8.6. THE OBERON-2 MODULE SYSTEM 155

procedure, which is applied to pointer types and can be used in several ways,
depending on pointer’s base type.

PROCEDURE NEW(VAR p: AnyPointer [; x0,..xn: integer]);

Let typeP be defined asPOINTER TOT andp is of typeP.

NEW(p) T is a record or fixed length array type. The proce-
dure allocates a storage block ofSIZE(T) bytes and
assigns its address top.

NEW(p, n) T is a record or fixed length array type. The procedure
allocates a storage block ofn bytes and assigns its
address top.

NEW(p, x0,.. xn−1) T is ann-dimensional open array. The procedure al-
locates an open array of lengths given by the expres-
sionsx0,..xn−1

The procedureSYSTEM.DISPOSEcan be used to free a block previously allo-
cated by a call toSYSTEM.NEW. It doesnot immediately deallocate the block,
but marks it as a free block. The block will be deallocated by the next call of the
garbage collector.

PROCEDURE DISPOSE(VAR p: AnyPointer; [size: integer]);

DISPOSE(p) T is a record or array type. The procedure deallocates
the storage blockp points to.

DISPOSE(p, n) T is a record or fixed length array type. The procedure
deallocates the storage block ofn bytesp points to.

8.6.4 M2ADR

In Oberon-2, theSYSTEM.ADRprocedure returnsLONGINT, which is not al-
ways very convenient. TheSYSTEM.M2ADRprocedure behaves as Modula-2
SYSTEM.ADR, returningSYSTEM.ADDRESS:

PROCEDURE M2ADR(VAR x: any type): ADDRESS;

156 CHAPTER 8. XDS OBERON-2

Chapter 9

Run-time support

Some language features are implemented in the run-time library, including:

• exceptions and finalization

• coroutines

• memory management

• garbage collection

• postmortem history

XDS provides an integrated Modula-2 and Oberon-2 run-time library, taking into
account the possibility that modules written in both languages are used in one
project. As a rule, if you do not use a particular feature, the part of RTS that
implements that feature will not be added to your executable program. For ex-
ample, if your program is written entirely in Modula-2, the Oberon-2 part of RTS
(garbage collector, meta-language facilities) will not included.

The integrated memory manager is described in9.1. The section9.3describes an
interface to the Oberon-2 run-time support.

9.1 Memory management

The XDS integrated memory manager implements

• default memory allocation and deallocation procedures for Modula-2 (See
the optionSTORAGE);

157

158 CHAPTER 9. RUN-TIME SUPPORT

• memory allocation procedures for Oberon-2;

• system memory allocation procedures for Oberon-2 (See8.6.3);

• the garbage collector.

The compiler provides the optionGCAUTO and the equationHEAPLIMIT to
control the memory management. They should be set when the top-level module
of the program is compiled1. The compiler uses their values when generating the
RTS initialization call.

The equationHEAPLIMIT specifies the maximum size of the heap in bytes. If
that equation is set to zero, the run-time system automatically determines heap
size at startup and dynamically adjusts it according to application’s memory use
and system load.

The optionGCAUTO allows the garbage collector to be called implicitly. If the
option is not set the garbage collector must be called explicitly (See9.3). The
garbage collector is called implicitly by the memory allocation procedure in the
following cases:

• a memory block of the requested length cannot be allocated;

• the amount of busy memory exceeds the limit specified by the
HEAPLIMIT equation (or the limit chosen by the run-ime system if
HEAPLIMIT was set to zero during compilation);

• the amount of busy memory exceeds some limit set internally by the mem-
ory manager for optimum performance.

If the memory block still cannot be allocated after the call to the garbage col-
lector, the exceptionXEXCEPTIONS.noMemoryException will be raised by
the Oberon-2 memory allocation procedure2.

Note: In a pure Modula-2 program, the garbage collector is never invoked, so you
may set theHEAPLIMIT equation to a very large value.

9.2 Postmortem history

If the optionGENHISTORY was set ON when your program was compiled, the
run-time system dumps a procedure call stack into a file callederrinfo.$$$,

1 We recommend to set them in the configuration file or a project file.
2In Modula-2 it has to returnNIL if failed to allocate a memory block.

9.2. POSTMORTEM HISTORY 159

which may then be read by the HIS utility to print each item with

• a file name

• a line number

• a program counter value

• a procedure name (sometimes)

Note: all modules constituting your program should be compiled with the option
LINENO set ON.

To print the history, RTS scans the stack of the coroutine that caused an exception
and tries to find procedure calls. This is not a trivial task because of the highly
optimized code generated by the compiler. For example, not all procedures have
a stack frame.

For each pointer to the code segment on the stack RTS checks the previous com-
mand. If this command is a call command, it assumes that this is a procedure call.
It is unlikely that RTS misses a procedure call, but it can be cheated by some-
thing that looks like a procedure call. As a rule, it is caused by uninitialized local
variables, especially character arrays.

The first line of the history is always correct. For each line, except the first one,
we recommend to check that the procedure shown in the previous line is called
from the given line.

From the other hand, if you turn theGENFRAME option on, the code will be a
bit slower, but RTS will scan stack frames of the procedures and the history will
showabsolutelycorrect addresses and line numbers. Procedure names are almost
always valid except the case of lack of debug information in some modules -
probably compiled by foreign compilers or by XDS with not all debug flags set.
So you should not rely on procedure names hard.

Turning theGENHISTORY option ON doesnotslow down your code, as it only
adds an extra call to the initialization routine. It should be done when you compile
the main module of your program, in its header, compiler command line, or project
(we recommend the last approach).

The following example shows a sketch of a program and the procedure stack:

PROCEDURE P1;
(* uninitialized variable: *)
VAR x: ARRAY [0..50] OF INTEGER;

160 CHAPTER 9. RUN-TIME SUPPORT

BEGIN
i:=i DIV j; (* line 50 *)

END P1;

PROCEDURE P2;
BEGIN

i:=i DIV j; (* line 100 *)
END P2;

PROCEDURE P3;
BEGIN

P1; (* line 150 *)
END P3;

#RTS: No exception handler #6: zero or negative divisor
--
Source file LINE OFFSET PROCEDURE
--
"test.mod" 50 000000DE
"test.mod" 100 0000024C
"test.mod" 150 0000051D

It is obvious from the source text that the procedureP1 cannot be called fromP2.
The second line is superfluous.

9.3 The oberonRTS module

The run-time support (RTS) is an integral part of the Oberon-2 language imple-
mentation. It includes command activation, memory allocation, garbage collec-
tion and meta-language facilities. The moduleoberonRTS(written in Modula-2)
provides an interface to these features.

9.3.1 Types and variables

TYPE
Module; (* run-time data structure for a module *)
Type; (* run-time data structure for a data type *)
Command = PROC; (* parameterless procedure *)
CARDINAL = SYSTEM.CARD32;

9.3. THE OBERONRTS MODULE 161

VAR
nullModule: Module; (* Null value of type Module *)
nullType: Type; (* Null value of type Type *)

9.3.2 Garbage collection

Collect Garbage Collector

PROCEDURE Collect;

Invokes the garbage collector.

GetInfo Get Memory Information

PROCEDURE GetInfo(VAR objects, busymem: CARDINAL);

Returns the number of allocated objects and the total size of the allocated memory.

9.3.3 Object finalization

A system with garbage collection has some specific features. Its main difference
from systems without garbage collection is that deallocation of any system re-
source must be postponed until garbage collection. For example, let some data
structure contain descriptors of open files. To close a file (i.e. to destroy its de-
scriptor), one needs to know that there are no references to that file. This informa-
tion becomes known only in the course of garbage collection. The same argument
also holds for other kinds of resources.

One immediate implication is that there must be somefinalizationmechanism:
the ability to perform certain operations with an object when there are no more
references to it.

XDS allows a finalization procedure to be attached to any dynamically allocated
object.

Finalizer Type of a finalization procedure

TYPE Finalizer = PROCEDURE (SYSTEM.ADDRESS);

162 CHAPTER 9. RUN-TIME SUPPORT

InstallFinalizer Set a finalizer to an object

PROCEDURE InstallFinalizer(f: Finalizer;
obj: SYSTEM.ADDRESS);

The procedure sets the finalization proceduref for the objectobj . That procedure
will be called when the object becomes unreachable.

Note: a finalizer is called on the GC stack (stack size is limited).

Example

TYPE
Obj = POINTER TO ObjDesc;
ObjDesc = RECORD

file: File; (* file handler *)
END;

PROCEDURE Final(x: SYSTEM.ADDRESS);
VAR o: Obj;

BEGIN
o:=SYSTEM.CAST(Obj,x);
IF o.file # NIL THEN Close(file) END;

END Final;

PROCEDURE Create(): Obj;
VAR o: Obj;

BEGIN
NEW(o);
o.file:=NIL;
oberonRTS.InstallFinalizer(Final,o);
TryOpen(o.file);

END Create;

9.3.4 Meta-language facilities

The meta-programming operations can be used to retrieve the type of an object,
to create an object of the given type, to get the name of a type and a type by its
name, etc.

9.3. THE OBERONRTS MODULE 163

Search Search a Module by its Name

PROCEDURE Search(name: ARRAY OF CHAR): Module;

Returns a module by itsname or nullModule .

NameOfModule Name of Module

PROCEDURE NameOfModule(m: Module;
VAR name: ARRAY OF CHAR);

Returns thename of theModule .

ThisCommand Get Command by its Name

PROCEDURE ThisCommand(m: Module;
name: ARRAY OF CHAR;

): Command;

Returns the command (parameterless procedure) named ”name” in the modulem
or NIL , if the command does not exist.

ThisType Get Type by its Name

PROCEDURE ThisType(m: Module;
name: ARRAY OF CHAR): Type;

Returns the type named ”name” declared in the modulemor nullType , if there
is no such type.

SizeOf Size of Type

PROCEDURE SizeOf(t: Type): INTEGER;

Returns the size (in bytes) of an object of the typet .

BaseOf Base of Type

164 CHAPTER 9. RUN-TIME SUPPORT

PROCEDURE BaseOf(t: Type; level: INTEGER): Type;

Returns thelevel-th base type oft .

LevelOf Level of Type Extension

PROCEDURE LevelOf(t: Type): INTEGER;

Returns a level of the type extension.

ModuleOf Module of Type

PROCEDURE ModuleOf(t: Type): Module;

Returns the module in which the typet was declared.

NameOfType Name of Type

PROCEDURE NameOfType(t: Type; VAR name: ARRAY OF CHAR);

Returns thename of the record typet .

TypeOf Type of Object

PROCEDURE TypeOf(obj: SYSTEM.ADDRESS): Type;

Returns the type of the objectobj .

NewObj Create Object

PROCEDURE NewObj(type: Type): SYSTEM.ADDRESS;

Creates a new object of the typetype .

9.3.5 Module iterators

The moduleoberonRTS provides procedures which can be used to iterate all
loaded modules, all commands, and all object types (i.e., exported record types).

9.3. THE OBERONRTS MODULE 165

NameIterator Iterator Type

TYPE
NameIterator = PROCEDURE (

(*context:*) SYSTEM.ADDRESS,
(*name:*) ARRAY OF CHAR

): BOOLEAN;

A procedure of typeNameIterator is called by an iterator on each iterated
item. An iterator passes the name of the item along with the so-calledcontext
word. This allows some context information to be passed to the user-defined pro-
cedure (e.g., a file handler). If the procedure returns FALSE, the iteration is ter-
minated.

IterModules Iterate all Modules

PROCEDURE IterModules(context: SYSTEM.ADDRESS;
iter: NameIterator);

The procedure iterates all Oberon-2 modules.

IterCommands Iterate Commands

PROCEDURE IterCommands(mod: Module;
context: SYSTEM.ADDRESS;

iter: NameIterator);

Iterates all commands implemented in the modulemod.

IterTypes Iterate Record Types

PROCEDURE IterTypes(mod: Module;
context: SYSTEM.WORD;

iter: NameIterator);

Iterates all record types declared in the modulemod.

166 CHAPTER 9. RUN-TIME SUPPORT

Chapter 10

Multilanguage programming

XDS allows you to mix Modula-2, Oberon-2, C, and Assembler modules, li-
braries, and object files in one project.

10.1 Modula-2 and Oberon-2

It is not necessary to notify the compiler of using Modula-2 objects in Oberon-2
module and vice versa. The compiler will detect the language automatically when
processing symbol files onIMPORTclause.

10.1.1 Basic types

In Oberon-2 the basic types have the same length on all platforms. In Modula-2
the size of typesINTEGER, CARDINALandBITSET may be different and de-
pends on the value of theM2BASE16 option. The following table summarizes
the correspondence between the basic types.

167

168 CHAPTER 10. MULTILANGUAGE PROGRAMMING

Type Size Oberon-2 Modula-2
M2BASE16+ M2BASE16-

integer 8 SHORTINT — —
integer 16 INTEGER INTEGER —
integer 32 LONGINT — INTEGER
cardinal 8 — — —
cardinal 16 — CARDINAL —
cardinal 32 — — CARDINAL
bitset 16 — BITSET —
bitset 32 SET — BITSET

The system typesINT and CARDcorrespond to Modula-2INTEGER and
CARDINALtypes respectively. We recommend to useINT andCARDin Oberon-2
when importing Modula-2 modules. For example, if the procedureFoo is defined
in the Modula-2 definition moduleMas

DEFINITION MODULE M;

PROCEDURE Foo(VAR x: INTEGER);

END M.

its portable usage in Oberon-2 is as follows:

VAR x: SYSTEM.INT;
. . .

M.Foo(x);

10.1.2 Data structures

XDS allows any Modula-2 data structures to be used in Oberon-2 modules, even
those that can not be defined in Oberon-2 (e.g. variant records, range types, set
types, enumerations, etc).

However, usage of Modula-2 types in Oberon-2 and vice versa is restricted.
Whenever possible XDS tries to produce the correct code. If a correct transla-
tion is impossible, an error is reported:

• a Modula-2 record field type cannot be of an Oberon-2 pointer, record or
array type;

10.1. MODULA-2 AND OBERON-2 169

• a Modula-2 pointer to an Oberon-2 record cannot be used in specific
Oberon-2 constructs (type-bound procedures, type guards, etc);

• an opaque type can not be defined as an Oberon pointer.

Standard proceduresNEWandDISPOSEare always applied according to the lan-
guage of a parameter’s type. For example, for the following declarations in an
Oberon-2 module:

TYPE
Rec = RECORD END;
MP = POINTER ["Modula"] TO Rec; (* Modula pointer *)
OP = POINTER TO Rec; (* Oberon pointer *)

VAR
m: MP;
o: OP;

the callNEW(m)will be treated as a call to the Modula-2 defaultALLOCATE,
while NEW(o) will be treated as a call of the standard Oberon-2 run-time routine.
See also10.2.

Implicit memory deallocation (garbage collection) is applied to Oberon-2 objects
only. If a variable of a Modula-2 pointer type is declared in an Oberon-2 module,
it shall be deallocated explicitly.

Example: Using the Modula data type in Oberon

(* Modula-2*) DEFINITION MODULE m2;
TYPE

Rec = RECORD (* a record with variant parts *)
CASE tag: BOOLEAN OF

|TRUE: i: INTEGER;
|FALSE: r: REAL;

END;
END;
Ptr = POINTER TO Rec;

VAR
r: Rec;
p: Ptr;

170 CHAPTER 10. MULTILANGUAGE PROGRAMMING

PROCEDURE Foo(VAR r: Rec);

END m2.

(* Oberon-2 *) MODULE o2;

IMPORT m2; (* import of a Modula-2 module *)

VAR
r: m2.Rec; (* using the Modula-2 record type *)
p: m2.Ptr; (* using the Modula-2 pointer type *)
x: POINTER TO m2.Rec;

BEGIN
NEW(p); (* Modula-2 default ALLOCATE *)
NEW(x); (* Oberon-2 NEW *)
m2.Foo(r);
m2.Foo(pˆ);
m2.Foo(xˆ);

END o2.

10.1.3 Garbage collection

It is important to remember that Modula-2 and Oberon-2 have different ap-
proaches to memory utilization. When a program contains both Modula-2 and
Oberon-2 modules, garbage collection is used. See9.1for more information.

10.2 Direct language specification

The compiler must know the implementation language of a module to take into
account different semantics of different languages and to produce correct code.

In some cases, it is necessary for a procedure or data type to be implemented
according to the rules of a language other than that of the whole module. In XDS,
it is possible to explicitly specify the language of a type or object.Direct language
specification (DLS)is allowed either if language extensions are enabled or if the
moduleSYSTEMis imported.

In a record, pointer, or procedure type declaration, or in a procedure declaration,

10.2. DIRECT LANGUAGE SPECIFICATION 171

the desired language (or, more precisely, the way in which that declaration is
treated by the compiler) can be specified as"[" language "]" immediately
following the keywordRECORD, POINTER, or PROCEDURE. language can be
a string or integer constant expression1:

Convention String Integer
Oberon-2 "Oberon" 0
Modula-2 "Modula" 1
C "C" 2
Pascal "Pascal" 5
Win32 API "StdCall" 7
OS/2 API "SysCall" 8

Examples:

TYPE
UntracedPtr = POINTER ["Modula"] TO Rec;

HereUntracedPtr is defined as a Modula-2 pointer, hence all variables of that
type will not be traced by garbage collector.

PROCEDURE ["C"] sig_handler (id : SYSTEM.int);
. . .

signal.signal(signal.SYSSEGV, sig_handler);

Heresig_handler has C calling and naming conventions, so it can be installed
as a signal handler into C run-time support.

A direct language specification clause placed after a name of a field, constant,
type, or variable points out that the name of the object will be treated according to
the rules of the specified language.

TYPE
Rec ["C"] = RECORD

name ["C"]: INTEGER;
END;

CONST pi ["C"] = 3.14159;

VAR buffer[]["C"]: POINTER TO INTEGER;

1We recommend to use strings, integer values are preserved for backward compatibility.

172 CHAPTER 10. MULTILANGUAGE PROGRAMMING

Note: In ISO Modula-2, an absolute address may be specified for a variable after
its name in square brackets, so the empty brackets are required in the last line.

A procedure name is treated according to the language of its declaration, so in the
following declaration:

PROCEDURE ["C"] Foo;

both the procedure type and the procedure name are treated according to the C
language rules.Note: If you are using a C++ compiler, theFoo function should
be declared with C name mangling style. Consult your C++ manuals for further
information.

10.3 Interfacing to C

Special efforts were made in XDS to provide convenient interface to other lan-
guages, primarily to the C language. The main goal is to allow direct usage of
existing C libraries and APIs in Modula-2/Oberon-2 programs.

10.3.1 Foreign definition module

A direct language specification (see10.2) clause may appear immediately after
keywordsDEFINITION MODULE. The effect is that all objects defined in that
module are translated according to the specified language rules, thus making un-
necessary direct language specifications for each object.

Several options are often used in foreign definition modules.

Example

<*+ M2EXTENSIONS *>
<*+ CSTDLIB *> (* C standard library *)
<*+ NOHEADER *> (* we already have header file *)
DEFINITION MODULE ["C"] string;

IMPORT SYSTEM;

PROCEDURE strlen(s: ARRAY OF CHAR): SYSTEM.size_t;
PROCEDURE strcmp(s1: ARRAY OF CHAR;

s2: ARRAY OF CHAR): SYSTEM.int;

10.4. RELAXATION OF COMPATIBILITY RULES 173

END string.

Take the following considerations into account when designing your own foreign
definition module:

• If you are developing an interface to an existing header file, use theNO-
HEADER option to disable generation of the header file. This option is
meaningful for translators only.

• If the header file is a standard header file, use theCSTDLIB option. This
option is meaningful for the translators only.

• Use the specialSYSTEMtypesint , unsigned , size_t , andvoid for
corresponding C types.

• XDS compilers use relaxed type compatibility rules for foreign entities. See
10.4for more information.

10.3.2 External procedures specification

In some cases, it may be desirable not to write a foreign definition module but
to use some C or API functions directly. XDS compilers allow a function to be
declared as external.

The declaration of an external procedure consists of a procedure header only. The
procedure name in the header is prefixed by the symbol"/" .

PROCEDURE ["C"] / putchar(ch: SYSTEM.int): SYSTEM.int;

10.4 Relaxation of compatibility rules

The compiler performs all semantic checks for an object or type according to
its language specification. Any object declared as that of Modula-2 or Oberon-2
is subject to Modula-2 or Oberon-2 compatibility rules respectively. The com-
piler uses relaxed compatibility rules for objects and types declared as"C" ,
"Pascal" , "StdCall" , and"SysCall" .

10.4.1 Assignment compatibility

Two pointer type objects are considered assignment compatible, if

174 CHAPTER 10. MULTILANGUAGE PROGRAMMING

• they are of the same Modula-2 or Oberon-2 type.

• at least one of their types is declared as"C" , "Pascal" , "StdCall" , or
"SysCall" , and theirbase typesare the same.

VAR
x: POINTER TO T;
y: POINTER TO T;
z: POINTER ["C"] TO T;

BEGIN
x := y; -- error
y := z; -- ok
z := y; -- ok

10.4.2 Parameter compatibility

For procedures declared as"C" , "Pascal" , "StdCall" , or "SysCall" , the
type compatibility rules for parameters are significantly relaxed:

If a formal value parameter is of the type declared asPOINTER TO T, the actual
parameter can be of any of the following types:

• the same type (the only case for regular Modula-2/Oberon-2 procedures);

• another type declared asPOINTER TO T.

• any array type which elements are of typeT. In this case the address of the
first array element is passed, as it is done in C.

• the typeT itself, if T is a record type. In this case the address of the actual
parameter is passed.

If a formal parameter is an open array of typeT, the actual parameter can be of
any of the following types:

• an (open) array of typeT (the only case for regular Modula-2/Oberon-2
procedures);

• typev́erb’T’ itself (if M2EXTENSIONSoption is set ON);

• any type declared asPOINTER TO T.

10.4. RELAXATION OF COMPATIBILITY RULES 175

This relaxation, in conjunction with theSYSTEM.REFfunction procedure (see
7.5.2), simplifies Modula-2/Oberon-2 calls to C libraries and the target operating
system API, preserving the advantages of the type checking mechanism provided
by that languages.

Example

TYPE
Str = POINTER TO CHAR;
Rec = RECORD ... END;
Ptr = POINTER TO Rec;

PROCEDURE ["C"] Foo(s: Str); ... END Foo;
PROCEDURE ["C"] Bar(p: Ptr); ... END Bar;
PROCEDURE ["C"] FooBar(a: ARRAY OF CHAR); ... END FooBar;

VAR
s: Str;
a: ARRAY [0..5] OF CHAR;
p: POINTER TO ARRAY OF CHAR;
R: Rec;
A: ARRAY [0..20] OF REC;
P: POINTER TO REC;

Foo(s); (* allowed - the same type *)
Foo(a); (* allowed for the "C" procedure *)
Foo(pˆ); (* allowed for the "C" procedure *)
Bar(R); (* the same as Bar(SYSTEM.REF(R)); *)
Bar(A); (* allowed for the "C" procedure *)
Bar(P); (* allowed for the "C" procedure *)
FooBar(s); (* allowed for the "C" procedure *)

10.4.3 Ignoring function result

It is a standard practice in C programming to ignore the result of a function call.
Some standard library functions are designed taking that practice into account.
E.g. the string copy function accepts the destination string as a variable parameter
(in terms of Modula-2) and returns a pointer to it:

extern char *strcpy(char *, const char *);

176 CHAPTER 10. MULTILANGUAGE PROGRAMMING

In many cases, the result of thestrcpy function call is ignored.

In XDS, it is possible to ignore results of functions defined as"C" , "Pascal" ,
"StdCall" , or "SysCall" . Thus, the functionstrcpy defined in the
string.def foreign definition module as

PROCEDURE ["C"] strcpy(VAR d: ARRAY OF CHAR;
s: ARRAY OF CHAR): ADDRESS;

can be used as a proper procedure or as function procedure:

strcpy(d,s);
ptr:=strcpy(d,s);

10.5 Configuring XDS for a C Compiler

Different C compilers have different naming and calling conventions. If you use C
functions or libraries in your projects, you have to specify your C compiler using
theCC equation in order to have all C functions to be called in a way compatible
with that compiler. The compiler also sets the default values of some other options
and equations according to the value of theCC equation.

For Linux XDS supports the GCC (ELF) compiler. Therefore, theCC equation
has to be set to"GCC", written in any case. If the equation value is not set,"GCC"
is assumed by default.

Alignment of data structures is controlled by theALIGNMENT equation.

ATTENTION! Libraries included in XDS distribution are built via GCC. Since
GCC usually produces aligned code, theALIGNMENT equation has to be set
to 4. Setting it to other values may cause unpredictable results. Don’t change it
unless you exactly know what you are doing!

Names in an object file produced by a C compiler may have leading underscore.
If you are going to use C modules and libraries, you have to force XDS to use the
same naming rules. To do this, turn theGENCPREF option ON in the foreign
definition modules:

<* +GENCPREF *>
DEFINTION MODULE ["C"] stdio;

Since GCC (ELF) produces no underscore prefixes you should not turn this option
ON.

10.5. CONFIGURING XDS FOR A C COMPILER 177

10.5.1 Possible problems

To use a C function or a data type from Modula-2 or Oberon-2 you have to express
its type in one of these languages. Usually it is done in a foreign definition module
(See10.3). The current version of XDS does not support all calling conventions,
so direct usage of some functions is not possible, namely:

• functions with a parameter of a structured type, passed by value, e.g.:

void foo(struct MyStruct s);

• functions that return structured types, e.g.:

struct MyStruct foo(void)

• C functions with Pascal calling convention that return a real type.

Both Modula-2 and C/C++ have exception handling and finalization facilities.
Unpredictable results may occur if you try to utilize that facilities from both lan-
guages in one program.

178 CHAPTER 10. MULTILANGUAGE PROGRAMMING

Chapter 11

Optimizing a program

It sometimes happens with almost all compilers that the unoptimized version of
a program works properly, but the optimized one does not or vice versa. If the
compiler has a dozen of optimization control options it may be extremely difficult
to test the compiler itself. The compiler manufacturer has to check all possible
combinations of options. Fortunately, this is not the case with XDS.

Unlike many other compilers, XDS performs optimizations by default. Most of
them may be turned off by setting theNOOPTIMIZE option ON. However,
the code generator always performs some low-level optimizations1. Instruction
scheduling can be turned on or off using theDOREORDER option. The last
option that implicitly disables some of optimizations is theGENDEBUG option.

There are still several ways to control the generated code. First of all, you have to
choose what is more important for you: performance or compactness. By default,
the optionSPACE is set OFF, forcing the compiler to favor the code effeciency.

To get the maximum performance, do the following:

• turnGENFRAME off

• turnSPACEoff

• turnGENDEBUG off

• turnNOOPTIMIZE off

• turnDOREORDER on

• setCPU andMINCPU equations according to your target

1As a result, disabling optimizations optimizer significantlyslows downthe complier

179

180 CHAPTER 11. OPTIMIZING A PROGRAM

• turn run-time checks and overflow checks off

It is possible not to turn run-time checks off in the product versions of your pro-
grams, because the code generator usually removes redundant checks. A typical
program runs only 10-15% faster with all run-time checks turned off (but the code
size is usually significantly smaller).

Two options should be used with care:

• the PROCINLINE option allows the compiler to expand procedures in-
line. As a rule, switching the option ON leads to faster but bigger code.
However, the effect of this option depends on your programming style (size
of procedures, etc).

• the NOPTRALIAS option allows the compiler to assume that there is no
pointer aliasing, i.e. there are no pointers bounded to non-structure vari-
ables. The code quality is better if the option is ON.

Example of project file for maximum performance

-alignment=4 % is unnecessary under Linux
-noptralias+
-procinline+
-space
-doreorder+
-cpu=486
-genframe

-checkindex
-checkrange
-checknil
-ioverflow
-coverflow

-gendebug
-genhistory
-lineno
!module Foo.mod

In some cases, it may be better to set different options for different modules in
your program. Seedry.mod from XDS samples.

Chapter 12

Low-level programming

12.1 Data representation

The internal representation of values of Modula-2 and Oberon-2 basic types is
described in the tables12.1and12.2. In the table12.3the representation of system
types is described.

12.1.1 Modula-2 INTEGER and CARDINAL types

If the optionM2BASE16 is OFF, objects of typesINTEGERandCARDINALare
4 bytes (32 bits) long, otherwise they are 2 bytes (16 bits) long.

12.1.2 Modula-2 BOOLEAN type

A value of the typeBOOLEANoccupies 1 byte of memory.

12.1.3 Modula-2 enumeration types

Representation of enumeration type values depends on the currentENUMSIZE
equation setting. Values of an enumeration type which fits the specified size (1, 2,
or 4 bytes) occupy exactly that number of bytes; otherwise the smallest suitable
size from that list is taken.

181

182 CHAPTER 12. LOW-LEVEL PROGRAMMING

Modula-2 type Bits Representation
SHORTINT 8 signed
INTEGER 16/32 signed (See12.1.1)
LONGINT 32 signed
SHORTCARD 8 unsigned
CARDINAL 16/32 unsigned (See12.1.1)
LONGCARD 32 unsigned
CHAR 8 unsigned
BOOLEAN 8/32 unsigned (See12.1.2)

0 for FALSE, 1 for TRUE
subranges according to the base type
REAL 32 80x87 single-precision data format
LONGREAL 64 80x87 double-precision data format
LONGLONGREAL 80 80x87 extended-precision data format

Table 12.1: Representation of Modula-2 basic types

Oberon-2 type Bits Representation
SHORTINT 8 signed
INTEGER 16 signed
LONGINT 32 signed
CHAR 8 unsigned
BOOLEAN 8 unsigned byte

0 for FALSE, 1 for TRUE
REAL 32 80x87 single-precision data format
LONGREAL 64 80x87 double-precision data format
LONGLONGREAL 80 80x87 extended-precision data format
SET 32 packed set

Table 12.2: Representation of Oberon-2 basic types

12.1. DATA REPRESENTATION 183

System type Bits Representation
ADDRESS 32 unsigned
BOOL8 8 unsigned
BOOL16 16 unsigned
BOOL32 32 unsigned
BYTE 8 unsigned
CARD8 8 unsigned
CARD16 16 unsigned
CARD32 32 unsigned
INT8 8 signed
INT16 16 signed
INT32 32 signed
LOC 8 unsigned
WORD 32 ARRAY [0..3] OF LOC

Table 12.3: Representation of SYSTEM types

12.1.4 Modula-2 set types

Sete are represented as bit arrays. TheSETSIZE equation specifies the default
size for small sets (1, 2, or 4 bytes).

If the option M2BASE16 is OFF, the typeBITSET is represented by 32 bits,
otherwise by 16 bits.

12.1.5 Pointer, address, and opaque types

The XDS compiler allocates 4 bytes of storage for a value of a pointer, address,
or opaque type. Address arithmetic is implemented as 32-bit unsigned arithmetic
without overflow checks.

12.1.6 Procedure types

Procedure types are represented by 4 bytes which hold an address of a procedure
entry point in the task code segment.

184 CHAPTER 12. LOW-LEVEL PROGRAMMING

12.1.7 Record types

Records are represented by a continuous memory segment containing all record
components (fields) in a representation corresponding to their types. The compiler
aligns each field according to its size and the current alignment (1,2,4, or 8), which
may be set with theALIGNMENT equation. Fields, which sizes, being rounded
to the nearest power of 2, are less or equal to the current alignment, are placed
at offsets which are multiple of their (rounded) sizes. Offsets of all other fields
are multiples of the current alignment. Variant parts are aligned at the largest
alignment of variant fields. Size of a record is rounded so that size of an array
of such records is a multiple of the record size and the number of elements in the
array, and each record in the array is correctly aligned.

TYPE
R1 = RECORD (* ALIGNMENT 1 2 4 *)

f1: CHAR; (* f1 offset 0 0 0 *)
f2: SYSTEM.CARD16; (* f2 offset 1 2 2 *)
f3: SYSTEM.CARD16; (* f3 offset 3 4 4 *)
f4: CARDINAL; (* f4 offset 5 6 8 *)
f5: CHAR; (* f1 offset 9 10 12 *)

END; (* SIZE(R1) 10 12 16 *)

12.1.8 Array types

An array is represented by a continuous memory segment containing all array
elements in a representation corresponding to their type.

Note that elements within an array can be aligned, so in general for

TYPE A = ARRAY [0..N-1] OF T;

SIZE(A) may be not equal toSIZE(T) * N .

Open arrays, as well as procedure formal parameters of typeARRAY OF
... ARRAY OF T , are represented by an open array descriptor. For anN -
dimensional open array, the descriptor is an array of2N 32-bit elements, which
are:

• the first element is the address of the array data

• the second is the highest dimension

12.2. SEQUENCE PARAMETERS 185

• for each ofN − 1 higher dimensions, the descriptor contains the size in
bytes of a next dimension array and a number of elements in the dimension

Let A be a dynamic3-dimensional array ofINTEGER(SIZE(INTEGER)=2 in
Oberon-2) created as

NEW(A,4,3,6)

then its descriptor is a 6-element array containing:

#0: Address of array itself
#1: 6
#2: 12 (6*2)
#3: 3
#4: 36 (12*3)
#5: 4

12.2 Sequence parameters

The array of bytes which is passed to a procedure in place of a formal SEQ-
parameter is formed as follows:

• values of all actual parameters forming the sequence are represented as de-
scribed below and concatenated in the array in their textual order

• integer values are converted toLONGINT

• BOOLEAN, CHAR, cardinal, and enumeration values are converted to
LONGCARD

• range type values are converted according to their base type

• real values are converted toLONGREAL

• pointer, address, opaque, and procedure type values are converted to
ADDRESS

• a structured value (record or array) is interpreted as a one-dimensional array
of bytes and is represented by a 3-element descriptor:

– the address of the structure

– a zero 32-bit word (reserved for future extensions)

– size of the structure (in LOCs) minus one

186 CHAPTER 12. LOW-LEVEL PROGRAMMING

Example

PROCEDURE write(SEQ args: SYSTEM.BYTE);
BEGIN
END write;

VAR i: INTEGER;
c: SYSTEM.CARD8;
r: LONGREAL;
S: RECORD a: LONGINT; c: CHAR END;
p: POINTER TO ARRAY OF CHAR;

. . .

write(i,c,S,r,pˆ);

For this call the actual byte array passed towrite will contain:

• 4 bytes of the sign-extended value ofi

• 4 bytes of the zero-extended value ofc

• 12 bytes of the array descriptor

– 4 bytes containing the address ofS

– 4 bytes containing 0

– 4 bytes containing 4 (SIZE(S)-1)

• 8 bytes value ofr in the double-precision 80387 format

• 12 bytes of the array descriptor

– 4 bytes containing the address of theP data

– 4 bytes containing the value 0

– 4 bytes containingSIZE(pˆ)-1

12.3 Calling and naming conventions

The calling and naming conventions for Modula-2, Oberon-2, and foreign proce-
dures are described in this section.

12.3. CALLING AND NAMING CONVENTIONS 187

12.3.1 General considerations

All parameters are always passed on the stack. The number of bytes occupied by a
parameter is a multiple of 4. High-order bytes of parameters which are of shorter
types (e.g.CHAR, SYSTEM.CARD16) are undefined.

Value parameters of scalar types (boolean, character, enumeration, whole, range,
real, pointer, opaque, and procedure) and sets of size not greater than 32 bit are
placed onto the stack. A complex type value parameter is passed as a pair of real.

Value parameters of all other types (even an array of a singleCHAR) are passed by
reference. A procedure is responsible for copying its non-scalar value parameter
onto the stack, unless it is marked as read-only.

Warning: In C, acaller should copy value parameters of structure type onto the
stack. You should provide a wrapper C function which receives these parameters
by reference. Fortunately, this is a very rare case.

Note: The number of 4-byte words pushed onto the stack is passed in the AL
register to a"SysCall" foreign procedure.

12.3.2 Open arrays

For anN -dimensional open array parameterN +1 parameters are actually passed
— the address of the array and its sizes in all dimensions from left to right. This is
true for Modula-2 and Oberon-2 procedures only. In case of a foreign procedure,
only the address is passed.

12.3.3 Oberon-2 records

To a formal VAR-parameter which type is an Oberon-2 record type, the address
of the actual parameter and the address of its dynamic type descriptor are passed.

12.3.4 Result parameter

If a function procedure result type is not scalar, it receives one extra parameter —
the address of a temporary variable in which the procedure should store the reslut.
Note: This may be incompatible with C.

A complex result is returned as a record with two real fields.

188 CHAPTER 12. LOW-LEVEL PROGRAMMING

12.3.5 Nested procedures

A nested Modula-2 or Oberon-2 procedure, which access scopes of outer pro-
cedures, receives theirbasesas extra parameters. More precisely, the procedure
P receives bases of all outer procedures which scopes are accessed byP or any
procedure nested inP .

The base of a procedure is the address at which the procedure’s return address
resides on the stack.

12.3.6 Oberon-2 receivers

An extra parameter — receiver — is passed to an Oberon-2 type bound procedure.
A reference to its dynamic type descriptor is also passed if the receiver is declared
as a VAR-parameter.

12.3.7 Sequence parameters

Sequence parameters for a Modula-2/Oberon-2 procedure are collected into a tem-
porary variable, which is then passed as anARRAY OF BYTE(i.e. its address
and size are passed). For foreign procedures, a C-compatible approach is used —
parameters are pushed onto the stack. In either case, all ordinal type parameters
are extended to 4 bytes,REALs to LONGREALs, non-scalar type parameters are
passed by reference.

12.3.8 Order of parameters

The abstract order of parameters (all categories are optional):

• address of a temporary variable to store the result (see12.3.4)

• bases of outer procedures (see12.3.5)

• receiver (see12.3.6) (Oberon-2 procedures only)

• regular parameters

• sequence parameter (see12.3.7)

12.3. CALLING AND NAMING CONVENTIONS 189

Actual order, in all cases except"Pascal" foreign procedures, is from-right-
to-left, i.e. the last sequence parameter is pushed onto the stack first, the result
parameter is pushed last.

12.3.9 Stack cleanup

The stack space allocated for parameters has to be freed upon return from a
procedure. Depending on the language of the procedure, it is performed by
the caller ("C" and"SysCall") or the procedure itself (Modula-2, Oberon-2,
"StdCall" , "Pascal").

12.3.10 Register usage

A procedure must preserve reistersESI , EDI , EBP, and EBX registers, keep
ES=DS, and clear theDflag.

The FPU stack must be empty before a call to a procedure and upon return from
it. Exceptions are procedures which returnREALor LONGREAL. In this case, the
result is placed inST(0) .

Note: If the CC equation is set to either"WATCOM"or "SYMANTEC", foreign
procedures declared as"C" are considered to returnREAL results inEAX, and
LONGREALresults inEAX(low order bytes) andEDX(high order bytes).

12.3.11 Naming conventions

External names of exported procedures in object modules are built accroding to
the following rules:

Convention Name is As in
"Modula" prepended with the module name and ”” Module_Proc
"Oberon" ditto Module_Proc
"C" prepended with ”” (see note) _Proc
"Pascal" capitalized PROC
"StdCall" unchanged Proc
"SysCall" unchanged Proc

Note: If the CC equation is set to"WATCOM", external names of"C" foreign
procedures are not prepended with an underscore character.

190 CHAPTER 12. LOW-LEVEL PROGRAMMING

Chapter 13

Inline assembler

This chapter contains a very brief description of the inline x86 assembler.

13.1 Implemented features

The following features are implemented in the current version:

• Base instruction set up to and including Pentium Pro (see13.5).

• Floating point instructions up to and including Pentium Pro.

• Pentium MMX instructions.

• Labels and their usage in branch and call instructions.

• Modula-2/Oberon-2 procedure calls and variable access (see13.4).

13.2 Basic syntax

The assembler uses the same scanner as the Modula-2/Oberon-2 front-end, so it
is possible to use conditional compilation (see7.7.2) and comments.

Language extensions have to be enabled using theM2EXTENSIONS and
O2EXTENSIONS options in order to use inline assembly facilities.

The keywordASMdenotes the beginning of inline assembly code; the keyword
ENDdenotes its end.

191

192 CHAPTER 13. INLINE ASSEMBLER

Each line in a piece of the assembly code may contain not more than one instruc-
tion. It is not possible to continue an instruction on the next string.

Keywords and names of instructions and registers are not case sensitive.

There are instructions one of which arguments is fixed (DIV , FCOMI). These
instructions are differently denoted in different assemblers. We use the syntax
described in Intel’s documentation.

If size or an operand may not be determined based on instruction semantics and/or
size of another operand, it is necessary to explicitly specify it. The following size
specifiers are recognized:

Specifier Size
BYTE PTR 1
WORD PTR 2
DWORD PTR4
FWORD PTR6
QWORD PTR8
TBYTE PTR 10

Examples:

MOV WORD PTR [EBX],1 here size specifier is obligatory

MOV [EBX],AX here size is determined automatically

13.3 Labels

An instruction may be prepended with a label, delimited with a colon character:

Save: PUSH EAX

Labels may not match instruction names. It is also not recommended to use as-
sembly keywords (DWORD, EAX) as labels.

In the current version, labels may only be used in branch and call instructions.

13.4 Accessing Modula-2/Oberon-2 objects

It is possible to reference Modula-2/Oberon-2 entities from within the inline as-
sembly code, namely whole constants, variables, and procedures (inJMP and
CALL instructions only).

13.5. KNOWN PROBLEMS 193

Example:

MOV j,10

In this example, the type ofj is used to choose between byte, word, and double-
wordMOVinstructions.

Note: In the first pre-release versions which included inline assembler, it was
necessary to specify the base registerEBPto access local variables:

MOV j[EBP],10

It is no longer required.

In case of nested procedures, code to access a variable from an outer procedure
scope has to be written by hand.

Record field access is not supported yet. There are also no operators to denote
attributes of Modula-2/Oberon-2 entities.

TheOFFSEToperator returns the offset of its operand, which has to be a variable:

MOV EAX, OFFSET j

13.5 Known problems

1. Instruction prefixes (REP, LOCK, etc.) are not supported yet.

2. Segment overriding (DS: , etc.) is not supported yet.

3. Error position precision is+/− 1-2 tokens.

4. Error 3029 incorrectly positioned.

5. 16-bit addressing modes (e.g.[BX+SI]) are not supported and unlikely to
be supported in the future.

6. Modula-2/Oberon-2 entities access facilities are limited.

7. It is possible to use commands likeMOVSB, MOVSW, MOVSD, but not as in
MOVS DWORD PTR [ESI].

8. Modula-2/Oberon-2 variables usage is poorly checked for correctness.

9. It is possible to use only oneOFFSEToperator in a constant expression.

194 CHAPTER 13. INLINE ASSEMBLER

13.6 Potential problems

1. Not all instructions were tested with all addressing modes.

2. Error diagnostics and recovery were not tested.

Appendix A

Limitations and restrictions

There are some limitations and restrictions in implementation of both Modula-2
and Oberon-2 compilers.

Length of identifiers

The length of an identifier is at most 127 characters.

Length of literal strings

The length of a literal string is at most 256 characters. Longer strings may be
constructed using the string concatenation operator (See7.2.4).

Record extension hierarchy

The depth of a record extension hierarchy is at most 15 extensions.

195

196 APPENDIX A. LIMITATIONS AND RESTRICTIONS

Unimplemented ISO libraries

Unimplemented Oakwood libraries

The following Oberon-2 Oakwood library modules are not available in the current
release:

Input Keyboard and pointer device access
Files File input/output, riders
XYPlane Elementary pixel plotting

Coroutines

The current release provides a restricted implementation of the system module
COROUTINES: the interrupt requests are not detected.

Dynamic loader

The Oberon-2 dynamic loading facility is not provided in the current release.

Bibliography

[MöWi91] H.Mössenb̈ock, N.Wirth. The Programming Language Oberon-2.
Structured Programming,1991, 12, 179-195.

[PIM] N.Wirth. Programming in Modula-2. 4th edition. Springer-Verlag,
1988. ISBN 0-387-50150-9.

[Wirth88] N.Wirth. From Modula-2 to Oberon. Software, Practice and Experi-
ence 18:7(1988), 661-670.

[ReWi92] M.Reiser, N.Wirth. Programming in Oberon - Steps Beyond Pascal and
Modula. ACM Press, Addison Wessley, 1992. ISBN 0-201-56543-9

[Mö93] H.Mössenb̈ock. Object Oriented Programming in Oberon-2. Springer-
Verlag, 1993. ISBN 3-540-56411-X

197

Index

-NAME+, 15
-NAME-, 15
-NAME: , 15
-NAME:: , 15
-NAME:= , 15
-NAME=, 15
.bat (See BATEXT),24
.def (See DEF),16
.mkf (See MKFEXT),23
.mod (See MOD),16
.ob2 (See OBERON),16
.odf (See BSDEF),23
.prj (See PRJEXT),22
<* *> , 139
.o(See CODE),25
.sym(See SYM),25
xc, 9
xc.cfg,15
xc.msg,17
xc.red,12
xc, 19

GEN C , 37, 39
GEN X86 , 37, 38

ABS, 117
ADDRESS,124
address arithmetic,125
ALIGNMENT , 49, 49, 174, 182
AllocateSource,106
ASH, 117
ASSERT,116, 138
ASSERT, 36, 39
ASSERT (Oberon-2),145
ATTENTION , 31, 49, 50

BaseOf,161
BATEXT , 24, 48, 49
BATNAME , 24, 50, 51
BATWIDTH , 24, 50, 51
browser style,145
BSCLOSURE, 23, 38, 39, 145
BSDEF, 17, 23, 48, 51
BSREDEFINE, 23, 38, 39, 145
BSTYLE , 23, 50, 51, 145
BYTE, 123

C interface,170
external procedures,171
language specification,168
using C functions,173

CAP,117
caseSelectException,110
CC, 49, 51, 174, 187
CHANGESYM , 25, 38, 39, 44, 81
CHECKDINDEX , 36, 40, 40, 111
CHECKDIV , 36, 40, 112
CHECKINDEX , 36, 40, 111
CHECKNIL , 36, 40, 111
CHECKPROC , 36, 40
CHECKRANGE , 36, 40, 111
CHECKSET , 36, 41, 111
CHECKTYPE , 36, 41
CHR,117
CMPLX, 117
CODE, 17, 48, 51
CODENAME , 49, 51
Collect,159
COMPILER , 57

198

INDEX 199

COMPILERHEAP , 10, 11, 50, 52,
88

COMPILERTHRES , 50, 51
COMPLEX,93
complex numbers,93
conditional compilation,140
configuration,9

configuration file,15
directories,11
filename extensions,16
redirection file,12
search paths,9

configuration file
master,16

configuration file (xc.cfg),15
COPY,116
COROUTINES, 113
COVERFLOW , 36, 41
CPU, 49, 52, 54, 177
CurrentNumber,107

DATANAME , 49, 52
DBGFMT , 41, 42, 49, 52
DBGNESTEDPROC, 37, 41
DBGQUALIDS , 37, 41
debugging a program,6
DEC,116
DECOR, 4, 50, 52
DEF, 17, 48, 52
definition for Oberon-2 module,144
DEFLIBS , 37, 41
DISPOSE,102, 116, 137
DISPOSE (SYSTEM, O2),152
DLS, 168
DOREORDER, 37, 42, 177
DYNALLOCATE, 137
DYNDEALLOCATE, 137

ENTIER,117
ENUMSIZE , 49, 53, 179
ENV HOST, 53

ENV TARGET , 53
equations,48

ALIGNMENT , 49
ATTENTION , 49
BATEXT , 49
BATNAME , 51
BATWIDTH , 51
BSDEF, 51
BSTYLE , 51
CC, 51
CODE, 51
CODENAME , 51
COMPILERHEAP , 52
COMPILERTHRES , 51
CPU, 52
DATANAME , 52
DBGFMT , 52
DECOR, 52
DEF, 52
ENUMSIZE , 53
ENV HOST, 53
ENV TARGET , 53
ERRFMT , 53
ERRLIM , 53
FILE , 53
GCTHRESHOLD , 53
HEAPLIMIT , 53
LINK , 54
LOOKUP , 54
MINCPU , 54
MKFEXT , 54
MKFNAME , 54
MOD , 54
MODULE , 54
OBERON, 54
OBJEXT , 55
OBJFMT , 55
PRJ, 55
PRJEXT, 55
PROJECT, 55
SETSIZE, 55

200 INDEX

STACKLIMIT , 55
SYM, 55
TABSTOP, 55
TEMPLATE , 56

ERRFMT , 50, 53, 56
ERRLIM , 50, 53
error message format,56
ExceptionNumber,106
EXCEPTIONS,106

AllocateSource,106
CurrentNumber,107
ExceptionNumber,106
ExceptionSource,106
GetMessage,107
IsCurrentSource,107
IsExceptionalExecution,107
RAISE,106

exceptions,104
ExceptionSource,106
EXCL, 116

FATFS, 38, 42
FILE , 50, 53, 54
file name

extension,16
portable notation,10

Files, 194
finalization,103
Finalizer,159
fixed size types,124
FLOAT, 117
foreign definition module,170

garbage collection,143, 155
GCAUTO , 38, 42, 156
GCTHRESHOLD , 49, 53
GENASM, 37, 42
GENCPREF, 37, 42, 174
GENDEBUG, 37, 42, 177
GENFRAME , 37, 42, 157, 177
GENHISTORY , 6, 37, 42, 43, 156,

157

GENPTRINIT , 37, 43
GetInfo,159
GetMessage,107

HALT, 116, 138
HEAPLIMIT , 10, 49, 53, 156
HIGH, 117
history,6

IM, 117
implementation limitations,193
INC, 116
INCL, 116
inline equations,139
inline options,139
Input , 194
InstallFinalizer,160
INT, 117
interrupt handling,114
IOVERFLOW , 36, 43
IsCurrentSource,107
IsExceptionalExecution,107
IsM2Exception,110
IterCommands,163
IterModules,163
IterTypes,163

LEN, 117
LENGTH, 117
LevelOf,162
LFLOAT, 117
limitations of implementation,193
LINENO , 6, 37, 43, 43, 157
LINK , 6, 22, 31, 50, 54
LOC, 123
LONGNAME , 24, 38, 43
LOOKUP , 27, 50, 54
Low-level programming,179

M2, 4, 21, 38, 43
M2ADDTYPES, 36, 43, 91, 124,

128, 130

INDEX 201

M2ADR (SYSTEM, O2),153
M2BASE16, 36, 44, 124, 165, 179,

181
M2CMPSYM , 36, 40, 44, 81
M2EXCEPTION

caseSelectException,110
coException,110
complexDivException,110
complexValueException,111
exException,111
functionException,111
indexException,111
invalidLocation,111
IsM2Exception,110
M2Exception,110
protException,111
rangeException,111
realDivException,112
realValueException,112
sysException,112
wholeDivException,112
wholeValueException,112

M2EXCEPTION , 109
M2Exception,110
M2EXTENSIONS, 36, 44, 72, 91,

117, 128, 129, 131–138,
172, 189

MAIN , 4, 33, 38, 44, 139, 144
MAKEDEF , 23, 38, 44, 144
MAKEFILE , 31, 38, 44
master configuration file,16
master redirection file,9
MAX, 117
memory management,102, 137, 155
memory usage (compilers),10
message

E001,59
E002,59
E003,59
E004,60
E006,60

E007,61
E008,61
E012,60
E020,62
E021,62
E022,63
E023,63
E024,63
E025,63
E026,64
E027,64
E028,63
E029,64
E030,64
E031,64
E032,64
E033,64
E034,65
E035,65
E036,65
E037,65
E038,65
E039,66
E040,66
E041,66
E043,66
E044,66
E046,66
E047,66
E048,67
E049,67
E050,67
E051,67
E052,67
E053,67
E054,67
E055,67
E057,67
E058,67
E059,68
E060,68

202 INDEX

E061,68
E062,68
E064,68
E065,68
E067,69
E068,69
E069,69
E071,69
E072,69
E074,69
E075,69
E076,70
E078,70
E081,61
E082,61
E083,62
E085,62
E086,62
E087,70
E088,70
E089,70
E090,70
E091,70
E092,70
E093,70
E094,71
E095,71
E096,71
E097,71
E098,71
E099,72
E100,72
E102,72
E107,72
E109,72
E110,72
E111,72
E112,72
E113,73
E114,73
E116,73

E118,73
E119,73
E120,73
E121,73
E122,73
E123,74
E124,74
E125,74
E126,74
E128,74
E129,74
E131,74
E132,74
E133,74
E134,75
E135,75
E136,75
E137,75
E139,75
E140,75
E141,76
E143,76
E144,76
E145,76
E146,76
E147,76
E148,76
E149,77
E150,77
E151,77
E152,77
E153,77
E154,77
E155,77
E156,78
E158,78
E159,78
E160,78
E161,78
E162,78
E163,78

INDEX 203

E171,60
E172,60
E175,61
E200,79
E201,79
E202,79
E203,79
E206,79
E208,79
E219,80
E220,80
E221,80
E281,80
E282,80
E283,80
F005,60
F010,60
F103,82
F104,82
F105,82
F106,82
F142,82
F173,60
F174,61
F190,80
F191,81
F192,81
F193,81
F194,81
F195,82
F196,82
F197,82
F950,88
F951,88
F952,88
W300,83
W301,83
W302,83
W303,83
W304,83
W305,84

W310,84
W311,84
W312,84
W314,84
W315,85
W316,85
W317,85
W318,86
W320,86
W321,86
W322,86
W323,86
W350,88
W351,88
W352,88
W353,88
W390,86
W900,86
W901,87
W902,87
W903,87
W910,87
W911,87
W912,87
W913,87
W914,87
W915,87

MIN, 117
MINCPU , 49, 52, 54, 177
MKFEXT , 23, 48, 54
MKFNAME , 23, 50, 54
MOD , 17, 48, 54
Modula-2,91

array constructors,133
complex types,93
COROUTINES,113
dynamic arrays,132
EXCEPTIONS,106
exceptions,104
lexical extensions,129
M2EXCEPTION,109

204 INDEX

NEW and DISPOSE,102, 137
numeric types,130
open arrays,99
PACKEDSET,96
read-only export,136
read-only parameters,134
renaming in import clause,137
SEQ parameters,135
set complement,134
standard procedures,116
string concatenation,97
SYSTEM,121
system functions,125
system procedures,127
TERMINATION, 113
value constructors,97

MODULE , 50, 53, 54
ModuleOf,162
multilanguage programming,165

external procedures,171
interface to C,170
language specification,168
Modula-2/Oberon-2,165

NameIterator,163
NameOfModule,161
NameOfType,162
NEW (M2), 102, 137
NEW (SYSTEM, O2),152
NewObj,162
NOCODE, 88
NOHEADER , 37, 44, 88
NOOPTIMIZE , 37, 45, 177
NOPTRALIAS , 37, 45, 178

O2, 4, 21, 38, 45
O2ADDKWD , 36, 45
O2EXTENSIONS, 36, 45, 72, 143,

149–151, 189
O2ISOPRAGMA , 36, 45, 146
O2NUMEXT , 36, 45, 143, 146, 148

Oakwood Extensions,146
OBERON, 17, 20, 48, 54
Oberon environment,143
Oberon run-time support,143, 158
Oberon-2,143

ASSERT,145
comments,150
complex numbers,146
definition,144
identifiers,145
in-line exponentiation,148
language extensions,149
module SYSTEM,151
numeric extensions,146
read-only parameters,150
SEQ parameters,151
string concatenation,150
SYSTEM.BYTE,152
using Modula-2,148
VAL, 150
value constructors,151

oberonRTS, 158
OBJEXT , 48, 55
OBJFMT , 49, 55
ODD, 117
ONECODESEG, 37, 46
operation modes,20

ALL, 23
BATCH, 23
BROWSE,23
COMPILE,20
EQUATIONS,24
GEN,22
MAKE, 21
OPTIONS,24
PROJECT,22

optimizing a program,177
option precedence,19
options,35

GEN C , 39
GEN X86 , 38

INDEX 205

ASSERT, 39
BSCLOSURE, 39
BSREDEFINE, 39
CHANGESYM , 39
CHECKDINDEX , 40
CHECKDIV , 40
CHECKINDEX , 40
CHECKNIL , 40
CHECKPROC , 40
CHECKRANGE , 40
CHECKSET , 41
CHECKTYPE , 41
code control,37
code control equations,49
COVERFLOW , 41
DBGNESTEDPROC, 41
DBGQUALIDS , 41
DEFLIBS , 41
DOREORDER, 42
FATFS, 42
file extensions,48
GCAUTO , 42
GENASM, 42
GENCPREF, 42
GENDEBUG, 42
GENFRAME , 42
GENHISTORY , 42
GENPTRINIT , 43
IOVERFLOW , 43
language control,36
LINENO , 43
LONGNAME , 43
M2, 43
M2ADDTYPES, 43
M2BASE16, 44
M2CMPSYM , 44
M2EXTENSIONS, 44
MAIN , 44
MAKEDEF , 44
MAKEFILE , 44
miscellaneous equations,50

miscellaneous options,38
NOHEADER , 44
NOOPTIMIZE , 45
NOPTRALIAS , 45
O2, 45
O2ADDKWD , 45
O2EXTENSIONS, 45
O2ISOPRAGMA , 45
O2NUMEXT , 45
ONECODESEG, 46
OVERWRITE , 46
PROCINLINE , 46
run-time checks,36
SPACE, 46
STORAGE, 46
VERBOSE, 46
VERSIONKEY , 47
VOLATILE , 47
WERR, 47
WOFF, 47
XCOMMENTS , 48

ORD (M2),117
OVERWRITE , 13, 32, 38, 46

portability
file names,10

postmorten history,6
precedence of options,19
PRJ, 22, 28, 50, 55
PRJEXT, 22, 48, 55
PROCINLINE , 37, 46, 178
PROJECT, 50, 55
project files,27

RAISE,106
RE,117
read-only parameters,134, 150
redirection file,12

master,9
regular expressions,13
RTS,155

206 INDEX

Run-Time support,155
running a program,5

Search,161
SEQ parameters,135, 151
SETSIZE, 49, 55, 181
SIZE,117
SizeOf,161
SPACE, 37, 46, 177
STACKLIMIT , 49, 55
standard procedures

Modula-2,116
STORAGE, 36, 46, 65, 102, 138,

155
string concatenation,150
SYM, 17, 48, 55
symbol files,25
SYSTEM

ADDADR, 125
ADR (M2), 125
BIT, 127
CAST,125
CC,127
CODE,128
DIFADR, 125
DISPOSE,152
FILL, 128
GET,128
GETREG,152
M2ADR, 153
MOVE, 127
NEW, 152
PUT,128
PUTREG,152
REF (M2),127
ROTATE,127
SHIFT,127
SUBADR,125
TSIZE,126

SYSTEM, 121, 151
system modules

COMPILER,57
COROUTINES,113
EXCEPTIONS,106
M2EXCEPTION,109
SYSTEM (M2),121
SYSTEM (O2),151
TERMINATION, 113

system types,123

TABSTOP, 50, 55
TEMPLATE , 23, 50, 56
template files,22, 31
TERMINATION , 113
ThisCommand,161
ThisType,161
TOPSPEED, 36
TRUNC,117
TypeOf,162

VAL (M2), 117
VAL (O2), 150
value constructors,97, 151
VERBOSE, 30, 38, 46
VERSIONKEY , 37, 47
VOLATILE , 37, 47, 78

WERR, 38, 47
WOFF, 38, 47
WORD,123

XCOMMENTS , 38, 44, 48, 144
XYPlane, 194

This page had been intentionally left blank.

Excelsior, LLC
6 Lavrenteva Ave. Suite 441
Novosibirsk 630090 Russia
Tel: +7 (3832) 39 78 24
Fax: +1 (509) 271 5205
Email: info@excelsior-usa.com
Web: http://www.excelsior-usa.com

	About XDS
	Welcome to XDS
	Conventions used in this manual
	Language descriptions
	Source code fragments

	Getting started
	Using the Modula-2 compiler
	Using the Oberon-2 compiler
	Error reporting
	Building a program
	Debugging a program

	Configuring the compiler
	System search paths
	Working configuration
	XDS memory usage
	Directory hierarchies
	XDS search paths
	Redirection file
	Regular expression

	Options
	Configuration file
	Filename extensions
	Customizing compiler messages
	XDS and your C compiler

	Using the compiler
	Invoking the compiler
	Precedence of compiler options

	XDS compilers operation modes
	COMPILE mode
	MAKE mode
	PROJECT mode
	GEN mode
	BROWSE mode
	ALL submode
	BATCH submode
	OPTIONS submode
	EQUATIONS submode

	Files generated during compilation
	Modula-2 compiler
	Oberon-2 compiler

	Control file preprocessing
	Project files
	Make strategy
	Smart recompilation
	Template files
	Using equation values
	File name construction
	Iterators
	Examples

	Compiler options and equations
	Options
	Options reference
	Equations
	Equations reference
	Error message format specification
	The system module COMPILER

	Compiler messages
	Lexical errors
	Syntax errors
	Semantic errors
	Symbol files read/write errors
	Internal errors
	Warnings
	Pragma warnings
	Native XDS warnings
	Native XDS errors
	XDS-C warnings

	XDS Modula-2
	ISO Standard compliance
	Ordering of declarations

	New language's features
	Lexis
	Complex types
	Sets and packedsets
	Strings
	Value constructors
	Multi-dimensional open arrays
	Procedure type declarations
	Procedure constants
	Whole number division
	Type conversions
	NEW and DISPOSE
	Finalization
	Exceptions
	The system module EXCEPTIONS
	The system module M2EXCEPTION
	Termination
	Coroutines
	Protection

	Standard procedures
	Compatibility
	Expression compatibility
	Assignment compatibility
	Value parameter compatibility
	Variable parameter compatibility
	System parameter compatibility

	The Modula-2 module SYSTEM
	System types
	System functions
	System procedures

	Language extensions
	Lexical extensions
	Additional numeric types
	Type casting
	Assignment compatibility with BYTE
	Dynamic arrays
	Constant array constructors
	Set complement
	Read-only parameters
	Variable number of parameters
	Read-only export
	Renaming of imported modules
	NEW and DISPOSE for dynamic arrays
	HALT
	ASSERT

	Source code directives
	Inline options and equations
	Conditional compilation

	XDS Oberon-2
	The Oberon environment
	Program structure
	Creating a definition

	Last changes to the language
	ASSERT
	Underscores in identifiers
	Source code directives

	Oakwood numeric extensions
	Complex numbers
	In-line exponentiation

	Using Modula-2 features
	Language extensions
	Comments
	String concatenation
	VAL function
	Read-only parameters
	Variable number of parameters
	Value constructors

	The Oberon-2 module SYSTEM
	Compatibility with BYTE
	Whole system types
	NEW and DISPOSE
	M2ADR

	Run-time support
	Memory management
	Postmortem history
	The oberonRTS module
	Types and variables
	Garbage collection
	Object finalization
	Meta-language facilities
	Module iterators

	Multilanguage programming
	Modula-2 and Oberon-2
	Basic types
	Data structures
	Garbage collection

	Direct language specification
	Interfacing to C
	Foreign definition module
	External procedures specification

	Relaxation of compatibility rules
	Assignment compatibility
	Parameter compatibility
	Ignoring function result

	Configuring XDS for a C Compiler
	Possible problems

	Optimizing a program
	Low-level programming
	Data representation
	Modula-2 INTEGER and CARDINAL types
	Modula-2 BOOLEAN type
	Modula-2 enumeration types
	Modula-2 set types
	Pointer, address, and opaque types
	Procedure types
	Record types
	Array types

	Sequence parameters
	Calling and naming conventions
	General considerations
	Open arrays
	Oberon-2 records
	Result parameter
	Nested procedures
	Oberon-2 receivers
	Sequence parameters
	Order of parameters
	Stack cleanup
	Register usage
	Naming conventions

	Inline assembler
	Implemented features
	Basic syntax
	Labels
	Accessing Modula-2/Oberon-2 objects
	Known problems
	Potential problems

	Limitations and restrictions

