Non-minimal coupling in inflation and inflating with the Higgs boson

F. Bezrukov

EPFL, Lausanne, Switzerland

Institute for Nuclear Research, Moscow, Russia

QUARKS’08
15th International Seminar on High Energy Physics
Sergiev Posad, Russia, 23-29 May, 2008.

Outline

1. Inflation—"standard" approach
 - Cosmological requirements
 - Large field chaotic inflation

2. Non-minimal coupling in $\lambda \phi^4$
 - The action
 - Conformal transformation
 - Large non-minimal coupling limit
 - Generic non-minimal coupling case
 - WMAP-5 allowed parameters

3. SM Higgs as the inflaton
 - Non-minimally coupled Standard Model
 - Radiative corrections—not (too) dangerous
 - Higgs mass

4. Conclusions
Outline

1. Inflation—"standard" approach
 - Cosmological requirements
 - Large field chaotic inflation

2. Non-minimal coupling in $\lambda \phi^4$
 - The action
 - Conformal transformation
 - Large non-minimal coupling limit
 - Generic non-minimal coupling case
 - WMAP-5 allowed parameters

3. SM Higgs as the inflaton
 - Non-minimally coupled Standard Model
 - Radiative corrections—not (too) dangerous
 - Higgs mass

4. Conclusions
Cosmological implications

Problems in cosmology

- Flatness problem (at $T \sim M_P$ density was tuned $|\Omega - 1| \lesssim 10^{-59}$)
- Entropy of the Universe $S \sim 10^{87}$
- Size of the Universe (at $T \sim M_P$ size was $10^{29} M_P^{-1}$)
- Horizon problem

Solution

Inflation!
Cosmological implications

Problems in cosmology

- Flatness problem (at $T \sim M_P$ density was tuned $|\Omega - 1| \lesssim 10^{-59}$)
- Entropy of the Universe $S \sim 10^{87}$
- Size of the Universe (at $T \sim M_P$ size was $10^{29} M_P^{-1}$)
- Horizon problem

Solution

Inflation!
CMB

Temperature fluctuations

Polarization

CMB spectrum

F. Bezrukov (EPFL&INR) Non-minimaly coupled inflation QUARKS'08 5 / 26
λφ⁴ inflation

One scalar field

\[
S = \int d^4x \left[\frac{\partial \mu \phi \partial^\mu \phi}{2} - V(\phi) \right], \quad V(\phi) = \frac{\lambda}{4} \phi^4
\]

Predicts primordial perturbation parameters

- COBE normalization
 \[U/\epsilon = (0.027M_P)^4 \]
 \[\Rightarrow \lambda \approx 10^{-13} \]

- Spectral index \(n_s = 0.95 \)
- Tensor/scalar ratio \(r = 0.26 \)
\(\lambda \phi^4 \) inflation predictions

Usual conclusion

\(\lambda \phi^4 \) is disfavoured

F. Bezrukov (EPFL&INR)
\(\lambda \phi^4 \) inflation predictions

Usual conclusion

\(\lambda \phi^4 \) is disfavoured
Outline

1. Inflation—"standard" approach
 - Cosmological requirements
 - Large field chaotic inflation

2. Non-minimal coupling in $\lambda \phi^4$
 - The action
 - Conformal transformation
 - Large non-minimal coupling limit
 - Generic non-minimal coupling case
 - WMAP-5 allowed parameters

3. SM Higgs as the inflaton
 - Non-minimally coupled Standard Model
 - Radiative corrections—not (too) dangerous
 - Higgs mass

4. Conclusions
Possible operators in the model+gravity

- Dimension ≤ 4
- No new degrees of freedom (no higher derivatives)

$$S = \int d^4x \sqrt{-g} \left[-\frac{M_P^2}{2} R + \frac{\partial_\mu \phi \partial^\mu \phi}{2} - V(\phi) \right.$$
$$- \frac{\xi}{2} \phi^2 R \right.$$
$$+ aR^2 + bR_{\mu\nu} R^{\mu\nu} + cR_{\mu\nu\lambda\rho} R^{\mu\nu\lambda\rho} + d\Box R \left. \right]$$

- The non-minimally coupled term is in fact required by the renormalization properties of the theory in curved space-time background
Non-minimal coupling in $\lambda \phi^4$

The action

Possible operators in the model+gravity

- Dimension ≤ 4
- No new degrees of freedom (no higher derivatives)

$$S = \int d^4x \sqrt{-g} \left[-\frac{M_P^2}{2} R + \frac{\partial_\mu \phi \partial^\mu \phi}{2} - V(\phi) - \frac{\xi}{2} \phi^2 R + aR^2 + bR_{\mu\nu}R^{\mu\nu} + cR_{\mu\nu\lambda\rho}R^{\mu\nu\lambda\rho} + d\Box R \right]$$

- The non-minimally coupled term is in fact required by the renormalization properties of the theory in curved space-time background
Possible operators in the model+gravity

- Dimension ≤ 4
- No new degrees of freedom (no higher derivatives)

$$S = \int d^4x \sqrt{-g} \left[-\frac{M_p^2}{2} R + \frac{\partial_\mu \phi \partial^\mu \phi}{2} - V(\phi) - \frac{\xi}{2} \phi^2 R - \frac{\xi}{2} \phi^2 R + aR^2 + bR_{\mu\nu}R^{\mu\nu} + cR_{\mu\nu\lambda\rho}R^{\mu\nu\lambda\rho} + d\Box R \right]$$

The non-minimally coupled term is in fact *required* by the renormalization properties of the theory in curved space-time background.
Non-minimally coupled scalar field— inflation

Quite an old idea

Add $\phi^2 R$ term to/instead of the usual $M_P R$ term in the gravitational action

- A.Zee’78, L.Smolin’79, B.Spokoiny’84
- D.Salopek J.Bond J.Bardeen’89

“Jordan frame” action

$$S_J = \int d^4x \sqrt{-g} \left\{ - \frac{M^2}{2} + \xi \phi^2 R + g_{\mu\nu} \frac{\partial^\mu \phi \partial^\nu \phi}{2} - \frac{\lambda}{4} \phi^4 \right\}$$
Non-minimal coupling in $\lambda \phi^4$

Conformal transformation

It is possible to get rid of the non-minimal coupling by the conformal transformation (field redefinition)

$$\hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}, \quad \Omega^2 = 1 + \frac{\xi \phi^2}{M_P^2}$$

and also redefinition of the scalar field to make canonical kinetic term

$$\frac{d\hat{\phi}}{d\phi} = \sqrt{\frac{\Omega^2 + 6\xi^2 \phi^2 / M_P^2}{\Omega^4}} \quad \Rightarrow \quad \begin{cases}
\phi \simeq \hat{\phi} & \text{for } \phi < M_P / \xi \\
1 + \frac{\xi \phi^2}{M_P^2} \simeq \exp \left(\frac{2\hat{\phi}}{\sqrt{6} M_P} \right) & \text{for } \phi > M_P / \xi
\end{cases}$$

Resulting action (Einstein frame action)

$$S_E = \int d^4x \sqrt{\hat{g}} \left\{ - \frac{M_P^2}{2} \hat{R} + \hat{g}_{\mu\nu} \frac{\partial^\mu \hat{\phi} \partial^\nu \hat{\phi}}{2} - \frac{1}{\Omega(\hat{\phi})^4} \frac{\lambda}{4} \phi(\hat{\phi})^4 \right\}$$
Case of large ξ

- Easy to analyse and is in fact the main case we will need for inflation in the Standard Model
- Generic ξ just interpolates between usual (minimal coupling) case and large ξ case.
Inflationary potential

For $\hat{\phi} \gtrsim M_P$:

$$U(\hat{\phi}) \simeq \frac{\lambda M_P^4}{4\xi^2} \left(1 - \exp\left(-\frac{2\hat{\phi}}{\sqrt{6}M_P} \right) \right)^2$$
Slow roll stage

\[\varepsilon = \frac{M_P^2}{2} \left(\frac{dU}{d\phi} \right)^2 \approx \frac{4M_P^4}{3\xi^2\phi^4} \approx \frac{4}{3}e^{-\frac{4\phi}{\sqrt{6}M_P}} \]

\[\eta = M_P^2 \frac{d^2U}{d\phi^2} \approx \frac{4M_P^4}{3\xi^2\phi^4} \left(1 - \frac{\xi\phi^2}{M_P^2} \right) \approx \frac{4}{3}e^{-\frac{4\phi}{\sqrt{6}M_P}} \left(1 - e^{\frac{2\phi}{\sqrt{6}M_P}} \right) \]

Slow roll ends at \(\hat{\phi}_{\text{end}} \approx M_P \) (or \(\phi_{\text{end}} \approx M_P/\sqrt{\xi} \))

Number of e-folds of inflation at the moment \(\phi_N \) is \(N \approx \frac{6}{8} \frac{\phi_N^2 - \phi_{\text{end}}^2}{M_P^2/\xi} \)

\[\hat{\phi}_{60} \approx 5M_P \]

COBE normalization \(U/\varepsilon = (0.027M_P)^4 \) gives

\[\xi \approx \sqrt{\frac{\lambda}{3}} \frac{N_{\text{COBE}}}{0.027^2} \approx 49000\sqrt{\lambda} \]

Smallness of \(\lambda \) can be compensated by large \(\xi \)
CMB parameters—spectrum and tensor modes

\[n = 1 - 6\varepsilon + 2\eta \simeq 1 - \frac{8(4N + 9)}{(4N + 3)^2} \simeq 0.97 \]

\[r = 16\varepsilon \simeq \frac{192}{(4N + 3)^2} \simeq 0.0033 \]
Before moving on to using the Higgs field as the inflaton, let us elaborate a bit on generic ξ case

What minimal ξ is needed to reconcile $\lambda \phi^4$ inflation with CMB data?

S. Tsujikawa B. Gumjudpai’04
\(\xi \) dependence of \(\lambda \)

\[
\xi = 49000 \sqrt{\lambda}
\]

Graph showing the relationship between \(\log(\xi) \) and \(\lambda(\xi) \) with the equation \(\xi = 49000 \sqrt{\lambda} \).
With non-minimal coupling it is very natural for $\lambda \phi^4$ inflation to be compatible with observations!
Outline

1 Inflation—"standard" approach
 - Cosmological requirements
 - Large field chaotic inflation

2 Non-minimal coupling in $\lambda \phi^4$
 - The action
 - Conformal transformation
 - Large non-minimal coupling limit
 - Generic non-minimal coupling case
 - WMAP-5 allowed parameters

3 **SM Higgs as the inflaton**
 - Non-minimally coupled Standard Model
 - Radiative corrections—not (too) dangerous
 - Higgs mass

4 Conclusions
Non-minimally coupled Higgs boson

\[S = \int d^4x \sqrt{-g} \left[\text{Tr}(F_{\mu\nu} F^{\mu\nu}) + \frac{|D_\mu H|^2}{2} - V(H) + \bar{\psi} \not{\partial} \psi + YH\bar{\psi}_L \psi_R \right. \]

\[\left. - \frac{M_P^2}{2} R - \xi H^\dagger H R \right] \]

COBE normalization \(U/\epsilon = (0.027M_P)^4 \) now determines \(\xi \)

\[\xi \approx \sqrt{\frac{\lambda}{3}} \frac{N_{\text{COBE}}}{0.027^2} \approx 49000 \sqrt{\lambda} = 49000 \frac{m_H}{\sqrt{2}v} \]

Connection of the parameter \(\xi \) and the Higgs mass!

Note: \(\xi v^2 \ll M_P^2 \), so all inflationary analysis can be made just with quartic potential
After inflation—back to the SM

\[\frac{M_P}{\xi} < \hat{\phi} < M_P : \quad U \sim \frac{\lambda M_P^2}{6 \xi^2} \hat{\phi}^2, \quad \Omega \approx 1, \quad \hat{\phi} \approx \sqrt{\frac{3}{2}} \frac{\xi h^2}{M_P}, \quad T_{\text{reh}} \gtrsim 10^{13} \text{GeV} \]

For \(\hat{\phi} \lesssim M_P / \xi \): the Standard Model
SM Higgs as the inflaton
Non-minimally coupled Standard Model

CMB parameters—spectrum and tensor modes

\[n = 1 - 6 \varepsilon + 2 \eta \approx 1 - \frac{8(4N + 9)}{(4N + 3)^2} \approx 0.97 \]

\[r = 16 \varepsilon \approx \frac{192}{(4N + 3)^2} \approx 0.0033 \]

Not the end of the story — see next talk
Radiative corrections

Could be a problem

In the ordinary situation effective potential is generated

$$\Delta U(\phi) \sim \frac{m^4(\phi)}{64\pi^2} \log \frac{m^2(\phi)}{\mu^2} + A\Lambda^2 + B\Lambda^4$$

We suppose that quadratic divergences are dealt with (eg. in dimensional regularization)
Radiative corrections

Could be a problem

In the ordinary situation effective potential is generated

$$\Delta U(\phi) \sim \frac{m^4(\phi)}{64\pi^2} \log \frac{m^2(\phi)}{\mu^2}$$

standard Yukawa interaction $m = y \cdot h$

$$\Delta U \propto -y^4 \phi^4 \log \frac{\phi^2}{\mu^2}$$

Spoils flatness of the potential (for top quark $y \sim 1$!)
Radiative corrections

This is also cured by non-minimal coupling!

Effective potential is still generated

\[\Delta U(\hat{\phi}) \sim \frac{m^4(\hat{\phi})}{64\pi^2} \log \frac{m^2(\hat{\phi})}{\mu^2} \]

Conformal transformation: fermions

\[S_J = \int d^4x \sqrt{-g} \left\{ \bar{\psi} \hat{\partial} \psi + y\phi \bar{\psi} \psi \right\} \]

\[\hat{\psi} = \Omega^{-3/2} \psi \]

\[S_E = \int d^4x \sqrt{-\hat{g}} \left\{ \bar{\hat{\psi}} \hat{\partial} \hat{\psi} + y \frac{\phi(\hat{\phi})}{\Omega(\hat{\phi})} \bar{\hat{\psi}} \hat{\psi} \right\} \]
Radiative corrections

This is also cured by non-minimal coupling!

Effective potential is still generated

\[\Delta U(\hat{\phi}) \sim \frac{m^4(\hat{\phi})}{64\pi^2} \log \frac{m^2(\hat{\phi})}{\mu^2} \]

The interactions are suppressed now!

\[m(\hat{\phi}) = y \frac{\phi(\hat{\phi})}{\Omega(\hat{\phi})} \xrightarrow{\hat{\phi} \to \infty} \text{const} \]

(where \(\Omega(\hat{\phi}) \propto \phi(\hat{\phi}) \) for large \(\hat{\phi} \))

\[\Rightarrow \quad \Delta U(\hat{\phi}) \to y^4 \frac{M_P^4}{\xi^2} \left(1 - e^{-\frac{2\hat{\phi}}{\sqrt{6}M_P}}\right)^2 \log \left(\frac{m^2(\hat{\phi})}{\mu^2}\right) \to \text{const} \]
Radiative corrections

This is also cured by non-minimal coupling!

Effective potential is still generated

\[\Delta U(\hat{\phi}) \sim \frac{m^4(\hat{\phi})}{64\pi^2} \log \frac{m^2(\hat{\phi})}{\mu^2} \]

The same for self interactions

\[m^2(\hat{\phi}) = U''(\hat{\phi}) = \frac{\lambda M_P^2}{3\xi^2} \left(2e^{-\frac{2\hat{\phi}}{\sqrt{6}M_P}} - 1 \right) e^{-\frac{2\hat{\phi}}{\sqrt{6}M_P}} \hat{\phi} \rightarrow \infty \]

\[\Rightarrow \quad \Delta U(\hat{\phi}) \rightarrow 0 \]
SM Higgs as the inflaton

Expected window for the Higgs mass

Standard Model should remain applicable up to

\[\frac{M_P}{\xi} \simeq 10^{14} \text{GeV} \]

We expect the Higgs mass

\[130 \text{ GeV} < M_H < 190 \text{ GeV} \]
Outline

1. Inflation—"standard" approach
 - Cosmological requirements
 - Large field chaotic inflation

2. Non-minimal coupling in $\lambda \phi^4$
 - The action
 - Conformal transformation
 - Large non-minimal coupling limit
 - Generic non-minimal coupling case
 - WMAP-5 allowed parameters

3. SM Higgs as the inflaton
 - Non-minimally coupled Standard Model
 - Radiative corrections—not (too) dangerous
 - Higgs mass

4. Conclusions
Main conclusion

Non-minimal gravity coupling in inflationary models changes predictions a lot and in a very interesting way!

- Adding non-minimal coupling $\frac{\xi \phi^2}{2} R$ with small $\xi > 10^{-3}$ makes $\lambda \phi^4$ chaotic inflation agree with WMAP data.
- These type of models generally gives a very small amount of tensor perturbations after inflation.
- Adding non-minimal coupling $\xi H^\dagger H R$ of the Higgs field to the gravity makes inflation possible without introduction of new fields.
 - The new parameter of the model, non-minimal coupling ξ, relates the normalization of CMB fluctuations and the Higgs mass $\xi \simeq 49000 m_H/\sqrt{2} v$.
 - Spectral index $n_s \simeq 0.97$.
 - Tensor/scalar ratio $r \simeq 0.0033$.
Conclusions

Main conclusion

Non-minimal gravity coupling in inflationary models changes predictions a lot and in a very interesting way!

- Adding non-minimal coupling $\frac{\xi \phi^2}{2} R$ with small $\xi > 10^{-3}$ makes $\lambda \phi^4$ chaotic inflation agree with WMAP data.
- These type of models generally gives a very small amount of tensor perturbations after inflation.
- Adding non-minimal coupling $\xi H^\dagger H R$ of the Higgs field to the gravity makes inflation possible without introduction of new fields.
 - The new parameter of the model, non-minimal coupling ξ, relates the normalization of CMB fluctuations and the Higgs mass $\xi \approx 49000 m_H/\sqrt{2} v$
 - spectral index $n_s \approx 0.97$
 - tensor/scalar ratio $r \approx 0.0033$