
Alberta Thy 03-05

Optimal Jet Finder (v1.0 C++)

S. Chumakov

Department of Physics, M. V. Lomonosov Moscow State University, Moscow
119992, Russia

E. Jankowski

Department of Physics, University of Alberta, Edmonton, AB, T6G 2J1, Canada

F. V. Tkachov 1

Institute for Nuclear Research of RAS, Moscow 117312, Russia

Abstract

We describe a C++ implementation of the Optimal Jet Definition for identification
of jets in hadronic final states of particle collisions. We explain interface subroutines
and provide a usage example. The source code is available from
http://www.inr.ac.ru/∼ftkachov/projects/jets/

Keywords: hadronic jets, jet finding algorithms
PACS: 13.87.-a, 29.85.+c

1 Corresponding author: ftkachov@ms2.inr.ac.ru

Preprint submitted to Elsevier Science 3 November 2005

PROGRAM SUMMARY

Title of program: Optimal Jet Finder (v1.0 C++)

Catalogue identifier: (supplied by the Publisher)

Distribution format: (supplied by the Program Library)

Computer: any computer with a standard C++ compiler

Tested with:

(1) GNU gcc 3.4.2, Linux Fedora Core 3, Intel i686;

(2) Forte Developer 7 C++ 5.4, SunOS 5.9, UltraSPARC III+;

(3) Microsoft Visual C++ Toolkit 2003 (compiler 13.10.3077, linker 7.10.30777,
option /EHsc), Windows XP, Intel i686.

Programming language used: C++

Memory required: ∼1 MB (or more, depending on the settings)

Number of bytes in distributed program, including examples and test data: ∼100
KB

Keywords: hadronic jets; jet finding algorithms

Nature of physical problem
Analysis of hadronic final states in high energy particle collision experiments often
involves identification of hadronic jets. A large number of hadrons detected in the
calorimeter is reduced to a few jets by means of a jet finding algorithm. The jets
are used in further analysis which would be difficult or impossible when applied
directly to the hadrons. Reference [1] provides brief introduction to the subject of
jet finding algorithms and a general review of the physics of jets can be found in
[2].

Method of solution
The software we provide is an implementation of the so-called Optimal Jet Def-
inition (OJD). The theory of OJD was developed in [3], [4], [5]. The desired jet
configuration is obtained as the one that minimizes Ω, a certain function of the
input particles and jet configuration. A FORTRAN 77 implementation of OJD is
described in [6].

Restrictions on the complexity of the program
Memory required by the program is proportional to the number of particles in the

2

input × the number of jets in the output. For example, for 650 particles and 20 jets
∼300KB memory is required.

Typical running time
The running time (in the running mode with a fixed number of jets) is proportional
to the number of particles in the input × the number of jets in the output × times
the number of different random initial configurations tried (ntries). For example,
for 65 particles in the input and 4 jets in the output, the running time is ∼ 4 ·10−3s
per try (Pentium 4 2.8GHz).

References
[1] D. Yu. Grigoriev, E. Jankowski, F. V. Tkachov, Phys. Rev. Lett. 91, 061801
(2003).
[2] R. Barlow, Rep. Prog. Phys. 36, 1067 (1993).
[3] F. V. Tkachov, Phys. Rev. Lett. 73, 2405 (1994); Erratum, 74, 2618 (1995).
[4] F. V. Tkachov, Int. J. Mod. Phys. A12, 5411 (1997).
[5] F. V. Tkachov, Int. J. Mod. Phys. A17, 2783 (2002).
[6] D. Yu. Grigoriev, E. Jankowski, F. V. Tkachov, Comput. Phys. Commun. 155,
42 (2003).

3

Contents

1 Introduction 5

2 User interface classes and methods 8

2.1 class Event 8

2.2 class JetSearch 9

2.3 class Particle 10

2.4 class Jets 11

2.5 class Jet 12

3 Compilation 13

4 Usage example 13

4.1 Source code of example.cpp 13

4.2 Output of example.cpp 15

5 Comparison between FORTRAN 77 and current version 15

References 16

4

1 Introduction

This paper introduces a C++ implementation of Optimal Jet Finder, a jet
finding algorithm for use in high energy physics data analysis. The current
version is based on the same algorithm and physics motivations as the previous
FORTRAN 77 implementation published in [1], and the reader is referred there
for more details.

The input of the algorithm is an event 2 : a collection of n particles from the
detector (or n hit detector cells), indexed with a = 1, 2, 3, ..., n. Each particle
is characterized by its energy, Ea, and its direction described by the standard
angles θa, ϕa or equivalently by transverse energy, E⊥

a , pseudorapidity, ηa, and
the angle ϕa. The a-th particle in the input is assigned the 4-momentum pa:

pa = Ea · (1, sin θa cos ϕa, sin θa sin ϕa, cos θa) (1)

or

pa = E⊥
a · (cosh ηa, cos ϕa, sin ϕa, sinh ηa) . (2)

depending on which parameters are used to describe the particles. The output
of the program is a set of N jets, indexed with j = 1, 2, 3, ..., N . The jet
configuration is described by recombination matrix {zaj} components of which
satisfy:

0 ≤ zaj ≤ 1 for all a, j, (3)

N∑
j=1

zaj ≤ 1 for all a. (4)

The number zaj gives the fraction of the a-th particle which goes into forma-
tion of the j-th jet. Each zaj can take any value between 0 and 1. The final
value of the recombination matrix {zaj} is the result of the algorithm. The
4-momentum qj of the j-th jet is defined as

qj =
n∑

a=1

zajpa. (5)

The final (optimal) jet configuration is the one that minimizes the value of
some function Ω ({zaj}) depending on the recombination matrix {zaj} and all
pa as parameters.

2 The following summary of the algorithm is excerpted from [1].

5

The definition of Ω follows some intermediate sub-definitions. The part of the
a-th particle that does not go into formation of any jet:

za ≡ 1−
N∑

j=1

zaj. (6)

The rest of the definitions are given separately for spherical kinematics (lepton
collisions) and for cylindrical kinematics (hadron collisions).

Spherical kinematics. Overall energy left outside jets Esoft, called soft
energy :

Esoft ≡
n∑

a=1

zaEa. (7)

The function Y , called fuzziness :

Y ≡ 2
N∑

j=1

qj q̃j, (8)

where q̃j is light-like (q̃j
2 = 0) 4-direction defined:

q̃j ≡ (1, sin θj cos ϕj, sin θj sin ϕj, cos θj) , (9)

with

cos θj ≡
(qj)z√

(qj)
2
x + (qj)

2
y + (qj)

2
z

, (10)

cos ϕj ≡
(qj)x√

(qj)
2
x + (qj)

2
y

, (11)

sin ϕj ≡
(qj)y√

(qj)
2
x + (qj)

2
y

. (12)

Cylindrical kinematics. The soft energy is the overall transverse energy
left outside the jets

Esoft ≡
n∑

a=1

zaE
⊥
a . (13)

6

The fuzziness Y is defined again by (8) with q̃j, light-like (q̃j
2 = 0) 4-direction

given by:

q̃j ≡ (cosh ηj, cos ϕj, sin ϕj, sinh ηj) , (14)

where

ηj ≡
∑n

a=1 zajE
⊥
a ηa∑n

a=1 zajE⊥
a

, (15)

and cos ϕj, sin ϕj given by (11), (12).

Finally, in both cases, Ω is a linear combination of Y and Esoft with the
parameter R weighting their relative contribution:

Ω ({zaj}) ≡
1

R2
Y + Esoft. (16)

For a fixed number of jets, the program starts with some initial value of the
recombination matrix zaj, for example, chosen randomly, and finds a local
minimum of the Ω ({zaj}) function with respect to {zaj}. Several (random)
initial values of {zaj} are used (the parameter ntries), and the corresponding
local minima may differ; the value of the recombination matrix {zaj} that
gives the smallest local minimum is the final jet configuration. (If the initial
value of {zaj} is not chosen randomly, it is useless to do the minimization
procedure more than once as the minimization algorithm is deterministic.)

If the number of jets is to be determined in the process of jet reconstruction,
the procedure described above can be repeated for different number of jets,
N , each time. The final jet configuration is the one that satisfies

Ω ({zaj}) < ωcut (17)

with the minimal number of jets, N . (The above condition will be satisfied for
a sufficiently large number of jets.) The parameter ωcut is a (small) positive
number, analogous to the jet resolution parameter of conventional recombina-
tion algorithms.

The current implementation is based on the verification version of Optimal Jet
Finder [2], whereas the published FORTRAN 77 version (ojf 014) was based
on an earlier Component Pascal code. In particular, the current version offers a
somewhat more fine-grained control of the rounding errors. A correspondingly
updated FORTRAN 77 version will be published in the due course.

7

The program is self-contained: it requires only standard C++ libraries and
should compile with any standard C++ compiler.

The current implementation has been verified against the FORTRAN 77 ver-
sion: ojf 015, available from [3]. The details can be found in section 5.

2 User interface classes and methods

All classes are contained within the OptimalJetFinder namespace. In this
section, we describe several classes and methods most likely to be needed by
the user. The reader may find it more practical to study example.cpp in the
next section before browsing through this section.

2.1 class Event

This class represents a high energy physics event: a collection of input particles
(calorimeter cells, preclusters, etc.)

• Event(Kinematics k)

- constructor. Kinematics = enum { sphere, cylinder }, where sphere

applies to the center of mass kinematics (lepton collisions), and cylinder

applies to the cylindrical kinematics of hadron collisions.
• void AddParticleRaw(double px, double py, double pz)

adds a particle to the event. px, py, pz are the components of the momentum
of the particle in arbitrary units.

• void AddParticle(double E, double theta, double phi)

adds a particle to the event. E is the energy of the particle in arbitrary
units and the standard angles theta and phi describe the direction of the
particle. The angles are measured in degrees.

• void Normalize()

has to be called before jets are searched. It normalizes the 4-momenta of the
particles so that the sum of all energies or transverse energies of all particles
is equal to one.

• void Clear()

removes all particles from the event and releases memory accordingly.
• Kinematics GetKinematics() const

returns the type of kinematics; see the constructor above.
• Particle* GetFirst() const

returns the pointer to the first particle in the event or 0 if there are no
particles.

• bool IsNormalized() const

8

returns true/false depending whether the event is already normalized; see
Normalize() above.

• double GetXEnergy() const

returns the sum of energy (for the spherical kinematics) or sum of transverse
energy (for the cylindrical kinematics) of all particles in the event.

• int GetNumber() const

returns the number of particles in the event.

2.2 class JetSearch

This is a simple jet search class.

• JetSearch(const Event* P, double R, int ntries = 10)

- constructor. Initializes jet search. P is a pointer to the object of the Event

class. R is the radius parameter R of eq.(20) in [1]. ntries is the number of
different random initial jet configurations tried.

• bool FindJetsForFixedNJets(int njets)

finds the final jet configuration with the number of jets equal to njets and
returns true if successful and false otherwise. For each “try”, it starts with
a random initial jet configuration and finds a local minimum of Ω function,
eq. (20) in ref. [1]. After a number of tries (set with
void SetNTries(int ntries); default = 10) the best jet configuration
is chosen, i.e. the one that gives the smallest value of Ω (the deepest local
minimum).

• int FindJetsForOmegaCut(double omegaCut)

finds the final jet configuration for omegaCut=ωcut of relation (21) in [1] and
returns the number of jets in the final jet configuration or 0 if the search is
not successful. It runs
bool JetSearch::FindJetsForFixedNJets(int njets) increasing the num-
ber of jets between the values set by
void JetSearch::SetNJetsBegin(int nBegin)

and void JetSearch::SetNJetsEnd(int nEnd).
The final jet configuration is the one with the smallest number of jets for
which the value of Ω function (eq. (20) in ref. [1]) is smaller than ωcut pa-
rameter.

• Jets* GetJets() const

can be used to access the final jet configuration.
• void SetNTries(int ntries)

sets the number of different random initial jet configurations tried.
• int GetNTries() const

returns the number of different random initial jet configurations tried.
• void SetMaxIter(int MaxIter)

sets the maximal number of iterations in the minimization algorithm. The

9

default value is 2000. If the local minimum is not found within the max-
imal number of iterations the current jet search is terminated and bool

FindJetsForFixedNJets(int njets) returns false, or
int FindJetsForOmegaCut(double omegaCut) returns 0.

• int GetMaxIter() const

returns the maximal number of iterations in the minimization algorithm.
• void SetNJetsBegin(int nBegin)

sets the initial number of jets in
int FindJetsForOmegaCut(double omegaCut).

• int GetNJetsBegin() const

returns the initial number of jets in
int FindJetsForOmegaCut(double omegaCut).

• void SetNJetsEnd(int nEnd)

sets the maximal allowed number of jets in
int FindJetsForOmegaCut(double omegaCut).

• int GetNJetsEnd() const

returns the maximal allowed number of jets in
int FindJetsForOmegaCut(double omegaCut).

2.3 class Particle

Objects of this class correspond to particles (or calorimeter cells, preclusters,
etc.) in the event. In most cases, the user will not need to create instances
of this class directly, but only use pointers to this class to access information
about particles.

• Particle(int Label, Kinematics k, const Event* P)

- constructor. In most cases, the user does not need to call the constructor
directly but only through
Event::AddParticleRaw(double px, double py, double pz)

or Event::AddParticle(double px, double py, double pz). If parti-
cles are entered using either of the two just mentioned methods, the first
particle has label 1, the next 2, etc. Otherwise the label has an arbitrary
value specified by the user.

• double GetE() const

returns the energy of the particle in the same units as used in the input.
• double GetPx() const

• double GetPy() const

• double GetPz() const

return the x(y,z)-component of the momentum of the particle in the same
units as used in the input.

• double GetXEnergy() const

returns the energy of the particle (for the spherical kinematics) or transverse

10

energy of the particle (for the cylindrical kinematics) in the same units as
used in the input.

• double GetXEta() const

returns the standard angle θ in degrees for the spherical kinematics or pseu-
dorapidity η for the cylindrical kinematics.

• double GetPhi() const

returns the standard angle φ in degrees.
• double GetESoft() const

for the spherical kinematics, it returns the fraction of the energy of the
particle that does not belong to any jet; for the cylindrical kinematics, it
returns the fraction of the transverse energy of the particle that does not
belong to any jet; in normalized units (see Event::Normalize()).

• double GetFractionInJet(int j) const

returns the fraction of the particle that belongs to the j-th jet.
• int GetLabel() const

returns the label of the particle. If particles are entered using
Event::AddParticleRaw(double px, double py, double pz) or
Event::AddParticle(double px, double py, double pz), the first par-
ticle has label 1, the next 2, etc. Otherwise, the label has the value that was
used in the constructor call.

• Particle* GetNext() const

returns the pointer to the next particle in the event. This method allows to
loop over all particles in the event.

2.4 class Jets

This class represents a configuration of jets. In most cases, the user will not
need to create instances of this class directly, but only use pointers to this
class to access information about the jet configuration.

• Jets(int njets, const Event* P, double R)

- constructor. njets is the number of jets, P is a pointer to the object of
the class Event, R is the radius parameter R of eq.(20) in [1].

• const Event* GetEvent() const

returns the pointer the event with which the jets are associated.
• double GetR() const

returns the radius parameter R of eq.(20) in [1].
• int GetNumber() const

returns the number of jets.
• Jet* GetFirst() const

returns the pointer to the first jet.
• double GetESoft() const

For the spherical kinematics, it returns the soft energy in normalized units,

11

which is the part of the energy of the event that does not belong to any
jet. For the cylindrical kinematics, it returns the fraction of the transverse
energy of the event that does not belong to any jet.

• Jet* GetJet(int n) const

returns the pointer to the n-th jet.
• double GetY() const

returns the value of Y of eq. (12) in ref. [1].
• double GetOmega() const

returns the value of Ω of eq. (20) in ref. [1].

2.5 class Jet

This class represents a single jet. In most cases, the user will not need to create
instances of this class directly, but only use pointers to objects of this class to
access the information about the jets.

• Jet(int label, Jets* Q, Kinematics k)

- constructor. label is the index of the jet, Q is the pointer to the jet
configuration (to an object of the class Jets).
Kinematics = enum { sphere, cylinder }, where sphere applies to the
center of mass kinematics (lepton collisions), and cylinder applies to the
cylindrical kinematics of hadron collisions.

• double GetE() const

returns the energy of the jets in the same units as used in the input.
• double GetPx() const

• double GetPy() const

• double GetPz() const

return the x(y,z)-component of the momentum of the jet in the same units
as used in the input.

• double GetXEnergy() const

returns the energy of the jet for the spherical kinematics or transverse energy
of the jet for the cylindrical kinematics.

• double GetXEta() const

returns the standard angle θ of the jet direction (in degrees) for the spherical
kinematics or the pseudorapidity η of the jet for the cylindrical kinematics.

• double GetPhi() const

returns the standard angle φ of the jet direction (in degrees).
• int GetLabel() const

returns the label of the jet (the index of the jet).
• Jets* GetJets() const

returns the pointer to the jet configuration to which the jet belongs.
• Jet* GetNext() const

returns the pointer to the next jet. It allows to loop over jets.

12

3 Compilation

The program is self-contained and requires only a standard C++ compiler and
the standard C++ libraries. It consists of the implementation files: OJFZD.cpp,
OJFKinematics.cpp, OJFJets.cpp, OJFSearch.cpp, header files: OJFZD.h,
OJFKinematics.h, OJFJets.h, OJFSearch.h, example program: example.cpp,
input data for the example program inputWW.dat, and the Makefile. To com-
pile and run the example program (with g++ under Linux)
>make example

>example

can be used or alternatively
>g++ OJFZD.cpp OJFKinematics.cpp OJFJets.cpp OJFSearch.cpp

example.cpp -o example

>example

In the last three lines, the example program example.cpp can be replaced by
the user’s own program.

4 Usage example

The usage of Optimal Jet Finder is best explained with the following example.

4.1 Source code of example.cpp

#include "OJFKinematics.h"

#include "OJFJets.h"

#include "OJFSearch.h"

#include <iostream>

#include <iomanip>

#include <fstream>

#include <cstdlib>

using namespace std;

using namespace OptimalJetFinder;

int main() {

//input data

ifstream in("inputWW.dat");

13

//create a new event

Event *P = new Event(sphere);

//use "cylinder" instead of "sphere" for cylindrical kinematics

double px, py, pz;

while(in>>px>>py>>pz) {

P->AddParticleRaw(px, py, pz); //input a particle

}

in.close();

//input data ends

//normalize input momenta so that the sum of input energies = 1

//(or the sum transverse energies for cylindrical kinematics = 1)

P->Normalize();

cout << P->GetNumber() << " particles in the event." << endl;

//set the seed for the random number generator

OJFRandom::SetSeed(13);

double radius = 1.0; // R parameter of eq. (20) in reference [1]

unsigned ntries = 3; // number of tries

//new jet search created

JetSearch* js = new JetSearch(P, radius, ntries);

//find jets for a given value of Omega_cut

unsigned njets = js->FindJetsForOmegaCut(0.05);

if(njets == 0) { cout << "Jets lost." << endl; exit(1); }

//alternatively, find jet configuration for a fixed number of jets

//bool success = js->FindJetsForFixedNJets(4);

//if (! success) { cout << "Jets lost." << endl; exit(1); }

//get the jet configuration

Jets* Q = js->GetJets();

//display the number of jets

// and parameters /Omega, Y, Esoft/ of the jet configuration

cout << Q->GetNumber() << " jets found." << endl;

14

cout << "Omega: " << Q->GetOmega() << ", "

<< "Y: " << Q->GetY() << ", "

<< "Esoft (normalized): " << Q->GetESoft() << "." << endl;

//display the details of the jets

cout << "The details of the jets (E px py pz):" << endl;

Jet* jet = Q->GetFirst();

while(jet) {

cout << setw(10) << jet->GetE() << " "

<< setw(10) << jet->GetPx() << " "

<< setw(10) << jet->GetPy() << " "

<< setw(10) << jet->GetPz() << endl;

jet = jet->GetNext();

}

//the user is responsible for deleting

//what they created themselves with new

delete P;

delete js;

}

4.2 Output of example.cpp

65 particles in the event.

4 jets found.

Omega: 0.0464792, Y: 0.0382961, Esoft (normalized): 0.00818312.

The details of the jets (E px py pz):

38.1886 -18.5112 25.5879 19.5718

59.2424 -37.2752 -43.3007 -12.9766

49.1723 45.698 -9.17652 -11.8903

29.8772 10.4448 26.5263 6.43505

5 Comparison between FORTRAN 77 and current version

We have run several test programs to compare the output of the FORTRAN
ojf 015 version [1] and the current C++ version (both compiled with GNU
gcc 3.4.2 on Linux Fedora Core 3, Intel i686).

15

In each test, we compute

∆ =

∣∣∣∣xC++ − xFORTRAN

xFORTRAN

∣∣∣∣ (xFORTRAN 6= 0)

|xC++ − xFORTRAN| (xFORTRAN = 0)

, (18)

where x is any of the following quantities: Ω, Y , Esoft, Ej, p
(x)
j , p

(y)
j , p

(z)
j , and

Ej, θj, φj (spherical kinematics) or E⊥
j , ηj, φj (cylindrical kinematics); j runs

over all reconstructed jets. We characterize each event by ∆max, the maximal
value of all ∆’s calculated for this event. Tables 1 and 2 present the distribution
of ∆max’s for two multi event tests. Tables 3 and 4 show the parameters and
the results of single-event tests.

All events were generated with Pythia 6.222 [4].

Note that different stochastic minimum search algorithms must find the same
set of local minima – but not necessarily in the same order (if only because
of different floating point machine codes generated by different compilers).
However, it proved possible to adjust the current implementation (the con-
trol parameters, etc.) so as to ensure that even the order of the local minima
found is the same as with the FORTRAN 77 version for the same seed of
the random number generator – without spoiling the high precision of the
computations. Whatever minor numerical differences remain (see the compar-
ison tables) must be attributed to the observed differences in computation
of hyperbolic sines, etc. by the different routines provided by the C++ and
FORTRAN 77 compilers.

References

[1] D. Yu. Grigoriev, E. Jankowski, F. V. Tkachov, Comput. Phys. Commun. 155,
42 (2003).

[2] F. V. Tkachov, e-print: hep-ph/0111035.

[3] http://www.inr.ac.ru/∼ftkachov/projects/jets/

[4] T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, E. Norrbin,
Comput. Phys. Commun. 135, 238 (2001).

16

Table 1
Distribution of ∆max for a sample of 106 e+e− → WW → hadrons events at 180
GeV. Spherical kinematics. Three-momenta used in the input. R = 1.0, ntries = 1,
njets = 4, seed = 13.

∆max RANGE FRACTION OF EVENTS IN THE RANGE

10−18 − 10−17 0.000002

10−17 − 10−16 0.068718

10−16 − 10−15 0.508784

10−15 − 10−14 0.409418

10−14 − 10−13 0.010992

10−13 − 10−12 0.001616

10−12 − 10−11 0.000369

10−11 − 10−10 0.000074

10−10 − 10−9 0.000021

10−9 − 10−8 0.000005

10−8 − 10−7 0.000001

Table 2
Distribution of ∆max for a sample of 105 pp → tt + X → hadrons events at 14
TeV. Cylindrical kinematics. Three-momenta used in the input. R = 1.0, ntries = 1,
njets = 6, seed = 13. Two events yielded different jet configurations in the FOR-
TRAN and C++ versions, corresponding to different local minima. The value of Ω
was smaller for the C++ version by approximately 10−4 and 0.25.

∆max RANGE FRACTION OF EVENTS IN THE RANGE

< 10−18 0.00004

10−18 − 10−17 0.00051

10−17 − 10−16 0.00336

10−16 − 10−15 0.11745

10−15 − 10−14 0.22692

10−14 − 10−13 0.24575

10−13 − 10−12 0.23479

10−12 − 10−11 0.13154

10−11 − 10−10 0.03411

10−10 − 10−9 0.00536

10−9 − 10−8 0.00015

17

Table 3
A single e+e− → WW → hadrons event at 180 GeV. Spherical kinematics. In the
input, three-momenta are used for tests B01-B17, and angles are used for tests
C01-C04.

TEST ID R ntries njets ωcut seed ∆max

B01 1.0 1 2 - 13 8.5 · 10−15

B02 1.0 1 4 - 13 1.6 · 10−16

B03 1.0 1 12 - 13 3.2 · 10−15

B04 1.0 1 20 - 13 5.4 · 10−15

B05 0.1 1 4 - 13 8.3 · 10−14

B06 0.2 1 4 - 13 1.4 · 10−16

B07 0.7 1 4 - 13 1.4 · 10−16

B08 10.0 1 4 - 13 2.3 · 10−15

B09 1.0 2 4 - 13 2.9 · 10−15

B10 1.0 3 4 - 13 2.9 · 10−15

B11 1.0 100 4 - 13 2.9 · 10−15

B12 1.0 3 4 - 6969 2.9 · 10−15

B13 1.0 50 - 0.005 13 5.6 · 10−15

B14 1.0 50 - 0.01 13 2.4 · 10−16

B15 1.0 50 - 0.02 13 8.2 · 10−15

B16 1.0 50 - 0.04 13 3.3 · 10−15

B17 1.0 50 - 0.06 13 2.9 · 10−15

C01 0.7 3 - 0.021 1313 1.9 · 10−14

C02 1.5 50 - 0.04 1313 2.4 · 10−16

C03 0.7 1 4 - 1313 1.9 · 10−16

C04 1.5 2 5 - 1313 1.9 · 10−15

18

Table 4
A single pp → tt + X → hadrons event at 14 TeV. Cylindrical kinematics. In the
input, three-momenta are used for tests D01-D13, and angles are used for tests
E01-E04.

TEST ID R ntries njets ωcut seed ∆max

D01 1.0 1 2 - 13 4.2 · 10−16

D02 1.0 1 6 - 13 6.2 · 10−14

D03 1.0 1 12 - 13 4.1 · 10−13

D04 1.0 1 20 - 13 1.5 · 10−11

D05 0.1 1 6 - 13 4.2 · 10−13

D06 10.0 1 6 - 13 3.8 · 10−13

D07 1.0 2 6 - 13 4.2 · 10−13

D08 1.0 3 6 - 13 4.2 · 10−13

D09 1.0 100 6 - 13 3.4 · 10−14

D10 1.0 3 6 - 6969 3.3 · 10−14

D11 1.0 50 - 0.05 13 2.4 · 10−13

D12 1.0 50 - 0.1 13 3.4 · 10−14

D13 1.0 50 - 0.2 13 9.6 · 10−16

E01 0.7 3 - 0.1 1313 1.9 · 10−12

E02 1.5 50 - 0.2 1313 4.5 · 10−16

E03 0.7 1 6 - 1313 7.3 · 10−16

E04 1.5 2 7 - 1313 1.4 · 10−12

19

