PHOTOREACTIONS WITH TENSOR-POLARIZED DEUTERIUM TARGET AT VEPP–3

<u>I.A.Rachek</u>¹, L.M.Barkov¹, V.F.Dmitriev¹, I.V.Karnakov¹, B.A.Lazarenko¹, S.I.Mishnev¹, A.V.Osipov², R.Sh.Sadykov¹, V.N.Stibunov², Yu.V.Shestakov¹, D.K.Toporkov¹,

 $S.A.Zevakov^1$,

and the Novosibirsk Electron-Deuteron Collaboration.

¹Budker Institute of Nuclear Physics, Novosibirsk, Russia. ²Institute of Nuclear Physics at Tomsk Polytechnical University, Tomsk, Russia.

The physical program of the Novosibirsk Electron-Deuteron collaboration is focused on the study of tensor effects in electro– and photo–reactions on the deuteron. The facility is based on a tensor-polarized deuterium gas target, internal to VEPP–3 electron storage ring, and a set of wide-aperture non-magnetic detectors.

Photoprocesses under study include two-body photodisintegration $\gamma d \rightarrow pn$, coherent neutral pion production $\gamma d \rightarrow d' \pi^0$ and charge pion production $\gamma d \rightarrow pp\pi$. Measurements covered the photon energy up to 500 MeV. The experimental approach consisted in selecting those events of electron-induced reaction in which electron is scattered at a very small angle. Electron is not detected, its scattering angle is reconstructed from kinematic parameters of reaction products.

Recent results on accurate measurement of tensor analyzing power components T_{20} , T_{21} and T_{22} in deuteron photodisintegration will be presented [1], as well as the results on the first measurement of T_{2M} in coherent π^0 production on deuteron [2].

Future plans in this activity will be discussed. Further progress is connected with a development of the Photon Tagging System (PTS). The PTS is based on detecting the scattered electron, thus allowing to reconstruct energy, emission angle and linear polarization of the quasi-real photon. The introduction of the PTS will permit to extend the photon energy domain up to 1.5 GeV and enable double–polarization experiments.

- [1] I.Rachek et al., Phys. Rev. Lett. 98 (2007) 182303.
- [2] D.M.Nikolenko et al., Pisma Zh.Eksp.Teor.Fiz. 89 (2009) 518.