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Bose Condensation by Gravitational Interactions
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We study Bose condensation and formation of Bose stars in the virialized dark matter ha-
los/miniclusters by universal gravitational interactions. We prove that this phenomenon does occur
and it is described by kinetic equation. We give expression for the condensation time. Our results
suggest that Bose stars may form in the mainstream dark matter models such as invisible QCD
axions and Fuzzy Dark Matter.

1. Introduction. Bose stars are lumps of Bose conden-
sate bounded by self-gravity [1, 2]. They can be made
of condensed dark matter (DM) bosons — say, invisible
QCD axions [3] or Fuzzy DM [4]. That is why physics,
phenomenology and observational signatures of these ob-
jects remain in the focus of cosmological research for
decades [5], see recent papers [6, 7]. Unfortunately, for-
mation of Bose stars is still poorly understood and many
recent works have to assume their existence.

In this Letter we study Bose condensation in the virial-
ized DM halos/miniclusters caused by universal gravita-
tional interactions. We work at large occupation numbers
which is correct if the DM bosons are light. Notably, we
consider kinetic regime where the initial coherence length
and period of the DM particles are close to the de Broglie
values (mv)−1 and (mv2)−1 and much smaller than the
halo size R and condensation time τgr,

mvR� 1 , mv2τgr � 1 . (1)

We numerically solve microscopic equations for the grav-
itating “gas” of bosons in this case and find that the Bose
stars indeed form. We derive expression for τgr and study
kinetics of the process.

Up to our knowledge, gravitational Bose condensation
in kinetic regime has not been observed before. Old
works considered only contact interactions between the
DM bosons [8] which are non-universal and suppressed by
quartic constants λ ∼ 10−50 [9] and 10−100 [10] in models
of QCD axions and string axions/Fuzzy DM. Our results
show that in these cases gravitational condensation is
faster: although the Newton’s constant Gm2 is tiny, its
effect is enhanced by collective interaction of large fluc-
tuations in the boson gas at large distances, cf. [11].

On the other hand, all previous numerical studies of
Bose star formation considered coherent initial configu-
rations of the bosonic field — a Gaussian wavepacket [12]
or the Bose star itself [13]. A spectacular simulation of
structure formation by wavelike/Fuzzy DM [14] started
from (almost) homogeneous Bose condensate. In all
these cases the Bose stars may form almost immedi-
ately [12, 13] from the lowest-energy part of the initial
condensate. We study entirely different situation (1)
when the DM bosons are virialized in the initial state.

We do not consider scenario [11, 15] with axions form-
ing cosmological condensate at the radiation-dominated
stage because it was envisaged outside of the regime (1).
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FIG. 1. Formation of a Bose star from a random field with
initial distribution |ψ̃p̃|2 ∝ e−p̃2

and total mass Ñ = 50 in the
box 0 ≤ x̃, ỹ, z̃ < 125. These values correspond to the center
of axion minicluster in Sec. 8 with Mc ∼ 10−13M� and Φ ∼
2.7. (a), (b) Sections z̃ = const of the solution |ψ̃(t̃, x̃)| at (a)

t̃ = 0 and (b) t̃ > τ̃gr ≈ 1.07 · 106. (c) Radial profile |ψ̃(r̃)| of

the object in Fig. 1b (points) compared to the Bose star ψ̃s(r̃)

with ω̃s ≈ −0.7 (line). (d) Maximum of |ψ̃(x̃)| over the box
as a function of time. (e) Spectra (3) at times of Figs. 1a, b
and at the eve of Bose star nucleation, t̃ = 1.05 · 106 ∼ τ̃gr.
(f) The spectrum at t ∼ τgr (dashed line) versus solution of

Eq. (5) (circles) and thermal law F̃ ∝ ω̃−1/2 (dots).
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2. The birth of the Bose star. Consider N nonrel-
ativistic gravitationally interacting bosons in a periodic
box of size L. At large occupation numbers this system is
described by a random classical field ψ(t, x) [8] evolving
in its own gravitational potential U(t, x),

i∂tψ = −∆ψ/2m+mUψ , (2)

∆U = 4πGm(|ψ|2 − n) ,

where the mean particle density n ≡ N/L3 is subtracted
in the second line for consistency [14]. Notably, Eqs. (2)
simplify in dimensionless variables: substitutions x =
x̃/mv0, t = t̃/mv20 , U = v20Ũ and ψ = v20ψ̃

√
m/G ex-

clude parameters m and G from the equations and ref-
erence velocity v0 — from the initial conditions. The
rescaled particle number is Ñ ≡

∫
d3x̃ |ψ̃|2 = Gm2N/v0.

We fix initial conditions in the momentum space.
A representative class of them describes Gaussian-
distributed bosons, |ψ̃p̃|2 = 8π3/2Ñ e−p̃

2

, with random

arg ψ̃p̃. Fourier-transforming ψ̃p̃, we obtain an isotropic

and homogeneous initial configuration ψ̃(0, x̃) with min-
imal coherence length in Fig. 1a. Then we numerically
evolve Eqs. (2) using an exceptionally stable 3D algo-
rithm [16], see movie [19]. Apart from the erratic motion
of ψ-peaks and deeps, nothing happens for a long time
t < τgr, where τ̃gr ∼ 106 for the solution in Fig. 1. Then
suddenly a coherent, compact and spherically symmetric
object appears at t > τgr, see Fig. 1b. With time the
object grows in mass and moves in a Brownian way.

To explain what happens, we recall that any interac-
tion between the bosons should lead to thermal equilib-
rium, and in the case of large occupation numbers — to
formation of a Bose condensate. Gravitational interac-
tion is not an exception [11]. But then the condensate
cannot appear in a homogeneous state [15]. Rather, it
should fragment due to Jeans instability into a set of
isolated Bose stars, cf. [8], which is therefore the actual
end-state of the condensation process.

The field profiles of the Bose stars are found by solv-
ing Eqs. (2) with the spherical Ansatz ψ = ψs(r) e−iωst

at each ωs < 0, see e.g. [20]. The exemplary star is
shown in Fig. 1c (line). It coincides with the profile of
the object in Fig. 1b (points) thus proving that we in-
deed observe nucleation of a Bose star caused by grav-
itational interactions. We performed simulations for a
large set of parameters, for δ- and θ-like initial distri-
butions, |ψp|2 ∝ δ(|p| − mv0) and θ(mv0 − |p|), in ad-
dition to the Gaussian. Every time we observed forma-
tion of a Bose star with correct profile. Note that the
Bose star radius is inversely proportional to its mass Ms,
while ψs(0) ∝M2

s [20]. Thus, these objects nucleate wide
and rarefied, then shrink and become dense as they accu-
mulate bosons. Unlike in other studies, no “seed” Bose
condensate was present in our simulations at τ < τgr,
otherwise it would grow above the background in a short
time, see Fig. 1d.

3. The spectrum. To look deeper into the initial,
seemingly featureless stage of gas evolution, we compute
distribution F (t, ω) = dN/dω of bosons over energies ω.
This quantity equals to Fourier image of the correlator

F =

∫
dt1
2π

d3xψ∗(t,x)ψ(t+ t1,x) eiωt1−t
2
1/τ

2
1 (3)

in kinetic regime (mv20)−1 � τ1 � τgr [21]. In dimen-

sionless calculations we use F̃ = mv20F/N normalized to
unity:

∫
F̃ dω̃ = 1, where ω̃ = ω/mv20 .

Figure 1e shows that the spectrum (3) completely
changes during evolution at t < τgr. It starts from a

wide bell F̃ ∝ ω̃1/2 e−2ω̃ corresponding to Gaussian dis-
tribution in momenta in Fig. 1a. As the time goes on, F
develops a peak at low ω and becomes close to thermal
at intermediate energies, F ∝ ω−1/2, see the graph at
t ∼ τgr in Figs. 1e and 1f. Once the Bose star nucleates,
a δ-peak appears in the distribution, see the spectrum 1b
in Fig. 1e. This δ-peak is formed by condensed particles
of energy ωs < 0 inside the star. It starts close to ω ≈ 0
at t = τgr and moves to the left as the Bose star grows.

Below we use the δ-peak at ω < 0 as an indicator of
Bose star nucleation: we define τgr as the moment when
the peak is twice higher than the fluctuations in F (t, ω).
4. Condensation time. In kinetic regime evolution

of F (t, ω) is described by kinetic equation — this fact
can be proven [18] by solving Eqs. (2) perturbatively
and using approximations (1), cf. [21]. Below we con-
firm the same fact numerically. One therefore expects
that the time of Bose star formation τgr is proportional
with some coefficient b to the kinetic relaxation time:
τgr = 4b

√
2/(σgrvn f), where σgr ≈ 8π(mG)2Λ/v4 is the

transport Rutherford cross section of gravitational scat-
tering, Λ = log(mvL) is the Coulomb logarithm, and
f = 6π2n/(mv)3 � 1 is the phase space density that
appears due to Bose stimulation [8]. The coefficient
b = O(1) accounts for the details of the process. It is
expected to depend weakly on the initial distribution.

Taking all factors together, we obtain expression

τgr =
b
√

2

12π3

mv6

G2n2Λ
, b ∼ 1 (4)

that apart from the Coulomb logarithm involves only lo-
cal parameters i.e. the boson number density n and ve-
locity v. So, up to weak logarithmic dependence on the
size L formation of a Bose star can be regarded as a local
process, with periodic box representing a central part of
some DM halo. We will confirm this intuition below.

We performed simulations of the gas with Gaussian
initial distribution at different L̃ and ñ. Our results for
τgr (circles in Fig. 2a) cover two orders of magnitude, but
they are nevertheless well fitted by Eq. (4) with v = v0
and b ≈ 0.9 (upper line in Fig. 2a). To confirm that
Eq. (4) is universal, we repeated the calculations for the
initial δ-distribution, |ψp|2 ∝ δ(|p| − mv0) (squares in
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FIG. 2. (a) Time to Bose star formation in the cases of
Gaussian ( ) and δ-peaked ( ) initial distributions, as well
as δ-distributions developing Jeans instabilities during ki-
netic evolution ( ). The δ-graphs are shifted downwards
(τgr → τgr/10) for visualization purposes. Lines depict fits by
Eq. (4). (b) The same for isolated miniclusters. (c), (d) Slices

z̃ = const of the solution |ψ̃(t̃, x̃)| describing formation of a

Bose star in the center of a minicluster; Ñ = 290, L̃ ≈ 63.

Fig. 2a). The new vales of τgr are still described by
Eq. (4), albeit with slightly different coefficient b ≈ 0.6.
We conclude that Eq. (4) is a practical justified expres-
sion for the time of Bose star formation.

5. Kinetics. Let us show that evolution of F (t, ω) in
Fig. 1e is indeed governed by the Landau kinetic equa-
tion [22] for homogeneous ensemble of gravitating waves,

∂tF̃ = τ−10 ∂ω̃

[
A∂ω̃F̃ + (BF̃ −A)F̃ /2ω̃

]
. (5)

Here the scattering integral in the right-hand side in-
volves A(ω̃) =

∫∞
0
dω̃1 min3/2(ω̃, ω̃1)F̃ 2(ω̃1)/(3ω̃1ω̃

1/2),

B(ω̃) =
∫ ω̃
0
dω̃1F̃ (ω̃1), it is explicitly proportional to the

inverse relaxation time τ−10 = 8π3n2G2(Λ + a)/mv60 ∼
τ−1gr . Notably, Eq. (5) is valid in the leading logarithmic
approximation Λ� 1 which is too rough for our numer-
ical solutions with Λ ∼ 5. To get a quantitative compar-
ison, we added an unknown correction a = O(1) to Λ.

We numerically evolve Eq. (5) starting from the same
initial distribution as in Fig. 1. In Fig. 1f the solution
F (τgr, ω) (circles) is compared to the microscopic dis-
tribution (3) (dashed line) at t ≈ τgr, where a ≈ 5 is
obtained from the fit. We observe agreement in the ki-
netic region ω̃ � 2π2/L̃2 which confirms that Eq. (5)
correctly describes evolution at t < τgr.

Note that unlike in the case of short-range interac-

tions [23] thermalization in Landau equation does not
proceed via simple power-law turbulent cascades [22],
and we do not observe them in Figs. 1e,f. Neverthe-
less, we think that Eq. (5) provides the basis for analytic
description of gravitational Bose condensation.
6. Miniclusters. So far we assumed that homo-

geneous gas in the box correctly describes central
parts of DM halos. Now, we study the isolated ha-
los/miniclusters themselves and verify this assumption.
Recall that in large volume nonrelativistic gas clumps
at scales R & 2π/kJ due to Jeans instability, where
k2J = 2πGnm2〈ω−1〉 and the average is computed with
F (ω). Starting numerical evolution from the homoge-
neous gas with δ-distributed momenta at L > 2π/kJ , we
indeed observe formation of a virialized minicluster in
Fig. 2c. With time it remains stationary until a Bose star
appears in its center, see Fig. 2d and movie [19]. Thus,
formation of Bose stars is not specific to finite boxes.

We checked that our kinetic expression for τgr works
for the virialized miniclusters. To this end we gener-
ated many different miniclusters, computed their central
densities n and virial velocities 〈v2〉 = −2〈ω〉/m using
the ω < 0 part of the distribution F (ω), estimated their
radii R. In Fig. 2b we plot the times of Bose star for-
mation in the miniclusters versus these parameters and
Λ = log(mvR) (points). The numerical data are well ap-
proximated by Eq. (4) with b ≈ 0.7 (line) although the
statistical fluctuations are now larger due to limited con-
trol over momentum distribution inside the miniclusters.

Estimating the virial velocity v2 ∼ 4πGmnR2/3 in the
halo of radiusR, one recasts Eq. (4) in the intuitively sim-
ple form τgr ∼ 0.047 (R/v) (Rmv)3/Λ, where the numer-
ical factor is computed. Remarkably, τgr equals to the
free-fall time R/v multiplied by the cube of kinetic con-
stant Rmv � 1 in Eq. (1). In non-kinetic case Rmv ∼ 1
the Bose stars form immediately [12–14].

If L is a bit smaller than 2π/kJ at t = 0, the virial-
ized miniclusters form during the condensation process.
Indeed, kinetic evolution shifts F (ω) to smaller ω, so kJ
grows with time. Once kJ = 2π/L is reached, a miniclus-
ter of size R ∼ L appears and subsequent condensation
proceeds in its center. We find that in this case Eq. (4)
with original values of v and n is still valid, see the crosses
in Fig. 2a. Indeed, solving equation kJ = 2π/L, one finds
that Jeans instability occurs when the typical velocity in
the box is comparable to the virial velocity inside the
minicluster. Thus, Eq. (4) approximately holds both in
terms of the minicluster and of the original box.

7. Bose star growth. After nucleation the Bose stars
start to acquire particles from the gas. Due to compu-
tational limitations we are able to observe only the first
decade of their mass increase that proceeds according
to the heuristic law Ms(t) ' cv0(t/τgr − 1)1/2/Gm with
c = 3 ± 0.7. The ratio t/τgr in this expression suggests
that growth of the Bose stars is a kinetic process deserv-
ing a separate study.
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8. Discussion. Let us argue that the Bose stars ap-
pear in the popular cosmological models. If the DM is
made of invisible QCD axions [3] they have to form in the
centers of axion miniclusters [24, 25], the smallest sub-
structures of typical mass Mc ∼ 10−13M� resulting from
inhomogeneous QCD phase transition. The miniclusters
are characterized [25] by the ratio Φ + 1 ≡ n/n̄|RD of
their central density n to the cosmological axion density
n̄ at the radiation-dominated stage when they are still in
the linear regime. Using parameters of late gravitation-
ally bound miniclusters [25] in Eq. (4) and expressing the
result in terms of Φ and Mc, we find,

τgr ∼
109 yr

Φ3(1 + Φ)

(
Mc

10−13M�

)2(
m

26µeV

)3

,

where the reference values of m and Mc are taken from [9]
and [26]. Thus, typical miniclusters with Φ ∼ 1 condense
during the lifetime of the Universe, the densest ones with
Φ ∼ 103 [25] — in several hours. The Bose stars are
important [6] as they hide a part of DM from observa-
tions. After becoming large they may explode into rel-
ativistic axions [7] or emit radiophotons via parametric
resonance [2, 18] which at different redshifts may explain
FRB [27] and anomalies of ARCADE 2 and EDGES [28].

Note that gravitational relaxation of QCD axions is
significantly faster than relaxation due to self-coupling
λ ≡ m2/f2, where f ∼ 1011 GeV is the Peccei-Quinn
scale. Indeed, in kinetic regime the ratio of the relax-
ation rates is proportional to that of the cross sections,
τself/τgr ∼ σgr/σself ∼ (10fG1/2/v)4. In typical mini-
clusters v ∼ 10−10 � 10fG1/2 and gravitational interac-
tions win by τself/τgr ∼ 1012.

Another popular class of DM models is based on string
axions / Fuzzy DM [4]. An interesting though recently
constrained [29] scenario considers the smallest mass
m ∼ 10−22 eV of these particles [14] when their de Broglie
wavelength inside the dwarf galaxies is comparable to
the size of the galaxy cores, mvR ∼ 1. As we argued,
the Bose stars should appear in these cores in free-fall
time. This explains their fast formation [14] in numeri-
cal simulations. At larger masses one substitutes typical
parameters of dwarf satellites into Eq. (4),

τgr ∼ 106 yr
( m

10−22 eV

)3( v

30 km/s

)6(
0.1M�/pc3

ρ

)2

.

The Bose stars nucleate there if m . 2 · 10−21 eV, at the
boundary of experimentally allowed mass window [29].
Then the missing satellites may hide as Bose stars. At
even larger m the Bose stars may form in miniclusters
and in cores of large galaxies, they may grow overcriti-
cal and explode [7]. Note that self-interaction of typical
string axions [10] with f ∼ 10−2G−1/2 is less effective
than gravity because v � 10fG1/2 in all structures.
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