

Low density nuclear matter in effective field theory

P. Saviankou, S. Krewald, E. Epelbaum, U.-G. Meißner

Forschungszentrum Jülich, Uni Bonn, Germany

Contents

Motivation Nuclear matter NLO Nuclear matter NNLO Numerical experiment Conclusions

Motivation

E. Epelbaum, Prog. Part. Nucl. Physics 57(2006)654

Nuclear matter NLO

Nuclear matter NNLO(two-body)

Nuclear matter NNLO(326)

 $\Lambda=326\;\text{MeV}$

Nuclear matter NNLO(550)

$\Lambda = 550 \text{ MeV}$ c_D, c_E : A. Nogga

Numerical experiment A=0.025

(1)

$$\begin{aligned} V_{eff} &= V_{OPEP} + V^{(0)} + V^{(2)} ,\\ V_{OPEP} &= -\left(\frac{g_A}{2F_\pi}\right)^2 \frac{\vec{\tau_1} \cdot \vec{\tau_2} \vec{\sigma_1} \cdot \vec{q} \vec{\sigma_2} \cdot \vec{q}}{q^2 + M_\pi^2} \\ V^{(0)} &= C_S + C_T \vec{\sigma_1} \cdot \vec{\sigma_2} \\ V^{(2)} &= C_1 \vec{q}^2 + C_2 \vec{k}^2 + (C_3 \vec{q}^2 + C_4 \vec{k}^2) \vec{\sigma_1} \cdot \vec{\sigma_2} \\ &\quad + i C_5 \frac{1}{2} (\vec{\sigma_1} + \vec{\sigma_2}) \cdot \vec{k} \times \vec{q} \\ &\quad + C_6 \vec{\sigma_1} \cdot \vec{q} \vec{\sigma_2} \cdot \vec{q} + C_7 \vec{\sigma_1} \cdot \vec{k} \vec{\sigma_2} \cdot \vec{k} \\ V^{(0)} &= C_S - \frac{1}{4} A [C_S - 3C_T] x (x - 1) \\ &\quad + \vec{\sigma_1} \cdot \vec{\sigma_2} \left(C_T + \frac{1}{4} A [C_S - 3C_T] x (x - 1) \right) \right) \\ x &= (\rho/\rho_c)^{\frac{1}{3}} \end{aligned}$$

EMIN 2009 - p.8/12

Density dependent LEC??

Nuclear matter NNLO(550)

 $\Lambda = 550 \; \mathrm{MeV}$

Pressure Neutron Matter

 $\Lambda = 550 \; \mathrm{MeV}$

Conclusions

- NLO Saturation curve cut off independent below 0.5 fm⁻¹.
- Effective Field Theory produces saturation of nuclear matter at NLO, but saturation point strongly cut off dependent.
- NNLO Saturation curve cut off independent below 1.0 fm $^{-1}$.
- The relevance of four-body interactions for saturation cannot be ruled out.
- EFT requires treatment of three-body correlations.
- OUTLOOK: Neutron-rich short-lived isotopes, Obninsk, St.Peterburg.