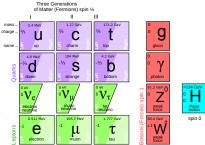

Distinguishing between R^2 and Higgs inflation

Fedor Bezrukov

University of Connecticut & RIKEN-BNL Research Center USA

Ginzburg Conference on Physics May 28–June 2, 2012

Outline


SM is great but definitely not the end of the story νMSM for "late" cosmology

Standard Model – describes nearly everything that we know

Gauge theory $SU(3) \times SU(2) \times U(I)$ Describes (together with Einstein gravity)

- all laboratory experiments

 electromagnetism, nuclear processes, etc.
- all processes in the evolution of the Universe after the Big Bang Nucleosynthesis (T < 1 MeV, t > 1 sec)

SM is great but definitely not the end of the story vMSM for "late" cosmology

Standard Model has experimental problems

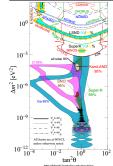
- Laboratory
 - Neutrino oscillations
- Cosmology
 - Baryon asymmetry of the Universe
 - Dark Matter
 - Inflation
 - Horizon problem (and flatness, entropy, ...)
 - Initial density perturbations
 - Dark Energy

SM is great but definitely not the end of the story vMSM for "late" cosmology

Neutrino oscillations

SAGE neutrino observatory (solar oscillations evidence

$$\prime_{e}
ightarrow V_{\mu})$$



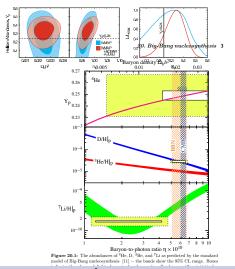
SuperKamiokande (atmosferic oscillations $v_{\mu} \rightarrow v_{\tau}$)

Reactor neutrinos, accelerator neutrinos

Oscillation parameters

Δm_{21}^2	$7.59 {\scriptstyle \pm 0.20} \times 10^{-5} \ eV^2$
$\sin^2 2\theta_{12}$	0.87 ± 0.03
$ \Delta m_{32}^2 $	$2.43{\scriptstyle \pm 0.13} \times 10^{-3}~eV^2$
$\sin^2 2\theta_{23}$	> 0.92
$\sin^2 2\theta_{13}$	< 0.15

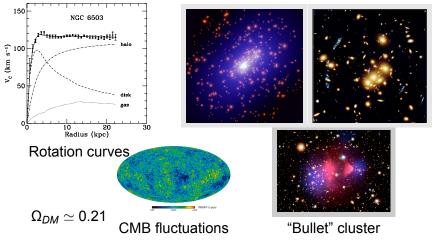
Distinguishing between R^2 and Higgs inflation


SM is great but definitely not the end of the story νMSM for "late" cosmology

Baryon asymmetry of the Universe

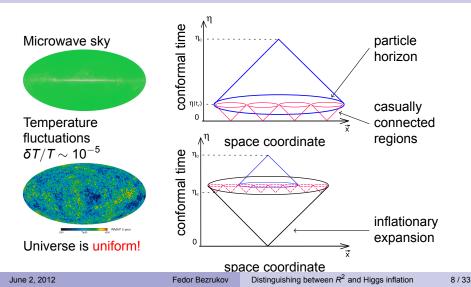
- Current universe contains baryons and no antibarions
- Current baryon density

$$\eta_B \equiv \frac{n_B}{n_{\gamma}} \simeq 6.1 \times 10^{-10}$$

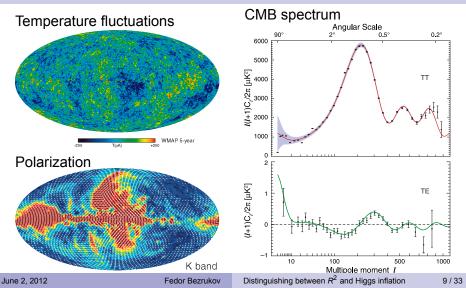

 Does not fit into the SM (too weak CP violation, too smooth phase transition)

Distinguishing between R² and Higgs inflation

SM is great but definitely not the end of the story vMSM for "late" cosmology

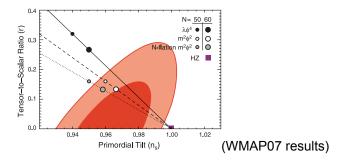

Dark Matter

Gravitational lensing

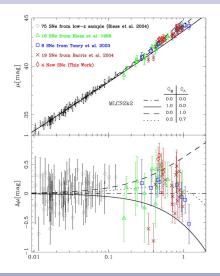

SM is great but definitely not the end of the story vMSM for "late" cosmology

Inflation evidence – horizon problem

SM is great but definitely not the end of the story vMSM for "late" cosmology


CMB gives measured predictions from inflation

SM is great but definitely not the end of the story vMSM for "late" cosmology


Inflationary parameters from CMB

- Spectrum of primordial scalar density perturbations is just a bit not flat $n_s 1 \equiv \frac{d \log P_R}{d \log k}$
- Tensor perturbations are compatible with zero $r \equiv \frac{\mathcal{P}_{grav}}{\mathcal{P}_{pr}}$

SM is great but definitely not the end of the story vMSM for "late" cosmology

Dark Energy

 $\leftarrow \text{Supernova type Ia redshifts}$

accelerated expansion of the Universe today $\Omega_{\Lambda}\simeq 0.74$

Different from inflation

- Much lower scale
- No need to stop it

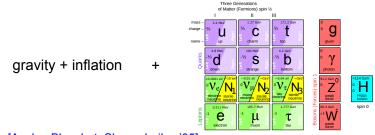
Can be explained "just" by a cosmological constant

SM is great but definitely not the end of the story vMSM for "late" cosmology

Let us expand the model in a minimal way

I will follow a "Minimal" approach

Explain the experimental facts with


- minimal number of new particles
- no new physical scales
- Higgs boson inflation
- R² inflation

+ vMSM

Ο...

SM is great but definitely not the end of the story vMSM for "late" cosmology

Dark matter, BAU – just add sterile neutrinos (vMSM)

[Asaka, Blanchet, Shaposhnikov'05]

- DM sterile neutrinos are produced by oscillations from active neutrinos
- Two heavier sterile neutrinos provide for the baryon asymmetry (via low scale leptogenesis)

R² inflation Higgs inflation

R² inflation Higgs inflation

Modifying the gravity action gives inflation

The first working inflationary model [Starobinsky'80]

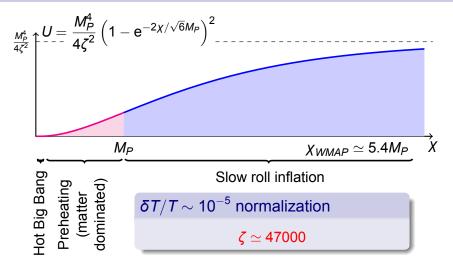
The gravity action gets higher derivative terms

$$S_J = \int d^4x \sqrt{-g} \left\{ -rac{M_P^2}{2}R + rac{\zeta^2}{4}R^2
ight\} + S_{SM}$$

R² inflation Higgs inflation

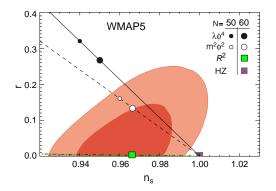
Conformal transformation

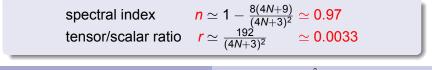
 $\begin{array}{l} \text{conformal transformation (change of variables)}\\ \hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu} \ , \qquad \Omega^2 \equiv \exp\left(\frac{\chi(x)}{\sqrt{6}M_P}\right) \end{array}$


$$\chi(x)$$
 — new field (d.o.f.) "scalaron"

Resulting action (Einstein frame action)

$$S_{E} = \int d^{4}x \sqrt{-\hat{g}} \left\{ -\frac{M_{P}^{2}}{2}\hat{R} + \frac{\partial_{\mu}\chi\partial^{\mu}\chi}{2} - \frac{M_{P}^{4}}{4\zeta^{2}} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_{P}}}\right)^{2} \right\}$$


R² inflation Higgs inflation


Inflationary potential

R² inflation Higgs inflation

CMB parameters are predicted

Reheating is due to the Planck suppressed terms

$$\begin{aligned} \hat{\varphi} &= \Omega^{-1}\varphi \\ \hat{\varphi} &= \Omega^{-3/2}\psi \\ \hat{\varphi} &= \Omega^{-3/2}\psi \\ \hat{\varphi} &= \Omega^{-3/2}\psi \\ \hat{\varphi} &= \Omega^{-3/2}\psi \\ \hat{\varphi} &= \Omega^{-1}\varphi \\$$

Einstein frame action – χ interactions are M_P suppressed

$$\begin{split} \mathcal{S}_{E}^{\text{scalar}} &= \int d^{4}x \Big\{ \frac{1}{2} \Omega^{-2} \partial(\Omega \hat{\varphi}) \partial(\Omega \hat{\varphi}) - \frac{m_{\varphi}^{2}}{2} \Omega^{-2} \hat{\varphi}^{2} \Big\} \\ \mathcal{S}_{E}^{\text{fermion}} &= \int d^{4}x \Big\{ i \bar{\psi} \mathcal{D} \hat{\psi} - m_{\psi} \Omega^{-1} \bar{\psi} \hat{\psi} \Big\} \end{split}$$

Reheating happens at relatively low temperature

- Scalaron decay ($\mu = M_P / (\sqrt{3}\zeta)$ is the scalaron mass) $\Gamma_{\chi \to \varphi \varphi} = \frac{\mu^3}{192\pi M_P^2} \qquad \Gamma_{\chi \to \bar{\psi} \psi} = \frac{\mu m_{\psi}^2}{48\pi M_P^2}$
- Main decay contribution is from the non-conformal kinetic term of the scalar
- No resonant enhancement (near immediate rescattering of the decay products)

Reheating temperature from the scalaron decay

$$T_r pprox 3.5 imes 10^{-2} g_*^{-1/4} \sqrt{rac{N_s}{\zeta}} pprox 3.1 imes 10^9 \, {
m GeV}$$

[Gorbunov, Panin'11]

R² inflation Higgs inflation

Higgs inflation

R² inflation Higgs inflation

Non-minimal coupling to gravity solves the problem

Quite an old idea

Add $h^2 R$ term (required by renormalization) to of the usual $M_P R$ term in the gravitational action

- A.Zee'78, L.Smolin'79, B.Spokoiny'84
- D.Salopek J.Bond J.Bardeen'89

Scalar part of the (Jordan frame) action

$$S_J = \int d^4x \sqrt{-g} \left\{ -\frac{M_P^2}{2}R - \xi \frac{h^2}{2}R + g_{\mu\nu}\frac{\partial^{\mu}h\partial^{\nu}h}{2} - \frac{\lambda}{4}(h^2 - \nu^2)^2 \right\}$$

• *h* is the Higgs field; $M_P \equiv \frac{1}{\sqrt{8\pi G_N}} = 2.4 \times 10^{18} \, {\rm GeV}$

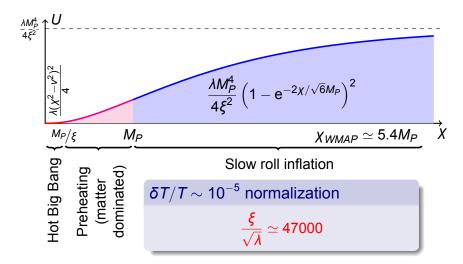
• SM higgs vev $v \ll M_P/\sqrt{\xi}$

Conformal transformation - way to calculate

It is possible to get rid of the non-minimal coupling by the conformal transformation (change of variables)

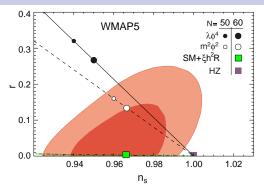
$$\hat{g}_{\mu
u}=\Omega^2 g_{\mu
u}\ ,\qquad \Omega^2\equiv 1+rac{\zeta n^2}{M_P^2}$$

Redefinition of the Higgs field to get canonical kinetic term


$$\frac{d\chi}{dh} = \sqrt{\frac{\Omega^2 + 6\xi^2 h^2/M_P^2}{\Omega^4}} \implies \begin{cases} h \simeq \chi & \text{for } h < M_P/\xi \\ \Omega^2 \simeq \exp\left(\frac{2\chi}{\sqrt{6}M_P}\right) & \text{for } h > M_P/\xi \end{cases}$$

Resulting action (Einstein frame action)

$$S_{E} = \int d^{4}x \sqrt{-\hat{g}} \Biggl\{ -\frac{M_{P}^{2}}{2} \hat{R} + \frac{\partial_{\mu}\chi \partial^{\mu}\chi}{2} - \frac{\lambda}{4} \frac{h(\chi)^{4}}{\Omega(\chi)^{4}} \Biggr\}$$


R² inflation Higgs inflation

Potential – different stages of the Universe

R² inflation Higgs inflation

CMB parameters are predicted

spectral index $n \simeq 1 - \frac{8(4N+9)}{(4N+3)^2} \simeq 0.97$ tensor/scalar ratio $r \simeq \frac{192}{(4N+3)^2} \simeq 0.0033$

R² inflation Higgs inflation

Preheating

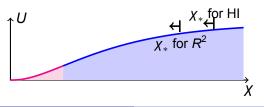
- Background evolution after inflation $\chi < M_P$ ($h < M_P/\sqrt{\xi}$)
 - Quadratic potential $U \simeq \frac{\mu^2}{2} \chi^2$ with $\mu = \sqrt{\frac{\lambda}{3}} \frac{M_P}{\xi} \chi^2$
 - Matter dominated stage $a \propto t^{2/3}$
- Stohastic resonance
 - Particle masses $m_W^2(\chi) \sim g^2 rac{M_P|\chi|}{\xi}$
 - W bosons are created (non-relativistic)
 - $\sqrt{\langle \chi^2 \rangle} \gtrsim 23 (\frac{\lambda}{0.25}) \frac{M_P}{\xi}$: non-resonant creation/W decay
 - $\sqrt{\langle \chi^2 \rangle} \lesssim 23 \left(\frac{\lambda}{0.25} \right) \frac{\dot{M_P}}{\xi}$: resonant creation/W annihilation
 - Higgs creation relativistic, less efficient

$$\sqrt{\langle \chi^2
angle} \sim 2.6 ig(rac{\lambda}{0.25} ig)^{1/2} rac{M_P}{\xi}$$

Reheating at

 $T_r \gtrsim 3.4 imes 10^{13} \, {
m GeV}$

[FB, Gorbunov, Shaposhnikov'08]. [Garcia-Bellido, Figueroa, Rubio'09]


m²M

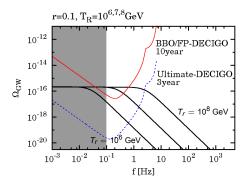
CMB predictions Gravity waves Higgs boson mass

Different T_r means different field at horizon exit

• Hubble at the Horizon exit $H_* = \frac{k}{a_0} \frac{a_0}{a_r} \frac{a_r}{a_e} e^{N_*}$ $\frac{a_r}{a_0} = \left(\frac{g_0}{g_r}\right)^{1/3} \frac{T_0}{T_r}, \qquad \frac{a_r}{a_e} = \left(\frac{V_e}{g_r \frac{\pi^2}{30} T_r^4}\right)^{1/3}$

• E-folding number of the hirizon exit $N_* \simeq 57 - \frac{1}{3} \log \frac{10^{13} \text{ GeV}}{T_r} \Rightarrow N_{HI} = 57.7, N_{R^2} = 54.4$

CMB predictions Gravity waves Higgs boson mass

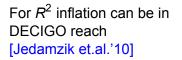

Different predictions for CMB observables

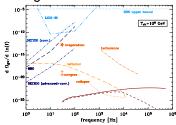
Higgs inflation: $n_s = 0.967$, r = 0.0032 R^2 inflation: $n_s = 0.965$, r = 0.0036

- Planck $\Delta n_s \sim 0.0045$ not there, but not too far away
- CMBPol $\Delta n_s \sim$ 0.0016, $\delta r \sim 10^-3$

CMB predictions Gravity waves Higgs boson mass

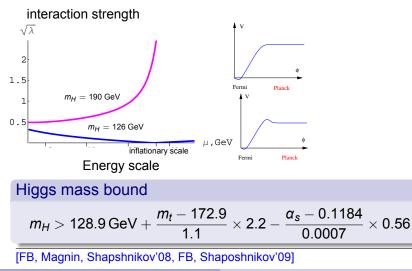
Features in tensor perturbations for gravity wave detectors



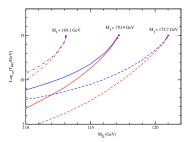

[Kuroyanagi et.al.'11]

CMB predictions Gravity waves Higgs boson mass

Gravity waves at matter dominated stage


- Primordial density of scalar perturbations $\delta
 ho /
 ho \sim 10^{-5}$
- $\bullet~\mbox{Grow} \propto \mbox{scalefactor}$ at matter domination
- Can reach δρ/ρ ~ 1 for long matter domination and small scales, generating scalaron (inflaton) "clumps"
- Gravity waves can be generated
 - collapse of scalaron perturbations
 - merging of clumps
 - evaporation of clumps at reheating

CMB predictions Gravity waves Higgs boson mass


Higgs mass bound in the Higgs inflation

CMB predictions Gravity waves Higgs boson mass

No (weak) Higgs mass bounds in the R^2 inflation

The electroweak vacuum may decay at high temperature

Higgs mass bounds in R^2 $m_H > 116.5 \,\text{GeV} + \frac{m_t - 172.9}{1.1} \times 2.2 - \frac{\alpha_s - 0.1184}{0.0007} \times 0.56$

[Espinosa, Giudice, Riotto'08]

- If SM (vMSM) is valid up to the inflationary scale
 - still can explain all observable experimental facts
 - while nothing (except Higgs boson) is seen on LHC
- Inflation can be provided in several ways, with seemingly equivalent potentials
 - Higgs inflation (non-minimally coupled to gravity)
 - *R*² inflation
- Models can be distinguished, due to different evolution after inflation
 - slightly different CMB predictions
 - gravity wave signatures
 - Higgs inflation may be excluded by discovery of a light Higgs boson

Other inflation options Based on

Radiative corrections modify the inflationary potential

If we assume

- the full UV theory respects the scale invariance at high fields (or shift invariance in the Einstein frame)
- the quadratic divergences are subtracted to zero (e.g. work in dimensional regularisation)

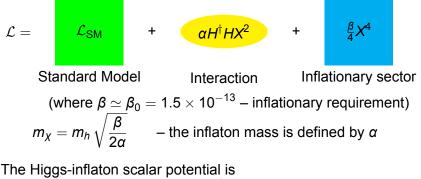
then we can compute the radiative corrections to the inflationary potential *and* relate them to the parameters of the low energy physics (Higgs boson mass).

[FB, Sibiryakov, Shaposhnikov'10]

Prescription to calculate potential with radiative corrections

- Run all constants with SM two-loop RG equations from the EW scale up to $M_P/\sqrt{\xi}$
- 2 Run all constants $\lambda_i(\mu)$ with chiral EW theory RG equations up to scale μ equal to a typical particle mass for the given field background χ

$$\mu^{2} = \kappa^{2} m_{t}^{2}(\chi) = \kappa^{2} \frac{y_{t}(\mu)^{2}}{2} \frac{M_{P}^{2}}{\xi(\mu)} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_{P}}}\right)$$


- Solution Calculate the effective potential $U(\chi) = U_{\text{tree}}(\lambda_i(\mu), \chi) + U_{1-\text{loop}}(\lambda_i(\mu), \chi) + U_{2-\text{loop}}(\lambda_i(\mu), \chi)$
- Calculate the inflationary properties for the resulting potential

[FB, Magnin, Shapshnikov'08, FB, Shaposhnikov'09]

Additional slides

Other inflation options Based on

Light inflaton model adds one scalar particle to the SM

$$V(H,X) = \lambda \left(H^{\dagger}H - \frac{\alpha}{\lambda}X^{2}\right)^{2} + \frac{\beta}{4}X^{4} - \frac{1}{2}\mu^{2}X^{2} + V_{0}$$

[Anisimov, Bartocci, FB'08, FB, Gorbunov'09]

Additional slides

Other inflation options Based on

- A.Starobinsky, Phys.Lett.B91 (1980) 99
- FB, M. Shaposhnikov, Phys. Lett. B 659, 703 (2008)
- D.Gorbunov, A.Panin, Phys.Lett. B700 (2011) 157
- FB, D. Gorbunov, M. Shaposhnikov, JCAP 06, 029 (2009)
 - FB, A. Magnin, M. Shaposhnikov, Phys. Lett. B 675, 88 (2009)
 - FB, A. Magnin, M. Shaposhnikov, S. Sibiryakov, JHEP 1101, 016 (2011).
- arxiv:0812.4624
- FB, M. Shaposhnikov, JHEP **0907** (2009) 089
 - A. Anisimov, Y. Bartocci, F. L. Bezrukov, Phys. Lett. B 671, 211 (2009)
- FB, D. Gorbunov, JHEP **05** (2010) 010
- T. Asaka, M. Shaposhnikov, Phys. Lett. B 620 (2005) 17
 - T. Asaka, S. Blanchet, M. Shaposhnikov, Phys. Lett. B 631 (2005) 151