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Abstract. We review the methods of constructing confidence intervals that account for a 

priori information about one-sided constraints on the parameter being estimated. We show that 

the so-called method of sensitivity limit yields a correct solution of the problem. Derived are the 

solutions for the cases of a continuous distribution with non-negative estimated parameter and a 

discrete distribution, specifically a Poisson process with background. For both cases, the best 

upper limit is constructed that accounts for the a priori information. A table is provided with the 

confidence intervals for the parameter of Poisson distribution that correctly accounts for the 

information on the known value of the background along with the software for calculating the 

confidence intervals for any confidence levels and magnitudes of the background (the software is 

freely available for download via Internet). 

PACS: 29.85.Fj 

 

 

1. Introduction 

The Neyman construction [1] of confidence intervals for estimated parameters is a basic 

element of experimental data processing. Often one also possesses a priori information about the 

estimated parameters, and it is important to include that information into the confidence intervals 

in a consistent way.  

A limited domain of the parameters is an example of such a priori information. The 

problem with the conventional confidence intervals is seen if the experimental estimate of the 

parameter falls out of the domain. For instance, in the Troitsk-nu-mass experiment on the direct 

measurement of the mass of neutrino in tritium beta-decay [2] the parameter 2
mν  is non-negative 

while the formal fit yields a negative value of 2
mν . 

The construction of confidence intervals for Poisson distribution with Poisson-distributed 

background is another situation where one should take into account the a priori information 

about the background. The situation is usual for studying rare events (in experiments on 

neutrinoless double beta-decay [3], and neutrino oscillations, for instance T2K, MINOS [4], etc.)  
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Several candidate solutions were proposed. These can be divided into two groups 

according to how the freedom inherent in the Neyman construction of confidence intervals is 

used.  

The first group of candidate solutions incorporates the a priori information at the stage of 

constructing the acceptance regions. This group includes the Feldman-Cousins construction [6] 

and the power constrained limits advocated by Cowan et al. (the CCGV method [7]). However, 

the intervals constructed e.g. via the Feldman-Cousins recipe do not allow one to meaningfully 

compare the results of different experiments (because an experiment with worse sensitivity could 

yield a smaller interval), thus failing to achieve the very goal of data processing: to produce 

numbers that directly express the essential information; numbers that speak for themselves. 

The second group of candidate solutions incorporates the a priori information into the 

estimator, and only after that proceeds to constructing confidence intervals in a regular fashion. 

The first such recipe was given in [8] for a special case of the maximal likelihood estimator. The 

somewhat artificial arguments of [8], however, are not quite transparent and no explicit form for 

the estimator is provided, so that it is not clear whether the recipe could be applied to other 

methods of estimation (e.g. the least squares or the newer and advantageous method of quasi-

optimal weights [17] which was used in obtaining the recent neutrino mass bound [2]). This 

limitation of the (correct) construction of confidence intervals [8] may explain why it remained 

unnoticed by the data processing community. 

A comprehensive solution that is independent of the estimation method and provides an 

explicit formula for the estimator, was found in [9] where a transparent graphical and analytical 

interpretation of the construction was given. For the unphysical values of the estimator, the 

resulting construction resembles the empirical recipe of the so-called sensitivity limit (for 

instance, the sensitivity limit was used among other ways to present the results of the Mainz 

neutrino mass experiment [10]). For the physical values of the estimator, however, the new 

construction introduces a narrowing of the confidence belt near the boundary of the physical 

region. We will call the new construction the method of sensitivity limit. To avoid confusion, 

however, it should be emphasized that the sensitivity limit proper is not a confidence interval but 

a characteristic of a given experiment and the corresponding uncertainties; it can be calculated 

before measurements. The method of sensitivity limit, on the other hand, provides a system of 

confidence intervals (a confidence belt) constructed via the Neyman procedure. 

A major advantage of the method of sensitivity limit is that it allows a direct comparison of 

different experiments without recalculations or re-processing of data. For instance, the new 

results of the Troitsk-nu-mass experiment [2] are compared with the above mentioned Mainz 

measurement as well as with the results of the first analysis of the Troitsk-nu-mass data [11]. In 
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this regard the method succeeds where the Feldman-Cousins recipe [6] fails: in non-physical 

range the Feldman and Cousins recipe provides a confidence interval that depends on the 

experimental value of the estimator; moreover the interval shrinks unnaturally as the estimator 

values move away from the physical bound into the unphysical region. In fact, the Feldman-

Cousins recipe does not provide results that can be compared directly. 

Note that within the second approach (incorporation of a priori information into the 

estimator prior to constructing confidence intervals) one can also construct correct and optimal 

one-side (upper or lower) limits for the estimated parameters [12]. 

The case of discrete distributions is another natural extension of the method of [9], [12]; 

this is the main purpose of the present paper. 

First, in Section 2 we recall the Neyman construction and define it in the terms convenient 

for the further derivation of the method of sensitivity limit. The case of discrete distributions is 

discussed separately since there one should replace the equalities for the confidence probability 

of the confidence belt by inequalities due to the discreteness itself. We discuss the construction 

of symmetric and non-symmetric as well as the construction of Sterne, Crow and Gardner [5]. 

Sections 3-5 review the constructions of Cowan et al., Feldman and Cousins and 

Mandelkern and Shultz correspondingly. 

In Section 6, following [9], we construct the method of sensitivity limit for the case of 

continuous distributions, with a priori information about the estimated parameter given by the 

inequality θ ≥ 0 . Section 7 considers the discrete case of a Poisson process with unknown µ  but 

with known Poisson background b. Finally, Section 8 provides the best upper limits for 

continuous and discrete distributions. The conclusions are summarized in Section 9. 

This paper considers only the Neyman procedure of the construction of confidence 

intervals. The intervals provide clear interpretation within the frequentist approach. Although the 

alternative Bayesian approach can, with some stretching of imagination, be interpreted in terms 

of statistical ensembles [13], the actual construction of Bayesian intervals by experimenters uses 

the unknown a priori distribution density function for the parameter. This violates the 

applicability of the Bayes theorem and makes it difficult to interpret the results. We also do not 

consider here the so-called CLs method [14] of constructing the confidence intervals, since it has 

no clear interpretation within either frequentist or Bayesian approach even if it is widely used, 

for instance, in presenting the results of the Higgs boson searches [15]. 
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2. Neyman intervals 

 

a) Continuous distributions 

We start from the description of the standard Neyman construction of confidence intervals 

[1], in which we fix the notation that is used hereinafter. 

Let θ̂  be a conventional estimator for the unknown parameter θ , i.e. an estimator 

constructed without regard for the a priori bound (e.g. obtained via the paradigmatic method of 

moments [16], [17]). 

The random variable θ̂  is a function of a set of experimental data Х: ˆ ˆ( )Xθ θ= . Its 

probability density ( )ˆdθ θ  is parameterized by θ  and is assumed to be known and non-singular 

as required in the standard Neyman construction of confidence intervals [1]. The density 

( )ˆdθ θ incorporates all the information about the experiment (including the estimation method) in 

regard of the measurement of θ. 

Let α, α' be small and non-negative. Define ( )Lα θ  and ( )Uα θ′  according to 

 ( )( ) ( )( )ˆ ˆ,L Uα αθ θ α θ θ α′
′−∞ < < = < < +∞ =P P . (1) 

The probability for the estimator to fall below ( )Lα θ  is α , above ( )Uα θ′ ,  α' .
 
The ( )Lα θ  thus 

defined corresponds to the Zα defined in sec. 9.1.1 of [16].
 

Assuming ( )Lα θ  and ( )Uα θ′  to be invertible functions of θ, Eq. (1) can be rewritten as 

follows: 

 ( )( ) ( )( )ˆ ˆ,l uα αθ θ α θ θ α′
′< = < =P P , (2) 

where 1 1,u U l Lα α α α
− −= = . Eq. (2) says that the probabilities for the random variables 

( )ˆlα θ / ( )ˆuα θ′  to fall below/above the unknown true value θ  are α  / α'. 
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Fig. 1. Shown are the functions ( )ˆlαθ θ=  and ( )ˆuαθ θ′=  (or ( )ˆ Lαθ θ=  and ( )ˆ Uαθ θ′= , 

depending on the viewpoint). In general, the diagonal ˆθ θ=  need not lie between the two 

curves, and it will not be shown in other figures. The two solid curves will be reused in 

subsequent figures with α α′ =  , in which case they form the standard symmetric confidence belt 

for the confidence level 1 2β α= − . Smaller β  means a more narrow belt. 

 

One can rewrite (1) in form of 

 ( )ˆ( ) ( ) 1L Uα αθ θ θ α α β′
′< < = − − ≡P . (3) 

Then an equivalent expression 

 ( ) ( )( )ˆ ˆu lα αθ θ θ β′ < < =P  (4) 

says that the probability for the random interval ( ) ( )[ ]ˆ ˆ,u lα αθ θ′  to cover the unknown θ  is β 

(the confidence level; e.g. 90%β =  etc.). 

Choosing ( )1 2α α β′= = −  results in a standard symmetric confidence belt. 

The construction allows further freedom. Fix the confidence level β (e.g. 90%β = ; β  is 

assumed to be fixed in what follows). Then choose a pair of functions L, U  to satisfy 

 ( )ˆ( ) ( )L Uθ θ θ β< < =P . (5) 

If they are also monotonic then there exist inversions 1 1,u U l L− −= = , and an equivalent 

expression 

 ( ) ( )( )ˆ ˆu lθ θ θ β< < =P  (6) 

says that the random interval ( ) ( )ˆ ˆ,u lθ θ    covers the unknown θ  with probability β. 
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Note that the curve ( )ˆuθ θ=  cannot exceed ( )1
ˆu βθ θ−= , i.e. ( ) ( )1

ˆ ˆu u βθ θ−≤ . The curve 

( )ˆlθ θ=  is similarly bounded from below. Any such pair of curves forms what we will call 

allowed confidence belt for the confidence level β.  

Fig. 2 introduces, in addition to the symmetric confidence belt for the confidence level β, 

another, narrower symmetric confidence belt for a lower confidence level 

( )1 2 1 1 4β β α β= − − = − <�   (dashed sloping lines). The various intersection points and 

horizontal lines are labelled for ease of reference: similarly labelled points in subsequent figures 

are the same as in this one.  

 

 

Fig. 2. The pairs of solid and dashed sloping lines delimit symmetric confidence belts for 

the confidence limits 1 2β α= −  and ( )1 2 1 1 4β β α= − − = −� ; cf. Fig. 1. The functions that 

correspond to the lines are shown in the figure. A is the intersection with the vertical axis of the 

line ( )ˆlαθ θ= . Point A determines the horizontal line KF along with the further intersection 

points. C and Q are the intersections of the lines ( )1
ˆu βθ θ−=  and ( )ˆuαθ θ=  with the horizontal 

axis. 

 

The vertical position of the intersection point A (and of the line KF) is denoted as θ
A

: 

 ( )0lαθ =A . (7) 

The numbers θ θ θ< <
C E F

 are the horizontal positions of the points C, E, F: 

 ( ) ( ) ( )1 10 , ,U U Uβ β αθ θ θ θ θ− −= = =C E A F A . (8) 

 

b) Discrete distributions 

Let us consider an experiment that measures a number of events n. Let the number of 

detected events has, for instance, Poisson distribution: 
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 ( )
!

n

P n e
n

µ
µ

µ −= . (9) 

Here µ  is the parameter of the Poisson distribution, the mean number of events. (The following 

reasoning does not depend on the particular type of the distribution.)  

The discreteness of the distribution induces some modifications in constructing the 

confidence intervals as compared with continuous distributions. 

As usual, to construct confidence intervals one chooses a confidence level α  (95%, for 

instance). By definition one needs to find the intervals that will cover the unknown true value 0µ  

in fraction α  of experiments: 

 [ ]( )0 1 2,P µ µ µ α∈ = . (10) 

The discreteness of the distribution requires weakening the exact equality in (10) by 

replacing it with an inequality " ≥ " [6]. 

For each value of µ  one can find values n to satisfy the condition: 

 ( ) ( )( )1 2,P n n nµ µ µ α∈ ≥   . (11) 

First, let us consider a one-side interval: 

 ( )( )P n nα µ α≤ ≥ . (12) 

To derive the confidence interval for the parameter µ  one can perform a transformation of 

the expression in the brackets: 

 ( )( )*P nµ µ α≥ ≥ . (13) 

The inequality (13) implies that in fraction α≥  of experiments (measurements of n) one 

will obtain such values n that the unknown true value of the parameter satisfy the condition 

( )* nµ µ≥ . 

At first glance it seems that for a discrete distribution of n the function ( )* nµ  is defined 

somehow ambiguously (each value n corresponds to a set of values of *µ  and the values 

satisfies the condition (13)). As we show below the requirement of conservatism of the intervals 

[6] (the satisfaction of (13) for each fixed µ ) determines the only value of *µ  for each n. The 

value *µ  is the (lower) boundary of the confidence interval. 

To determine ( )* nµ  we introduce the following notation: let 
n

µ  be the value of the 

parameter for which the exact equality ( )( )1
n

P n nα µ α≤ − =  is realized (at that 

( )( )1
n

P n nα µ ε α≤ + − <  and ( )( )n
P n nα µ ε α≤ + > , where ε  is an arbitrarily small positive 

quantity). 
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As we show below if one chooses a value ( )* nnµ µ ε= +  as ( )* nµ  then the conservatism 

condition is not satisfied. 

With such choice of ( )* nµ , if the true value µ  fall into the interval ( ),n nµ µ ε+  the 

condition (13) will be violated. Indeed in this case µ  will be greater than or equal to a variate 

( )* nnµ µ ε= +  only if the measurement yields the values ( ) 1n nα µ= − , ( ) 2n nα µ= − , etc. 

The probability to obtain these values is ( )( )1
n

P n nα µ µ ε α≤ > + − <  (due to the definition of  

n
µ  above). Thus, the interval [ , )

n
µ ε+ +∞  by definition is not the confidence one. 

If one chooses 
n

µ  as the function ( )* nµ  then the condition 
n

µ µ≥  will be satisfied in a 

fraction α≥  of measurements and it is in agreement with the definition of the confidence 

interval for the parameter µ . 

Thus, the one-sided confidence interval in the case of a discrete distribution is given by the 

condition 
n

µ µ≥ , where 
n

µ  is defined by the exact equality ( )( )1
n

P n nα µ α≤ − = . 

Similarly, one can consider the one-sided interval defined by the condition 

( )( )P n nα µ α≥ ≥ . The corresponding upper boundary of the confidence interval for the 

parameter µ  is defined by the condition 
n

µ µ′≤ . Here 
n

µ′  is given by ( )( )1
n

P n nα µ α′≥ + = . 

The discreteness of the parameter’s distribution introduces additional freedom into the 

construction of the two-sided confidence belts. For instance, one can specify the two-sided 

confidence interval as a combination of the upper and the lower boundaries of the one-sided 

intervals: 

 ( ) ( )( ) ( ) ( )( )1 2 1 2   P n n n P n nµ µ α µ µ µ α≤ ≤ ≥ ⇒ ≤ ≤ ≥ . (14) 

The values 1µ  and 2µ  are chosen as 
n

µ  and 
n

µ′  correspondingly. The latter values for each 

n depend on the confidence level α . 

The choice leads to nearly symmetrical confidence belt. The difference from the case of 

continuous distributions is that the probabilities contained in the areas ( )1n n µ<  and ( )2n nµ <  

can be unequal. 

To derive the confidence belt one can also imply some physical reasoning. For instance, if 

the upper boundary of the interval for the parameter is more important, one can require the 

condition ( )( ) ( )1 1 2P n n µ α< < −  to be satisfied. Then the area upwards of the upper boundary 

contains the amount of probability ( )1 2α< − . The lower boundary of the confidence belt is 

chosen as the left limit in the condition ( ) ( )( )1 2P n n nµ µ α≤ ≤ ≥ . In this case the condition 
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( )( ) ( )2 1 2P n n µ α> < −  may not be satisfied and the lower boundary may not coincide with 

the one derived form (12). At the same time the confidence belt will be less overcovering, its 

amount of probability can be closer to the desired value α (as it was correctly mentioned in [6] 

the overcovering is an unwanted quality of the confidence intervals). Similarly one can derive 

the interval in the case when the lower boundary is more important. 

Another way to construct the confidence intervals was suggested by Sterne, Crow and 

Gardner [5]. Their idea is to construct the acceptance region by adding points into it in the order 

of ascending probability (as opposed to constructing the symmetrical confidence belt). The 

method was first applied to the binomial (discrete) distribution, though one can extrapolate it to 

the case of continuous distributions. The construction generally leads to the asymmetric 

confidence belt, but the belt has the least possible amount of probability. Crow showed that the 

method provides the confidence belt with the least possible area. 

Hence, for each experimental value of n one can assign a confidence interval for the 

unknown parameter µ  in the form of 

 [ ],
n nα αµ µ µ′∈  

in several different ways. As it is usual in data analysis, it is for an experimenter to decide which 

method of deriving the confidence belt to choose. 

 

3. CCGV construction 

 

Let’s turn to the known recipes of taking into account the a priori information while 

constructing confidence intervals. First we consider the attempts to take the a priori information 

into account during the construction of the acceptance region (the first group of candidate 

solutions). 

Cowan et al. suggested a method called Power-Constrained limits (PCL) [7]. The idea of 

the method is as follows. First, one chooses a statistical criteria with statistics ( )q q xµ µ=  (it is 

convenient to use statistics that increases with the growth of the discrepancy between the data 

x and the value of the parameter µ ). Than one derives the power function of the criteria, which 

is the essence of the whole construction: 

 ( ) ( )( ),crit
M P q x qµ µ µµ µ′

′= >  

Than the two hypotheses ( 0µ′ =  (no signal) and 0µ >  (non-zero signal)) are considered 

together with the corresponding power function ( )0M µ . One chooses a threshold value of the 
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power function minM  and the range of values of µ  is divided into two. If ( )0M µ  for a value of 

µ  lies below the threshold than the sensitivity to the parameter is considered to be too low and 

the values of µ  can not be tested. Thus µ  is not included into the confidence belt for the set of 

data if 1) the value of µ  is rejected by the criteria qµ  for the given confidence level α , 2) if the 

sensitivity to the value of µ  is sufficient, i.e. ( )0 minM Mµ ≥ . 

All the values µ  that do not satisfy either condition 1) or 2) form the sought for confidence 

interval. 

The probability of the confidence interval to cover the given µ  equals 100% for the values 

of µ  for which the power function is below the threshold, and the probability equals α  for the 

values of µ  for which the power function is greater then or equal to the threshold. The choice of 

the threshold minM  is up to the experimenter. 

Thereby, the PCL construction by Cowan et al. 

1) leads to the unavoidable overcovering (the excess probability contained in the 

acceptance region); 

2) gives no reasonable interpretation of the value minM , that defines the resulting 

confidence belt; 

3) does not solve the problem of the shrinking of the confidence intervals in the non-

physical region. 

 

4. Feldman and Cousins recipe 

 

The construction of the confidence intervals suggested by Feldman and Cousins [6], as well 

as the method of Stern, Crow and Gardner, is based on the special order of adding the points to 

the acceptance region. The order is defined by the likelihood ratio. 

For example, if an experiment measures the number of events n governed by Poisson 

distribution with the parameter ( )bµ + . Here µ  is the unknown parameter that is to be 

estimated, b is the known background. Let ( )1|P n µ  be the probability to obtain n events in the 

experiment with 1µ µ= . The abovementioned ratio of likelihoods is defined as follows: 

 ( )
( )

( )
1|

|
best

P n
R n

P n

µ

µ
= , (15) 

where the value ( )max 0,best n bµ = − is non-negative and maximizes ( )|P n µ  for the given n. 
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After that for each µ  the points n are added into the acceptance region in the order of decreasing 

of the corresponding values of ( )R n  until the total amount of probability in the acceptance 

region reaches the desired confidence level. 

However, as it is noted in [6] the recipe fails to solve the problem of less then the 

background number of events: the confidence limit decreases with the decrease of the measured 

number of events. Thus one can obtain arbitrarily strong constraint on the signal regardless of the 

value of the background.  

A similar problem occurs if one applies the recipe [6] to the bounded parameters of 

continuous distributions. The farther the estimator falls beyond the a priori boundary the smaller 

confidence interval it yields. The Feldman-Cousins recipe yields a paradoxical result: the most 

unreliable results (the estimators which fall far beyond the boundary) provide the strongest 

constraints on the estimated parameter. 

The stated problems of the construction [6] lead to the situation in which it is impossible to 

compare not only the results of different experiments, but the results of the same experiment 

(e.g. two different runs) as well, if the results are presented in the form of confidence intervals 

constructed via Feldman and Cousins recipe. 

The incomparability of the confidence intervals is intrinsic feature of the candidate 

solutions from the first group (see, for instance, the attempt to further modify the intervals and 

the order of the construction of the acceptance region in [18]). 

The candidate solutions from the second group are devoid of this drawback.  

 

5. Mandelkern and Shultz construction 

 

The recipes in Sections 3 and 4 imply the use of a priori information via changing the order 

of construction of the acceptance region. 

However these recipes lead to unphysical (short) confidence intervals near the physical 

boundary of the parameter. It is the result of using an estimator that does not account for the 

physical boundary.   

Changing of the order can not change the essence of the estimation procedure: it can be 

done only via the choice of the estimator (its distribution contains all the information about the 

parameters, the experiment etc.). 

Mandelkern and Shultz [8] suggested to use a modified estimator in case of bounded 

parameters. In the special case considered in [8] the suitable estimator is found via the method of 

maximum likelihood. 



Lokhov, Tkachov Page 12 16.11.2013 

The procedure is as follows. The likelihood function is modified by a new factor – 

Heaviside function that explicitly depicts the boundary condition for the parameter. After that 

one obtains the estimator that always lies in the physical region for the considered study. 

However, the introducing of the factor seems to be somehow artificial (like a postulate). The 

validity of such a procedure becomes apparent only post factum, after the direct comparison of 

the estimate from [8] with the general solution [9]. 

The further construction of the confidence intervals is carried out without any additional 

assumptions (following the standard Neyman prescriptions). Note that the procedure is not based 

on Bayesian approach since the elimination of the unphysical values of the parameter is not a 

variant of the introducing of the uniform Bayesian a priori distribution function.  

The solution [8] is as a matter of fact correct (though, once again, it can be most easily 

verified by direct comparison with the general solution). The Mandelkern and  Shultz 

construction: 

1) formally solves the problem of less then the background number of events (for the 

Poisson process with background) and the problem of shrinking of the confidence intervals for 

the negative values of the estimator of the nonnegative parameter of Gaussian distribution as 

opposed to the Feldman and Cousins recipe; 

2) provides the correct amount of probability contained in the acceptance region unlike the 

flip-flop recipes, which violate the conditions (3) and (11). 

On the other hand, the recipe of the construction of the estimator is based of the method of 

maximal likelihood. Thus, the construction fails to take into account a wide range of issues in 

which some other method of estimation is initially used. 

Probably that is why the formally correct Mandelkern and Shultz approach has not been 

widely exploited in practice. 

 

6. Construction of a correct confidence belt in the continuous case 

 

The comprehensive solution of the issue of constructing confidence intervals for a 

parameter of a continuous distribution with a priori information about the limited domain of the 

parameter was presented in [9]. The justification of the procedure is presented below. 

The defining element of the construction of confidence intervals is the estimator. What then 

should the estimator be instead of ˆ ˆ( )Xθ θ= , if one knows beforehand that 0θ ≥ ? The purpose 

of any estimator is to provide a value as close as possible to the unknown θ. So, define a new 

estimator: 



Lokhov, Tkachov Page 13 16.11.2013 

 ( )ˆmax ,0θ θ=� . (16) 

Evidently, θ�  yields estimates that are guaranteed to be closer to the unknown value of θ  than 

θ̂ , and it incorporates both the statistical information contained in the unmodified estimator θ̂ as 

well as the a priori knowledge that 0θ ≥ . It then remains to construct confidence intervals for 

the new estimator θ� . 

One may wish to ponder the definition (16) prior to reading on. 

The probability distribution for θ�  has the form: 

 ( ) ( ) ( ) ( )d H d cθ θ θθ θ θ δ θ= +� � � � � , (17) 

where ( )H t  is the standard Heaviside step function, ( )tδ  is the usual Dirac δ-function and 

 
0

ˆ ˆ( )c d dθ θθ θ
−∞

= ∫ . (18) 

So, one has to deal with the aggravation of a singular contribution. This can be done in a regular 

way, or via a trick. Refer to [9] for the description of the standard approach (regularization). 

 Now, the trick. The key observation is as follows. The definition (16) means that the 

random values of the unmodified θ̂  are eventually carried over to the zero point and piled up 

there. This means that all such values will be indistinguishable: they will all yield the zero value 

for θ�  — and the same confidence interval. This implies that all non-positive values of θ̂  are to 

eventually yield one and the same confidence interval [0, const], where the constant is 

independent of θ̂ .  

Once this is understood, the construction of confidence belts can be completed entirely in 

terms of θ̂ , with the only trace of  θ�  being an additional condition: the resulting confidence 

belts must be such that all values of θ̂  below the a priori bound must yield the same confidence 

interval. 

The condition has a clear experimental meaning: it can be rephrased as a requirement of 

robustness of confidence intervals with respect to unknown experimental (ef | de) fects. This 

gives the entire construction an additional physical weight. However, it is worth keeping in mind 

that the argument that led to it starting from the beginning of this section is transparent and 

specific, and does per se not need any metaphysical support: the construction in terms of the 

unmodified estimator θ̂  with the above additional condition is equivalent to a straightforward 

construction of confidence belts for the modified estimator (16) that incorporates the a priori 

information in a most straightforward and transparent fashion. 

Horizontal deformations. The trick of horizontal deformations is based on the following 

properties of allowed confidence belts for a fixed β . If, for a fixed θ , ( )U θ  in the definition (5) 



Lokhov, Tkachov Page 14 16.11.2013 

is pushed down to its lower limit ( )1U β θ−  then the corresponding ( )L θ → −∞  (L can be 

similarly pushed to its upper limit.) If L and U can thus be deformed while always preserving 

continuity and monotonicity, then there will be correctly defined inversions 1 1,u U l L− −= =  at 

every step of the deformation — i.e. an allowed confidence belt for the level β.  

Given the way we draw plots in this review, such deformations occur in horizontal 

directions. Fig. 3 illustrates this: the fat curves must lie outside the internal belt and may only 

approach its boundaries (in the horizontal directions shown by the arrows) on one side at the cost 

of running away from it to infinity on the other side. 

 

 

Fig. 3. The pairs of solid and dashed sloping curves delimit symmetric confidence belts for 

the confidence limits 1 2β α= −  and ( )1 2 1 1 4β β α= − − = −�  (cf. Fig. 1). The two fat curves 

show a possible choice of  l, u  for the confidence level 1 2β α= − . The arrows show horizontal 

deformations discussed in the main text. 

 

Whenever one of the fat curves crosses a boundary of the symmetric confidence belt (the 

solid sloping lines) then the other fat curve crosses the other boundary, as shown with the 

horizontal dashed line. 

The described freedom was exploited in ref. [6] where the pair L, U  was chosen based on a 

learned belief in the magic of likelihood. The choice of [6] is illustrated in Fig. 4.  

 

Fig. 4. The confidence belt (delimited by fat lines) as defined in ref. [6] (cf. their Fig. 10). 

The other lines are the same as in Fig. 3. The right fat curve approaching the dashed boundary 

corresponds to the left fat curve running away to infinity while approaching the horizontal axis, 

cf. Fig. 3. 
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Lastly, one can take a limit deforming L so that its part adheres to a part of ( )1L β θ−  (see 

Fig. 5). This may cause L (and U ) to loose continuity at the boundary of such part. However, if 

the corresponding inversions 1 1,u U l L− −= =  continuously approach, in the limit, well-defined 

continuous monotonic (non-decreasing) functions of θ̂  , then the system of confidence intervals 

(6) will continuously approach a well-defined result, and the limiting confidence belt will be as 

good as any allowed confidence belt for the purposes of parameter estimation. 

One can carry out the construction of the confidence intervals via the described trick of 

horizontal deformations. In the notations of Fig. 2 and with a fixed confidence level β , consider 

a confidence belt corresponding to two functions l, u chosen as shown in Fig. 5 (cf. also Figs. 3 

and 4). 

 

Fig. 5. Fat lines delimit an allowed confidence belt for θ̂  for the confidence level β . The 

other lines and points are as in Fig. 2. The fat lines are described by two functions l  and u. Black 

arrows indicate the horizontal deformation used to obtain the confidence belt that satisfies the 

additional condition.  

 

As was discussed above , one is allowed to perform the horizontal deformation indicated 

by the black arrows in Fig. 5 until the curved segment WF adheres to the broken line CEF. The 

curved segment AV will in the end effectively be straightened out into AK (the white arrow). The 

limiting confidence belt is well-defined and is shown in Fig. 6. 

 

Fig. 6. The two fat broken lines KAJ and RCEFH delimit the resulting level-β  confidence 

belt for θ̂ that satisfies the additional condition and therefore correctly maps to a confidence belt 
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for θ� defined by Eq. (16).  The region CEFQ cut out from the unmodified confidence belt is a 

pure gain obtained from the a priori knowledge. 

 

Recall that the construction involves two symmetric confidence belts for the unmodified  θ̂ :  

1) the symmetric belt for the level 1 2β α= − , expressed in our notation as ( ) ( )]ˆ ˆ,u lα αθ θ ,  

2) the symmetric belt for the level ( )1 2 1 1 4β β α= − − = −� , expressed as 

( ) ( )1 1
ˆ ˆ,u lβ βθ θ− −   . 

The upper boundary of the confidence interval [0, const] that corresponds to the unphysical 

values of θ̂  resembles the so-called sensitivity limit. Evidently, the value of the sensitivity limit 

does not depend on the particular value of θ̂  but is defined by the uncertainty of θ̂ . Thus the 

sensitivity limit represents the magnitude of the experimental error and provides an objective 

representation of the results of the experiment if the experimental estimate falls within the 

unphysical region. 

 

7. Correct confidence belt for parameters of discrete distributions 

 

Let us consider again the case when an experiment measures a number of events n, that has 

the Poisson distribution (9) with the parameter µ . Now let us take into account the presence of 

background events. The number of the background events is a measured quantity, therefore, in 

the general case the probability distribution ( )P bβ  is known. β  here stands for the unknown 

true value of the mean number of background events. 

The study [6] considered the case when the mean number of the background events is 

known exactly and is equal to b. Then, the number of events detected during the experiment is 

governed by the Poisson distribution with the mean equal to ( )bµ + : 

 ( )
( ) ( )

!

n

bb
P n e

n

µ

µ

µ − ++
= . (19) 

Let us now use the additional information about the background and construct the 

confidence intervals for the parameter µ  similar to the reasoning in [9] and Section 6. The main 

idea is the following: the a priori information about the parameters can be again included into the 

chosen estimator for the corresponding parameter. After that the constructing of confidence 

intervals is carried out automatically (one can compare this approach with the attempts [6] of 

direct modifications of the confidence intervals that contain certain arbitrariness). In the 
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particular case when the mean value of the background is known exactly, one can use the idea 

from [9] and choose the quantity 

 ( )� ( )max ,b n bµ + =  (20) 

as an estimator. 

Apparently, one can choose the measured value n as an estimator for ( )bµ + , but as 

opposed to (20), this estimator allows µ  to fall below zero. Measuring n and using the estimator 

(20) after the subtraction of the constant background b one obtains a nonnegative estimate of the 

parameter µ . 

The probability distribution of the estimator (20) allows us to construct the confidence 

intervals for ( )bµ +  and, consequently, for the parameter µ . The discreteness of the distribution 

(19) of n also allows of the following reasoning. For each given µ  the probability to measure the 

number of event n b≤  is: 

 ( )
( ) ( )

[ ]

0 !

nb
b

n

b
P n b e

n

µµ − +

=

+
≤ =∑ , (21) 

where [b], as usual, stands for the integer part of b. Then, using the estimator (20) and measuring 

n one obtains the value of the estimator equal to b with the probability (21). 

Hence, the probability distribution for the variable ( )max ,n b  consists of the distribution 

(19) for the values n b>  and the probability (21) to obtain the value b during the measurements 

(Fig. 7). 

 

Fig. 7. Modification of the probability distribution due to the transition form the 

conventional estimator ( )�b nµ + =  (dashed plot in the range n b≤ ) to the modified estimator 

( )� ( )max ,b n bµ + =  (solid plot) when the mean value of the background is equal to 3b = . In the 

range n b>  the probabilities for both conventional and modified estimators coincide. 

 

Using the probability distribution and following the procedure from Section 2(b), one can 

construct the confidence intervals for the quantity ( )bµ +  and, thus, for the parameter µ . 



Lokhov, Tkachov Page 18 16.11.2013 

It can be more convenient for the practical use to present the confidence intervals in terms 

of variables µ  and n (Fig. 8). In this form one can immediately obtain the confidence interval 

for the parameter µ  for each measured value 0n . 

Note that all the values n b≤  become indistinguishable after the transition to the estimator 

(20). Therefore, the same confidence interval corresponds to all these values of n. The upper 

bound of such an interval corresponds to so-called sensitivity limit. It contains the information 

on the magnitude of background in the given experiment. 

 

 

Fig. 8. Confidence intervals for the unknown signal µ  with the Poisson background (the 

mean value b=3): green (1) – 90% C.L. symmetric confidence belt with no account of the 

information about the background; red (2) – one-sided 90% C.L. confidence interval with no 

account of the information about the background; blue (3) – 90% C.L. confidence belt, based on 

the estimator (20) of the parameter µ  with account of the a priori information. 
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Fig. 9. Confidence belts for the unknown signal µ  with the Poisson background (the mean 

value b=3): blue (1) – 90% C.L. confidence belt with account of the a priori information, similar 

to Fig. 8., grey (2) – 90% C.L. confidence belt, constructed via Feldman and Cousins recipe [6]. 

 

Fig. 9 presents the confidence belt constructed via Feldman and Cousins recipe (grey) and 

the one constructed with the use of the a priori information in the estimator (blue). It is apparent 

that the confidence belt with the correct use of the a priori information (blue plot on Fig. 9) 

1) provides the correct estimate of the parameter in the region n b≤ ; 

2) has an area analogous to the area CEF on Fig. 6; therefore it provides the best possible 

estimate of the lower bound of the confidence interval; 

3) guarantees by construction that the amount of probability in the acceptance region is 

close to 90% (it is impossible to obtain exact 90% amount of probability in the case of discrete 

distributions). 

One can also use Table 1 (in Appendix) to compare the construction with the correct usage 

of the a priori information with the construction [6]. Table 1 is similar to Tables II-IX in [6] and 

it provides the confidence intervals for the 90% C.L. and various values of background and 

measured number of events (b=(0..10), ( )0 0..20n = ). 

The software for the calculation of the confidence intervals for various confidence levels 

and parameters b and 0n , and for the drawing of the corresponding confidence belts is available 

for downloading at the URL [20]. 

 

 

Fig. 10. Confidence belts for the unknown signal µ  with the Poisson background (the 

mean value b=3): blue (1) – 90% C.L. confidence belt with account of the a priori information, 

red (2) – 90% C.L. confidence belt with account of the a priori information, constructed for the 
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special case when the upper boundary of the confidence belt for the parameter µ  is of the most 

importance.  

 

Due to the additional freedom in construction of confidence intervals for parameters of 

discrete distributions (the transition from the exact equality (10) to the enequality ≥  in Eq. (11)), 

one can minimize the amount of probability contained in the acceptance region and draw it near 

to the required confidence level (in our examples – 90 %). For instance, the region to the right of 

the upper boundary on Fig. 10 satisfy the condition  ( )( )1 0.95P n nµ µ ≥ ≥
�

. This upper boundary 

represents the one-sided 95% confidence interval. As it was mentioned in Section 2(b), the lower 

boundary can be constructed formally according to the condition ( )( )2 0.95P n nµ µ ≤ ≥
�

 (blue 

plot on Fig. 10). That immediately leads to the condition ( ) ( )( )1 2 0.90P n n nµ µ µ≥ ≥ ≥
�

 to be 

satisfied. 

On the other hand, if the upper boundary of the confidence belt is fixed one can construct 

the lower boundary ( )2n µ  directly from the condition ( ) ( )( )1 2 0.90P n n nµ µ µ≥ ≥ ≥
�

 (red plot 

on Fig. 10.) The amount of probability in the acceptance region within the red belt is less or 

equal to the amount of probability within the blue confidence belt. Thus, one can obtain the 

confidence belts that are closer to the required confidence level by rejecting the symmetry of the 

resulting confidence belts. 

 

 

Fig. 11. Confidence belts for the unknown signal µ  with the Poisson background (the 

mean value b=3): blue (1) – 90% C.L. confidence belt with account of the a priori information, 
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grey (2) – 90% C.L. confidence belt for the estimator (20), constructed via Sterne, Crow and 

Gardner procedure (the shortest set of confidence intervals). 

 

For completeness sake, one can also compare (Fig. 11) the confidence belt, constructed 

with the correct account of the a priori information (blue plot), with the interval, constructed via 

Sterne, Crow and Gardner procedure (grey plot). The Sterne, Crow and Gardner construction 

was carried out for the estimator (20). The grey plot yields an empty confidence interval in the 

range 3n b< =  because the estimator (20) has no values in that region. This set of confidence 

intervals has by construction the smallest length for the given confidence level. 

 

As a result of introducing the a priori information into the estimator one obtains the set of 

confidence intervals with the following remarkable features: 

- the problem of less then the background measured number of events pointed out in [6] is 

solved (in the region where the number of events is less then the background the confidence belt 

immediately yields the upper bound for the estimated parameter µ , this estimate does not 

depend on the value of  n, as in the region 3n ≤  on Fig. 8);  

- the lower boundary of the confidence belt has the area analogous to the area CEF on Fig. 

6; 

- due to the ambiguity of the definition of the confidence intervals for the discrete 

distributions (condition (11)) there are various choices of construction of the confidence belts 

(with fixed upper or lower boundaries, Sterne, Crow and Gardner construction and their 

combinations). The choice depends on the particular situation, for instance, on the necessity to 

get more reliable upper or lower limits for the parameters.   

Therefore, the correct account of the a priori information about the background via the 

choice of a suitable estimator provides the confidence intervals that meet the requirements of 

physical reliability and devoid of the flaws of the constructions [6], [18] and [7]. Similarly to the 

case of the continuous distributions, the considered approach allows one to compare the 

confidence intervals obtained in different experiments. 

 

 

8. The best upper limit 

а) Continuous distributions 

 

Let us consider now the case of a non-symmetric confidence interval. The case can be 

important for various experimental applications. 



Lokhov, Tkachov Page 22 16.11.2013 

In Section 6 a conventional estimator θ̂  for the parameter θ  is redefined in the way to take 

into account the a priori inequality 0θ ≥ . Then for the redefined estimator ( )ˆmax ,0θ θ=�  (Eq. 

(16)), a conventional confidence belt was constructed in a more or less straightforward fashion. 

The treatment of the δ -functional contribution to the probability distribution of  θ�  was 

simplified via an observation that reduced the problem to constructing a confidence belt for the 

unmodified estimator θ̂  in such a way that the resulting belt satisfies an additional condition 

(see Section 6). The construction was accomplished using the trick of so-called horizontal 

deformations, with the result represented by Fig. 6. 

Section 6 modified the standard symmetric confidence belt, which corresponds to the 

option ( )1 2α α β′= = −  in terms of Fig. 1. A natural variation on the same theme is to 

accomplish a similar modification for the asymmetric case 0, 1α β α′ = = − , that corresponds to 

an upper bound for the confidence level β : 

 ( )( )1
ˆl βθ θ β−< =P . (22) 

This option is useful when one is trying to measure a positive signal whereas the statistical 

accuracy may not be high enough to establish a non-zero signal with a high confidence. Then 

one would like to establish as tight an upper bound as possible. This problem definition and the 

corresponding solution were considered in [12]. 

In [12] the confidence belt (22) is modified to accommodate the a priori inequality 0θ ≥ .  

The required geometrical infrastructure is provided by Fig. 12 that differs from Fig. 2 by 

adding a few more intersection points (the intersection points MBDN on the horizontal line LG).  

 

Fig. 12. The pairs of solid and dashed sloping lines delimit symmetric confidence belts for 

the confidence limits 1 2β α= −  and ( )1 2 1β β= − −� 1 4α= − . The functions that correspond to 

the lines are shown in the figure. A and B are intersections with the vertical axis of the lines 
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( )ˆlαθ θ=  and ( )1
ˆl βθ θ−= . Points A and B determine the horizontal lines KF and LG along with 

further intersection points. 

 

Only the points M, B, C, D, N will play a role in what follows; the other points are shown to 

establish a connection with Fig. 2.  

The number θ
B

 is the vertical position of the intersection point B (and of M, D, and N): 

 ( )1 0l βθ −=B . (23) 

The numbers θ θ<
C D

 are the horizontal positions of the points  C and D: 

 ( ) ( )1 10 ,U Uβ βθ θ θ− −= =C D B . (24) 

The unmodified bound (22) corresponds to confidence intervals (level β ) that start on the 

upper dashed line BI and stretch down to infinity. 

To obtain a modified version of the bound (22), one starts from an allowed confidence belt 

( ) ( )ˆ ˆ,u lθ θ   , shown with the fat lines in Fig. 13.  

 

Fig. 13. The two fat curves delimit an allowed confidence belt for the confidence level β . 

The fat lines are hinged at the points M and N. Black arrows show allowed horizontal 

deformations. White arrows show the resulting straightening of the corresponding segments.  

 

Then one performs the horizontal deformations of u and l as shown by the black arrows 

(detailed explanations of the trick are given in Section 6). Then the lower segment of u  below 

point N is pressed to the straight segment CD, whereas the upper segment of  l  above point M is 

pressed to BI. The resulting effective deformations on the other side are shown by white arrows. 

The confidence belt thus obtained is shown in Fig.  14.  
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Fig. 14. The confidence belt obtained from the unmodified upper bound for the confidence 

level β  by taking into account the a priori information 0θ ≥ . The region under CDG is a pure 

gain from the a priori information. 

 

The analytical description is as follows (we are talking about the confidence level β ): 

— For θ̂ θ≥
D

, the confidence interval is  ( )1
ˆ, l βθ θ−  B

, i.e. the upper bound is the same as 

in the unmodified case, eq. (22), but restricted from below at θ
B

. The region under CDG is 

exactly the gain from the a priori information.  

— For ˆθ θ θ≤ ≤
C D

, the confidence interval is  ( ) ( )1 1
ˆ ˆ,u lβ βθ θ− −   , i.e. exactly the 

unmodified symmetric confidence interval for the confidence level ( )1 2 1 1 4β β α= − − = −� . 

— For ˆ0 θ θ≤ ≤
C

, the confidence interval is  ( )1
ˆ0, l β θ−   , i.e. the unmodified bound (22) 

restricted from below by the physical boundary.  

— Lastly, for ˆ 0θ ≤   the confidence interval is fixed as [ ]0, θ
B

. 

 

 The noteworthy properties of this confidence belt are as follows: 

— The estimate is robust for non-physical values of the estimator, i.e. for ˆ 0θ < . 

— The interval's upper bound for physical values of θ̂  is the same as in the unmodified 

case (22) and is the lowest possible one at the confidence level β . 

— The interval's lower bound breaks off zero at the earliest point possible for the given 

confidence level (θ
C

), and the lower bound is maximal possible for this confidence level in the 

interval ˆθ θ θ≤ ≤
C D

. 

— Neither complicated algorithms nor tables are required on top of the standard routines to 

compute the confidence interval for the confidence level ( )1 2 1 1 4β β α= − − = −� . 
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— One more important feature of the upper limit is that it is devoid of the overcoverage 

(exceeding of the confidence level) that is inherent in some artificial recipes [7]. 

 

б) Discrete distributions 

The construction of the upper limit with a priori information is carried out similarly to that 

in the case of a continuous distribution. 

First, one chooses the estimator in the form of (20). Then, much as in Fig. 12 and 13, one 

considers the confidence intervals: 90% C.L. two-sided with no account of the a priori 

information and the upper and lower boundaries of 90% C.L. one-sided confidence intervals 

(Fig. 15). Although the procedure of horizontal deformation is not defined for the discrete 

distributions, with the use of the estimator (20) one obtains the acceptance region (bounded by 

black lines in Fig. 15) similar by the structure to the confidence belt in Fig. 14. 

The best upper limit for the unknown signal µ  with the Poisson background with the mean 

value b for the estimator (20) possesses the following features. 

— Provided the measured number of events is n b≤ , the construction yields the same 

confidence interval. That solves the problem of less than the background number of measured 

events pointed out in [6]. 

— The amount of probability contained in the acceptance region is close to the required 

confidence level. The exceeding of the confidence level (overcoverage in terms of [6]) is an 

undesirable feature of some other constructions [19]. 

— The lower boundary of the confidence interval moves away from the axis n (becomes 

non-zero) at the lowest possible value of n. Thus, not only the best (the most stringent) upper 

limit is obtained, but one can also claim the detection of signal at rather small values of the 

measured number of events (the non-zero lower boundary of a confidence interval can be 

somehow interpreted as presence (or a signature) of the signal). 

— As in the case of continuous distributions the area beneath the lower boundary is a gain 

from using the a priori information about the background. 
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Fig. 15. The upper boundary of the confidence interval for the unknown signal µ  with the 

Poisson background (the mean value b=3): green (1) – 90% C.L. symmetrical confidence 

interval with no a priori information taken into account, red (2) – 90% C.L. upper and lower one-

sided intervals with no a priori information, black (3) – 90% C.L. one-sided confidence interval 

for the estimator (20) – the best upper limit similarly to Fig. 14. 

 

 

Fig. 16. Confidence intervals for the unknown signal µ  with Poisson background (the 

mean value b=3): blue (1) – 90% C.L. two-sided confidence interval with a priori information, 

grey (2) – 90% C.L. confidence interval for the estimator (20) – the best upper limit similarly to 

Fig. 14. 

 

For the sake of comparison, let us also consider the two-sided (symmetric) 90% C.L. 

confidence belt with the a priori information (blue plot on Fig. 16) and the 90% C.L. best upper 

limit (grey plot on Fig. 16) for the estimator (20). One can easily see that the best upper limit for 
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the parameter µ  falls below the upper boundary of the symmetric confidence belt. The lower 

boundaries of both belts coincide for all values of n up to 10n = . It is apparent that the 

symmetric interval provides a universal estimate for the parameter – for any measured number of 

events. The confidence belt for the best upper limit also exists (by construction) for any 

measured value n. However, the most interesting application for this confidence belt lies in small 

values of measured events n, (in our examples, 10n < ). In this particular region the upper limit 

is the most stringent while the detection of the signal (in the abovementioned sense, i.e. a non-

zero value of the lower boundary) is still possible. 

We emphasize once again that the correct construction of the upper limit with the use of a 

priori information for continuous and discrete distributions allows one to directly compare the 

experimental results presented in form of confidence intervals.  

 

9. Conclusions 

 

We have demonstrated that the problem of inclusion of a priori information about the 

estimated parameters into the construction of confidence intervals admits of a fully correct 

solution. We call the solution the method of sensitivity limit, since the solution partially 

resembles the well-known recipe known as sensitivity limit.  

The solution has a transparent and therefore convincing basis, and is convenient for 

practical use. 

Let us list the main features of the considered construction. 

Continuous distributions 

The confidence intervals constructed on base of the estimator that takes into account the a 

priori information about the bounded parameter of a continuous distribution possess the 

following properties (for the symmetric interval as well as for the best upper limit): 

 — The estimation is robust: it provides correct intervals for the non-physical values of the 

estimator, i.e. for ˆ 0θ < . 

— The upper boundary of the interval remains the same for the physically allowed values 

of θ̂  both for the modified and non-modified estimators. The upper boundary is the lowest 

possible for the given confidence level β in the case of the best upper limit construction. In the 

case of a symmetric interval for the physical values of θ̂  the upper boundary of the interval falls 

below the upper boundary of the construction [6]. 

— The lower boundary of the interval move away from the axis at the earliest possible (for 

the given confidence level) point θ
C

(Fig. 6, 14). Besides the lower boundary appears to be 
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maximal for the given confidence level within the segments ˆθ θ θ≤ ≤
C E

(Fig. 6), ˆθ θ θ≤ ≤
C D

 

(Fig. 14). 

— The calculation of the confidence intervals does not require any sophisticated algorithms 

or tables apart from the standard procedures of constructing the confidence belts for a given 

confidence level. 

 

Discrete distributions 

Using the information about the background while choosing the estimator for a parameter 

of a discrete distribution one obtains the confidence intervals with the following properties: 

— The described construction of the confidence intervals solves the problem of less than 

the background number of events, pointed out in [6]. The resulting system of confidence 

intervals immediately yields the upper limit for the estimated parameter in the region where the 

number of events is less than the mean of the background. The upper limit does not depend on 

the particular value of n (as in the area 3n ≤  on Fig. 8). 

— The lower boundary contains a segment, analogous to the area CEF on Fig. 6. As a 

result of the use of the a priori information the lower boundary moves away from the axis n at 

the earliest point possible. 

— Due to the ambiguity in the definition of the confidence intervals for the discrete 

distributions (Eq. (11)) there are various modifications of the construction of confidence 

intervals (with fixed lower or upper boundary, the Sterne, Crow and Gardner construction and 

their combinations). The specific choice depends on the particular situation, for instance, on the 

necessity to obtain more reliable upper or lower constraints on the parameters. 

The best upper limit for the unknown signal µ  with the Poisson background with the mean 

value b constructed on base of the estimator (20) possesses the following features: 

— Any measured number of events n b≤  yields the same confidence interval. It solves the 

problem of less than the background number of events. 

— The amount of probability contained in the acceptance region is close to the required 

confidence level, the overcoverage is not considerable (though one can not avoid it entirely in 

the case of discrete distributions). The overcoverage (in terms of [6]) is an undesirable feature of 

the various other constructions [19], [7]. 

— The lower boundary of the confidence intervals move away from the axis n (becomes 

non-zero) at the lowest possible value of n. Thus, one can not only obtain the best (the most 

stringent) upper limit for the parameter but also has an opportunity to detect the signal (the non-

zero lower boundary can be interpreted as a signature of the non-zero signal) for rather small 

measured number of events. 
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— Similarly to the continuous distributions, there is an area below the lower boundary that 

represents a pure gain from the use of the a priori information about the background. 

It should be remembered that an essential goal of data processing is that the magnitude of 

the resulting quantities should represent the required information as directly as possible. Unlike 

the approaches of Feldman and Cousins and Cowen et al., the method of sensitivity limit 

achieves that goal: its confidence intervals obtained in different experiments can be compared 

directly.  
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APPENDIX 

Table 1 

90% C.L. confidence intervals with account of the a priori information about the parameter µ  

with the known mean value of the background b=0..10 and the measured number of events 

( )0 0..20n = . (in analogy to Tables II-IX in [6])  

0 \n b  0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5  

 0 0.0, 3.0. 0.0, 2.5. 0.0, 3.75. 0.0, 3.25. 0.0, 4.3. 0.0, 3.8. 0.0, 4.76. 0.0, 4.26.  

 1 0.11, 4.75. 0.0, 4.25. 0.0, 3.75. 0.0, 3.25. 0.0, 4.3. 0.0, 3.8. 0.0, 4.76. 0.0, 4.26.  

 2 0.54, 6.3. 0.04, 5.8. 0.0, 5.3. 0.0, 4.8. 0.0, 4.3. 0.0, 3.8. 0.0, 4.76. 0.0, 4.26.  

 3 1.11, 7.76. 0.61,7.26. 0.11,6.76. 0.0, 6.26. 0.0,5.76. 0.0, 5.26. 0.0, 4.76. 0.0, 4.26.  

 4 1.75, 9.16. 1.25,8.66. 0.75,8.16. 0.25, 7.66. 0.0,7.16. 0.0, 6.66. 0.0, 6.16. 0.0, 5.66.  

 5 2.44, 10.52. 1.94,10.02. 1.44,9.52. 0.94, 9.02. 0.44,8.52. 0.0, 8.02. 0.0, 7.52. 0.0, 7.02.  

 6 3.0, 11.85. 2.5, 11.35. 2.16,10.85. 1.66, 10.35. 1.16,9.85. 0.66,9.35. 0.16, 8.85. 0.0, 8.35.  

 7 3.29, 13.15. 2.79,12.65. 2.9, 12.15. 2.4, 11.65. 1.9,11.15. 1.4, 10.65. 0.9, 10.15. 0.4, 9.65.  

 8 3.99, 14.44. 3.49,13.94. 3.66,13.44. 3.16, 12.94. 2.66,12.44. 2.16,11.94. 1.66, 11.44. 1.16, 10.94.  

 9 4.7, 15.71. 4.2, 15.21. 3.75,14.71. 3.25, 14.21. 3.44,13.71. 2.94,13.21. 2.44, 12.71. 1.94, 12.21.  

 10 5.43, 16.97. 4.93,16.47. 4.43,15.97. 3.93, 15.47. 4.23,14.97. 3.73,14.47. 3.23, 13.97. 2.73, 13.47.  

 11 6.17, 18.21. 5.67,17.71. 5.17,17.21. 4.67, 16.71. 4.3,16.21. 3.8, 15.71. 4.03, 15.21. 3.53, 14.71.  

 12 6.93, 19.45. 6.43,18.95. 5.93,18.45. 5.43, 17.95. 4.93,17.45. 4.43,16.95. 4.76, 16.45. 4.26, 15.95.  

 13 7.69, 20.67. 7.19,20.17. 6.69,19.67. 6.19, 19.17. 5.69,18.67. 5.19,18.17. 4.76, 17.67. 4.26, 17.17.  

 14 8.47, 21.89. 7.97,21.39. 7.47,20.89. 6.97, 20.39. 6.47,19.89. 5.97,19.39. 5.47, 18.89. 4.97, 18.39.  

 15 9.25, 23.1. 8.75,22.6. 8.25,22.1. 7.75, 21.6. 7.25,21.1. 6.75,20.6. 6.25, 20.1. 5.75, 19.6.  

 16 10.04,24.31. 9.54,23.81. 9.04,23.31. 8.54, 22.81. 8.04,22.31. 7.54,21.81. 7.04, 21.31. 6.54, 20.81.  

 17 10.84,25.5. 10.34,25.0. 9.84,24.5. 9.34, 24.0. 8.84,23.5. 8.34,23.0. 7.84, 22.5. 7.34, 22.0.  

 18 11.64,26.7. 11.14,26.2. 10.64,25.7. 10.14,25.2. 9.64,24.7. 9.14,24.2. 8.64, 23.7. 8.14, 23.2.  

 19 12.45,27.88. 11.95,27.38. 11.45,26.88. 10.95,26.38. 10.45,25.88. 9.95,25.38. 9.45, 24.88. 8.95, 24.38.  

 20 13.26,29.07. 12.76,28.57. 12.26,28.07. 11.76,27.57. 11.26,27.07. 10.76,26.57. 10.26,26.07. 9.76, 25.57.  

 

0 \n b  4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5   

 0 0.0, 5.16. 0.0, 4.66. 0.0, 5.52. 0.0, 5.02. 0.0,5.85. 0.0, 5.35. 0.0, 6.15. 0.0, 5.65.  

 1 0.0, 5.16. 0.0, 4.66. 0.0, 5.52. 0.0, 5.02. 0.0,5.85. 0.0, 5.35. 0.0, 6.15. 0.0, 5.65.  

 2 0.0, 5.16. 0.0, 4.66. 0.0, 5.52. 0.0, 5.02. 0.0,5.85. 0.0, 5.35. 0.0, 6.15. 0.0, 5.65.  

 3 0.0, 5.16. 0.0, 4.66. 0.0, 5.52. 0.0, 5.02. 0.0,5.85. 0.0, 5.35. 0.0, 6.15. 0.0, 5.65.  

 4 0.0, 5.16. 0.0, 4.66. 0.0, 5.52. 0.0, 5.02. 0.0,5.85. 0.0, 5.35. 0.0, 6.15. 0.0, 5.65.  

 5 0.0, 6.52. 0.0, 6.02. 0.0, 5.52. 0.0, 5.02. 0.0,5.85. 0.0, 5.35. 0.0, 6.15. 0.0, 5.65.  

 6 0.0, 7.85. 0.0, 7.35. 0.0, 6.85. 0.0, 6.35. 0.0,5.85. 0.0, 5.35. 0.0, 6.15. 0.0, 5.65.  

 7 0.0, 9.15. 0.0, 8.65. 0.0, 8.15. 0.0, 7.65. 0.0,7.15. 0.0, 6.65. 0.0, 6.15. 0.0, 5.65.  

 8 0.66, 10.44. 0.16,9.94. 0.0, 9.44. 0.0, 8.94. 0.0,8.44. 0.0, 7.94. 0.0, 7.44. 0.0, 6.94.  

 9 1.44, 11.71. 0.94,11.21. 0.44,10.71. 0.0, 10.21. 0.0,9.71. 0.0, 9.21. 0.0, 8.71. 0.0, 8.21.  

 10 2.23, 12.97. 1.73,12.47. 1.23,11.97. 0.73, 11.47. 0.23,10.97. 0.0, 10.47. 0.0, 9.97. 0.0, 9.47.  

 11 3.03, 14.21. 2.53,13.71. 2.03,13.21. 1.53, 12.71. 1.03,12.21. 0.53,11.71. 0.03, 11.21. 0.0, 10.71.  
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 12 3.83, 15.45. 3.33,14.95. 2.83,14.45. 2.33, 13.95. 1.83,13.45. 1.33,12.95. 0.83, 12.45. 0.33, 11.95.  

 13 4.65, 16.67. 4.15,16.17. 3.65,15.67. 3.15, 15.17. 2.65,14.67. 2.15,14.17. 1.65, 13.67. 1.15, 13.17.  

 14 5.16, 17.89. 4.66,17.39. 4.47,16.89. 3.97, 16.39. 3.47,15.89. 2.97,15.39. 2.47, 14.89. 1.97, 14.39.  

 15 5.25, 19.1. 4.75,18.6. 5.3, 18.1. 4.8, 17.6. 4.3,17.1. 3.8, 16.6. 3.3, 16.1. 2.8, 15.6.  

 16 6.04, 20.31. 5.54,19.81. 5.52,19.31. 5.02, 18.81. 5.14,18.31. 4.64,17.81. 4.14, 17.31. 3.64, 16.81.  

 17 6.84, 21.5. 6.34,21.0. 5.84,20.5. 5.34, 20.0. 5.85,19.5. 5.35,19.0. 4.98, 18.5. 4.48, 18.0.  

 18 7.64, 22.7. 7.14,22.2. 6.64,21.7. 6.14, 21.2. 5.85,20.7. 5.35,20.2. 5.83, 19.7. 5.33, 19.2.  

 19 8.45, 23.88. 7.95,23.38. 7.45,22.88. 6.95, 22.38. 6.45,21.88. 5.95,21.38. 6.15, 20.88. 5.65, 20.38.  

 20 9.26, 25.07. 8.76,24.57. 8.26,24.07. 7.76, 23.57. 7.26,23.07. 6.76,22.57. 6.26, 22.07. 5.76, 21.57.  

 

0 \n b  8.0 8.5 9.0 9.5 10.0   

 0 0.0, 6.44. 0.0, 5.94. 0.0, 6.71. 0.0, 6.21. 0.0,6.97.  

 1 0.0, 6.44. 0.0, 5.94. 0.0, 6.71. 0.0, 6.21. 0.0,6.97.  

 2 0.0, 6.44. 0.0, 5.94. 0.0, 6.71. 0.0, 6.21. 0.0,6.97.  

 3 0.0, 6.44. 0.0, 5.94. 0.0, 6.71. 0.0, 6.21. 0.0,6.97.  

 4 0.0, 6.44. 0.0, 5.94. 0.0, 6.71. 0.0, 6.21. 0.0,6.97.  

 5 0.0, 6.44. 0.0, 5.94. 0.0, 6.71. 0.0, 6.21. 0.0,6.97.  

 6 0.0, 6.44. 0.0, 5.94. 0.0, 6.71. 0.0, 6.21. 0.0,6.97.  

 7 0.0, 6.44. 0.0, 5.94. 0.0, 6.71. 0.0, 6.21. 0.0,6.97.  

 8 0.0, 6.44. 0.0, 5.94. 0.0, 6.71. 0.0, 6.21. 0.0,6.97.  

 9 0.0, 7.71. 0.0, 7.21. 0.0, 6.71. 0.0, 6.21. 0.0,6.97.  

 10 0.0, 8.97. 0.0, 8.47. 0.0, 7.97. 0.0, 7.47. 0.0,6.97.  

 11 0.0, 10.21. 0.0, 9.71. 0.0, 9.21. 0.0, 8.71. 0.0,8.21.  

 12 0.0, 11.45. 0.0, 10.95. 0.0, 10.45. 0.0, 9.95. 0.0,9.45.  

 13 0.65, 12.67. 0.15,12.17. 0.0, 11.67. 0.0, 11.17. 0.0,10.67.  

 14 1.47, 13.89. 0.97,13.39. 0.47,12.89. 0.0, 12.39. 0.0,11.89.  

 15 2.3, 15.1. 1.8, 14.6. 1.3, 14.1. 0.8, 13.6. 0.3,13.1.  

 16 3.14, 16.31. 2.64,15.81. 2.14,15.31. 1.64, 14.81. 1.14,14.31.  

 17 3.98, 17.5. 3.48,17.0. 2.98,16.5. 2.48, 16.0. 1.98,15.5.  

 18 4.83, 18.7. 4.33,18.2. 3.83,17.7. 3.33, 17.2. 2.83,16.7.  

 19 5.68, 19.88. 5.18,19.38. 4.68,18.88. 4.18, 18.38. 3.68,17.88.  

 20 6.44, 21.07. 5.94,20.57. 5.53,20.07. 5.03, 19.57. 4.53,19.07.  

 


