Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays

F. Bezrukov

MPI für Kernphysik, Heidelberg, Germany

11-12-2008 Kaffeepalaver

Outline

- 2 Full kinematic reconstruction experiment
 - General consideration
 - Required precision and backgrounds

3 Existing experiments

- 38m K β decay
- ³⁷Ar EC decay

Conclusions

Reading: Behr, Gwinner, arXiv:0810.3942 [nucl-ex] FB, Shaposhnikov, PRD,75,053005(2007)

4 E b

Outline

Implications for light sterile neutrino

- 2 Full kinematic reconstruction experiment
 - General consideration
 - Required precision and backgrounds

3 Existing experiments

- 38m K β decay
- ³⁷Ar EC decay

4 Conclusions

< ∃⇒

Standard Model and neutrino masses

- SM: gauge bosons: γ , W^{\pm} , Z, g; Higgs boson H; three matter generations: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R
 - Describes
 - all experiments dealing with electroweak and strong interactions
 - Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM})

- Dark energy (Ω_Λ)
- Inflation

- Baryon asymmetry
- Gravity
- A lot can be explained by just adding three singlet neutrinos—vMSM

Asaka, Shaposhnikov, 05

(3)

Standard Model and neutrino masses

- SM: gauge bosons: γ , W^{\pm} , Z, g; Higgs boson H; three matter generations: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R
 - Describes
 - all experiments dealing with electroweak and strong interactions
 - Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM})

- Dark energy (Ω_Λ)
- Inflation

- Baryon asymmetry
- Gravity
- A lot can be explained by just adding three singlet neutrinos—vMSM

Asaka, Shaposhnikov, 05

(3)

The scales for see-saw (vMSM)

The active neutrino masses m_v are expressed from the Dirac masses m_D and singlet neutrino Majorana masses *M* by *see-saw* formula

$$m_v = \frac{m_D}{M^2}$$

Two "natural" options:

- All the Yukawa couplings are of the same order. Then the new energy scale is introduced for the singlet neutrinos, $M \sim 10^{10} - 10^{15}$ GeV.
- $M \sim SM$ scale, but the Yukawa couplings (or m_D) are very small

3 3 4

Implications for light sterile neutrino

Sterile neutrino Dark Matter

2-50 keV sterile neutrino is a natural Warm Dark Matter candidate

The evolution of the particle distributions in phase space. A small halo of mass $2 \times 10^{11} h^{-1} M_{\odot}$ has been selected for comparative study in (left to right) Λ CDM, Λ WDM, and Λ WDM power spectrum but without thermal velocities. From bottom to top: Z = 8, 1, and 0.

Bode, Ostriker, Turok'01

< 3 >

Sterile neutrino Dark Matter

2-50 keV sterile neutrino is a natural Warm Dark Matter candidate

Asaka, Shapohnikov 05; Laine, Shaposhnikov 08

< ∃

Ć

Existing sterile v bounds

Outline

- Full kinematic reconstruction experiment
 - General consideration
 - Required precision and backgrounds

3 Existing experiments

- ^{38m}K β decay
- ³⁷Ar EC decay

4 Conclusions

4 E

Possibilities of (light) sterile neutrino search

- Creation and detection in the lab
- Creation somewhere and detection in the lab
- Creation in the lab without subsequent detection

4 E b

Possibilities of (light) sterile neutrino search

• Creation and detection in the lab

Creation and detection

Suppressed by mixing angle θ^4

- Creation somewhere and *detection* in the lab
- Creation in the lab without subsequent detection

4 E N

Ć

Possibilities of (light) sterile neutrino search

• Creation and detection in the lab

Creation somewhere and detection in the lab

X-ray experiments

Sterile *N* in the DM clouds decay by the channel $N \rightarrow v\gamma$ providing the X-ray line with $E_{\gamma} = M/2$. Limit on θ^2 can be deduced as far as Ω_{DM} is known

• Creation in the lab without subsequent detection

4 TH N

Ć

Possibilities of (light) sterile neutrino search

- Creation and detection in the lab
- Creation somewhere and detection in the lab
- Creation in the lab without subsequent detection
- Forbidden decays
- Decay kinematics
 - Partial kinematics kink search in electron beta decay spectrum.
 - Large statistics to see the effect (\sqrt{N} statistical error)
 - Excellent theoretical knowledge of the decay spectrum is needed (c.f. 17 keV neutrino "discovery")

Full kinematics event-by-event mass measurement!

< ≣ >

Beta decay kinematics

Neutrino mass is reconstructed from observed momenta

$$m_v^2 = (Q - E_\rho^{\rm kin} - E_e^{\rm kin})^2 - (\mathbf{p} + \mathbf{k})^2$$

For ³H: Q = 18.591 keV

- Typical ion energy $E_{
 m p}^{\rm kin} \sim$ 1 eV or $|{f p}| \sim$ 100 keV
- Typical electron energy $E_e^{kin} \sim 10 \text{ keV}$

< ≣ >

Possible experimental setup

- Cold and compact ³H source
- Time of flight measurement of the recoil ³He ion, using position sensitive detector for 3d momentum reconstruction
- Electron momentum measurement
 - Time of flight
 - ★ Needs decay moment trigger—Lyman photon from the excited ³He ion (\sim 25% of the decays)?
 - Spectrometer for the electron energy measurement
 - * Electron itself can be used to determine the decay moment.

< ⊒ > _

Required precision of momentum measurement

- To measure $m_v \sim \text{keV}$ one needs precision in momentum $\Delta \mathbf{p}, \Delta \mathbf{k} \sim \text{keV}$.
- For ³H decay this means precision $\frac{\Delta p}{p} \sim 1\%$
- For other isotopes $\frac{\Delta p}{p} \sim \frac{\Delta p}{\sqrt{m_e Q}}$ Isotopes with higher energy release Q require better momentum measurement

Thermal noise

Nonzero thermal velocity $\langle \mathbf{v}^2 \rangle = 3T/M$ of the decaying atom imitates some nonzero neutrino mass in usual beta decays

$$m_v^{ ext{eff}^2} \simeq m_v^2 + M^2 \mathbf{v}^2 - 2M \mathbf{v} (\mathbf{p} + \mathbf{k})$$

Temperature constraint

$$T \lesssim \frac{0.7 \times 10^{-3}}{\log(1/\theta^2)} \left(\frac{m_{\rm s}}{1 \text{ keV}}\right)^4 \left(\frac{6 \text{ GeV}}{M}\right) \left(\frac{18.6 \text{ keV}}{Q}\right)^2 (1 \text{ K})$$

"slow" neutrino cut $({f p}+{f k})^2 \lesssim 3MT$ reduces the constraint

$$T \lesssim rac{1}{\log(1/ heta^2)} \left(rac{m_{
m s}}{1 \ {
m keV}}
ight)^2 \left(rac{6 \ {
m GeV}}{M}
ight) (1 \ {
m K})$$

and luminosity... $T \sim 1 \text{ K}$ $Br(\mathbf{p} + \mathbf{k} < 1 \text{ keV}) \sim 3 \times 10^{-4}$ $T \sim 0.01 \text{ K}$ $Br(\mathbf{p} + \mathbf{k} < 0.1 \text{ keV}) \sim 3 \times 10^{-7}$

Optimistic prospects (zero background)

F. Bezrukov (MPI)

sin²(20)

æ

 $N(E_{\gamma}>1\,{
m keV})/N_{total}\sim4 imes10^{-5}$

< ∃⇒

Ideal requirements for the experiment

- Momentum measurement with precision $\delta p/p \sim 1\%$
- Source
 - Temperature $\sim 0.1 10 \,\mathrm{mK}$
 - Size $\sim 1 \,\mathrm{mm}$ (depends on the momentum measurement device)
 - Quantity > 10⁷ ³H (in case no background, 100% efficiency, 1 year of observation)

4 E N

- Supersonic jets
 - $T \sim 0.1 \,\mathrm{K}$, density $10^{11} 10^{12} \,\mathrm{cm}^{-3}$ ($10^{15} \,\mathrm{cm}^{-3}$?)
- Magnetic trapping of decelerated supersonic jet of H atoms, $T \sim 0.1 \text{ K}$ Hogan et al., PRL101,143001(2008)
- Single-photon atomic cooling Price et al., PRL100,093004(2008) 1.5×10^5 of ⁸⁷Rb atoms in an optical trap $100\,\mu\text{m} \times 100\,\mu\text{m} \times 130\,\mu\text{m}$ at $7\,\mu\text{K}$ Cooling of H is promised

< ⊒ > _

Other backgrounds

Tritium molecule dissociation

- Should not be a major problem—very large momentum distortion
- Scattering/interactions in the source

Possible variations of the experimental setup:

• Other isotopes

- Easier to capture, shorter lifetime
- Electron capture instead of beta decay
 - 2-body kinematics

Other backgrounds

- Tritium molecule dissociation
 - Should not be a major problem—very large momentum distortion
- Scattering/interactions in the source
- Possible variations of the experimental setup:
 - Other isotopes
 - Easier to capture, shorter lifetime
 - Electron capture instead of beta decay
 - 2-body kinematics

< ≣ > _

Outline

- 2 Full kinematic reconstruction experiment
 - General consideration
 - Required precision and backgrounds

3 Existing experiments

- 38m K β decay
- ³⁷Ar EC decay

4 Conclusions

< ∃⇒

Existing experiments

Existing sterile v bounds

 38m K β decay

38m K β decay

TRIUMF, Canada 38m K $t_{1/2} = 0.924$ s $Q_{\beta^+} = 5.022$ MeV trap lifetime 45 s

Trinczek et al., PRL90(2003)012501

3 3 3

 38m K β decay

38m K β decay

Œ

³⁷Ar EC decay

³⁷Ar EC decay

Outline

- 2 Full kinematic reconstruction experiment
 - General consideration
 - Required precision and backgrounds

3 Existing experiments

- ^{38m}K β decay
- ³⁷Ar EC decay

4 Conclusions

< ∃⇒

Conclusions

Conclusions

- Search for the relatively light keV scale sterile neutrino is an interesting experimental task
- Improvement of existing bounds $|U_{ex}|^2 \lesssim 10^{-3}$ can be possible by experiments with event-by-event measurement of the neutrino mass by full kinematic reconstruction
- For light sterile neutrino isotopes with small decay energy and small mass are good — ³H
- Detailed study of these type of experiments is needed!
- Excellent experimental techniques exist and are constantly improving!

< ⊒ > _

Conclusions

Conclusions

- Search for the relatively light keV scale sterile neutrino is an interesting experimental task
- Improvement of existing bounds $|U_{ex}|^2 \lesssim 10^{-3}$ can be possible by experiments with event-by-event measurement of the neutrino mass by full kinematic reconstruction
- For light sterile neutrino isotopes with small decay energy and small mass are good — ³H
- Detailed study of these type of experiments is needed!
- Excellent experimental techniques exist and are constantly improving!

< 3 > 3