

Recent Results from the CB@MAMI Collaboration

E. J. Downie EMIN October 2009

Outline

Introduction & Motivation

Experimental setup

Recent results: P₃₃(1232), S₁₁(1535), D₃₃(1700)

• Future highlights: Vector polarizabilities of the nucleon

Conclusion

Introduction

Photon provides well understood probe

Accurate separation of final states → good detector resolution

• Sensitivity to small σ processes $\rightarrow 4\pi$ detector acceptance, large γ flux

◆ Access to polarisation observables → polarised beam, target, recoil

Collaboration

Glasgow Photon Tagger

Collaboration

CB@MAMI Detector System

Collaboration

Crystal Ball: Particle Calorimetry and Identification

Collaboration

E. J. Downie – EMIN – October 2009

Energy Deposit in PID Element (MeV)

TAPS: Particle Calorimetry and Identification

- Pulse-shape analysis: N/γ
- Plastic veto detectors: n/p, e⁻/γ
- Δ E (Veto) / E (BaF2): cleaning TOF
- Time of flight, $\sigma_t = 0.2$ ns: n/ γ , p/e^{+/-}
- ΔE/E = 0.018 + 0.008/E[GeV]^{0.5}
- Angular Resolution: $\sigma_{\theta} < 1^{\circ}$; $\sigma_{\phi} < 1/R[cm]$

Incoherent π^0 photoproduction on ¹²C

- ◆ Sensitive to N∆ transition mechanisms
- First report of $\sigma(\gamma, \pi^0)$ for a specific excited state
- Simultaneous detection of π^0 and decay γ in CB
 - Favourable comparison to Δ-hole model (left)
- Important first step in isolation of coherent process
 - PRL 100, 132301 (2008)

= (225-245)MeV

Coherent π^0 photoproduction on ²⁰⁸Pb

Do heavy stable nuclei have a neutron skin?

- Fundamental property of nuclear physics
- Size of skin gives direct information on equation of state of n-rich matter
- Skin size gives important new insights into neutron star physics (cooling mechanisms, mass radii relationships)
 - Accuracy ~0.05fm
 - Publication in preparation: D. P. Watts and C. Tarbert, Edinburgh Uni.

- Tagged photon beam on liquid H2
- Δ^+ lifetime 10⁻²⁴s \rightarrow large Breit-Wigner width
 - Created Δ^+ at upper end of B-W width
 - Δ^+ radiatively decays to another Δ^+

p(y,π⁰yp) Experimentally difficult channel

~50 nb total cross section

Backgrounds: p(γ,π⁰p), 318 μb; p(γ,π⁰π⁰p), 1.5 μb

Comprehensive measurement required:

• Measure two channels: $p(\gamma,\gamma'\pi^0p)$, $p(\gamma,\gamma'\pi^+n)$

- Measure several observables:
- Five-fold differential cross section
- Linearly polarised photon asymmetry
- Circularly polarised photon asymmetry

Collaboration

- Plot above based on ~50% of available data
- Improvements in normalisation etc. expected
- MAMI-C looking at radiative η -photoproduction for $\mu(S_{11}(1530))$

η photoproduction

• $S_{11}(1535)$ dominant resonance in η production

- Photoproduction and decay amplitudes of described in ChiPT
 - Rare decays of η test higher orders of ChiPT

• Lowest order ChiPT amplitude of $\eta \rightarrow 3\pi^0$ proportional to (m_-m_)

Lots to study!

Dalitz plot parameter α in $\eta \rightarrow 3\pi^0$

Decay is isospin violating: get special term in Hamiltonian

$$\bullet H_{\Delta I=1} = \frac{1}{2} (m_u - m_d) (\overline{u} u - \overline{d} d)$$

• Theories: Three orders of ChiPT calcs., dispersion relations, Bete Saltpeter

Collaboration

Dalitz plot parameter α in $\eta \rightarrow 3\pi^0$

M. Unversagt, Mainz

Collaboration

Dalitz plot parameter α in $\eta \rightarrow 3\pi^0$

Collaboration

Decays of the η and η'

• Decay $\eta \rightarrow \pi^0 \gamma \gamma$ test of higher orders of ChiPT

• Also studying: $\eta \rightarrow e^+e^-\gamma$, $4\pi^0$, $\pi^0\gamma$, $2\pi^0\gamma$, $3\pi^0\gamma$

• Ratio of decays: $\eta' \rightarrow \pi^0 \pi^0 \pi^0$ and $\eta' \rightarrow \eta \pi^0 \pi^0$ gives information on $\eta \pi^0$ mixing

• Also studying: $\eta' \rightarrow \pi^0 e^+ e^-$, 3γ , $4\pi^0$ (CP violation)

CB@MAMI will produce about 3x10⁸ η in a few years and 3x10⁶ η'

$\gamma p \rightarrow \pi^0 \eta p$

Data: V. Kashevarov et. al, accepted for publication in EPJA, arXiv:0901.3888

Well described by simple model, including ONLY D₃₃(1700)

• Fix et. al EPJ A36,61-72 (2008)

Well described by simple model, including ONLY D₃₃(1700)

• Same kind of dominance as $\Delta(1232)$ in π production and S₁₁(1535) in η production

• Future: determine p-wave contributions

Needs: full angular distributions and spin observables E,F and T

And lots more...

 No time left to discuss: Recoil polarimetry: γN→πN', γN→ηN', determination of η mass, GDH integral on the neutron, in-medium modification of mesons, threshold hyperon production, double pion production and so much more...

- Uses DNP to achieve ~ 90 % proton, 80 % deuteron, 50% neutron pol.
 - Needs: Horiz. Dilution cryostat, polarising magnet, microwave, NMR
 - Two holding coils: solenoid \rightarrow longitudinal, saddle coil \rightarrow transverse

• See Grigory M. Gurevich

Polarised Target

- Frozen spin target assembled: 50 % polarisation achieved in test
 - Rail system assembly in progress, detectors being made mobile

Target to be moved into in Tagger hall

Polarizabilities are fundamental structure constants of the nucleon

- Scalar polarizabilities (α , β) describe spin response to static EM field
- Vector polarizabilities describe spin response to an incident photon

• Four vector pol. ($\gamma_{E1E1} \gamma_{M1M1} \gamma_{E1M2} \gamma_{M1E2}$) appear at 3rd order in eff. Hamiltonian

Scalar polarizabilities are well known:

$$\begin{split} \alpha^p_{E1} &= [12.21 \pm 0.3(stat.) \mp 0.4(syst.) \pm 0.3(mod.)] \times 10^{-4} fm^3 \\ \beta^p_{M1} &= [1.6 \pm 0.4(stat.) \pm 0.4(syst.) \pm 0.4(mod.)] \times 10^{-4} fm^3 \end{split}$$

Only two linear combinations of vector polarizabilities measured:

 $\gamma_0 = -\gamma_{E1E1} - \gamma_{M1M1} - \gamma_{E1M2} - \gamma_{M1E2} = -1.01 \pm 0.08 \pm 0.10 \times 10^{-4} fm^4$ $\gamma_\pi = -\gamma_{E1E1} + \gamma_{M1M1} - \gamma_{E1M2} + \gamma_{M1E2} = 8.0 \pm 1.8 \times 10^{-4} fm^4$

Polarizabilities are fundamental structure constants of the nucleon

- Scalar polarizabilities (α , β) describe spin response to static EM field
- Vector polarizabilities describe spin response to an incident photon

• Four vector pol. ($\gamma_{E1E1} \gamma_{M1M1} \gamma_{E1M2} \gamma_{M1E2}$) appear at 3rd order in eff. Hamiltonian

γ	Theory / 10^{-4} fm ⁴								Experiment
	$O(p^4)$ [1]	$\mathcal{O}(p^5)$ [2]	LC4 [3]	SSE [4]	BGLMN [5]	HDPV [6]	KS [7]	DPV [8]	$/ 10^{-4} {\rm fm^4}$
E1E1	-1.4	-1.8	-2.8	-5.7	-3.4	-4.3	-5.0	-4.3	no data
M1M1	3.3	2.9	-3.1	-3.1	2.7	2.9	3.4	2.9	no data
E1M2	0.2	0.7	0.8	0.98	0.3	-0.01	-1.8	0	no data
M1E2	1.8	1.8	0.3	0.98	7.9	2.1	1.1	2.1	no data
0	3.9	-3.6	4.8	0.64	-1.5	-0.7	2.3	-0.7	$-1.01 \pm 0.08 \pm 0.13$ [9]
π	6.3	5.8	-0.8	8.8	7.7	9.3	11.3	9.3	8.0 ± 1.8 [10]

[1] G. Gellas, T. Hemmert, and Ulf-G. Meißner, Phys. Rev. Lett. 85, 14 (2000).

[2] K.B. Vijaya Kumar, J.A. McGovern, M.C. Birse, Phys. Lett. B 479, 167 (2000).

[3] D. Djukanovic, Ph.D. Thesis, University of Mainz, 2008.

[4] R.P. Hildebrant et al., Eur. Phys. J. A 20, 293 (2004).

[5] D. Babusci et al., Phys. Rev. C 58, 1013 (1998).

[6] B. Holstein, D. Drechsel, B. Pasquini, and M. Vanderhaeghen, Phys. Rev. C 61, 034316 (2000).

[7] S. Kondratyuk and O. Scholten, Phys. Rev. C 64, 024005 (2001).

[8] B. Pasquini, D. Drechsel, and M. Vanderhaeghen, Phys. Rev. C 76, 015203 (2007).

[9] J. Ahrens et al., Phys. Rev. Lett. 87, 022003 (2001).

[10] M. Schumacher, Prog. Part. Nucl. Phys. 55, 567 (2005).

 Linearly polarised photons, parallel and perpendicular to the scattering plane, unpolarised target

$$\Sigma_3 = \frac{\sigma^{\parallel} - \sigma^{\perp}}{\sigma^{\parallel} + \sigma^{\perp}}$$

 Circularly polarised photons (left-handed (L) and right-handed (R)), longitudinally polarised target

$$\Sigma_{2z} = \frac{\sigma_{+z}^R - \sigma_{+z}^L}{\sigma_{+z}^R + \sigma_{+z}^L} = \frac{\sigma_{+z}^R - \sigma_{-z}^R}{\sigma_{+z}^R + \sigma_{-z}^R}$$

 Circularly polarised photons (left-handed (L) and right-handed (R)), transversely polarised target

$$\Sigma_{2x} = \frac{\sigma_{+x}^{R} - \sigma_{+x}^{L}}{\sigma_{+x}^{R} + \sigma_{+x}^{L}} = \frac{\sigma_{+x}^{R} - \sigma_{-x}^{R}}{\sigma_{+x}^{R} + \sigma_{-x}^{R}}$$

Collaboration

Sim. MM(y') on Butanol – showing π^0 photoproduction and Compton contributions $E_{\gamma} = 240$ MeV $E_{\gamma} = 280 \text{ MeV}$

Σ₃ 100 hours
 measurement

- Σ_{2x} 300 hours
 measurement
- Curves from:-

B. Pasquini, D. Drechsel, M. Vanderhaeghen, Phys. Rev. C **76** 015203 (2007)

B. Pasquini, D. Drechsel, M. Vanderhaeghen, Phys. Rept. **378** 99 (2003)

The CB@MAMI experimental setup is a highly flexible 4π detector system

- Ideal for studies of nucleon resonances and polarisation observables and rare final states
 - "η-factory" to test fundamental symmetries
 - Investigating properties of nucleon, nucleon resonances and nuclei using a high quality photon beam

• New polarised target and recoil polarimetry \rightarrow broad range of new resonance studies $P_{_{33}}(1232), S_{_{11}}(1535), D_{_{33}}(1700)$

