Sterile neutrinos in cosmology

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

Xith Markov readings, INR RAS, Moscow, 14,05.2013

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

Phenomenological problems of the Standard Model

Gauge fields (interactions) – γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations : active neutrino masses via mixing
 - Dark matter (Ω_{DM}) : sterile neutrino as DM
 - Baryon asymmetry : leptogenesis via sterile neutrino decays or oscillations

- Sterile neutrinos explain the oscillations
- and the cosmological problems

▲ 글 ▶ 그리님

Phenomenological problems of the Standard Model

Gauge fields (interactions) – γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations : active neutrino masses via mixing
 - Dark matter (Ω_{DM}) : sterile neutrino as DM
 - Baryon asymmetry : leptogenesis via sterile neutrino decays or oscillations

- Sterile neutrinos explain the oscillations
- and the cosmological problems

Phenomenological problems of the Standard Model

Gauge fields (interactions) – γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations : active neutrino masses via mixing
 - Dark matter (Ω_{DM}) : sterile neutrino as DM
 - Baryon asymmetry : leptogenesis via sterile neutrino decays or oscillations

- Sterile neutrinos explain the oscillations
- and the cosmological problems

Sterile neutrinos: NEW ingredients

One of the optional physics beyond the SM:

sterile: new fermions uncharged under the SM gauge group neutrino: explain observed oscillations by mixing with SM (active) neutrinos

Attractive features:

- possible to achieve within renormalizable theory
- only N = 2 Majorana neutrinos needed
- baryon asymmetry via leptogenesis
- dark matter (with $N \ge 3$ at least)
- light(?) sterile neutrinos might be responsible for neutrino anomalies...?

Disappointing feature:

Major part of parameter space is UNTESTABLE

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

() >) ≥ | ≥

Sterile neutrinos: state of the art

- Mass scale M_N is unclear: from m_v to 10^{14} GeV Quantum corrections to Higgs: it is either below 10 TeV or ...SUSY?
- BAU can be generally explained with $m_N \gtrsim 10^9$ GeV; Degeneracy in sterile neutrinos allows for leptogenesis even for $m_N \gtrsim 100$ MeV
- Dark matter sterile neutrino IS NOT see-saw neutrino: it contributes little to m_v however it may form Warm dark matter, from PhSD (Fermi principle) $M_N \gtrsim 1 \text{ keV}$
- Presently 1 eV-neutrinos contribute little to Dark Matter but earlier to Dark radiation, as active neutrinos do Generally, 1 eV-neutrinos with mixing ~ 0.01 can be tested only with cosmological data, however f(R) screens it At present 1 eV-neutrino is (still?) OK with cosmology

Outline

2 Bonus: What else they can be responsible for?

3 Neutrino role in cosmology: present limits and future searches

4 Conclusion

Outline

Active neutrino masses without new fields

Dimension-5 operator

 $\Delta L = 2$

$$\mathscr{L}^{(5)} = rac{eta_L}{4\Lambda} F_{lphaeta} ar{L}_lpha ar{H} H^\dagger L^c_eta + ext{h.c.}$$

 L_{α} are SM leptonic doublets, $\alpha = 1, 2, 3$, $\tilde{H}_a = \varepsilon_{ab}H_b^*$, a, b = 1, 2; in a unitary gauge $H^T = (0, (v+h)/\sqrt{2})$ and

$$\mathscr{L}_{vv}^{(5)} = \frac{\beta_L v^2}{4\Lambda} \frac{F_{\alpha\beta}}{2} \bar{v}_{\alpha} v_{\beta}^c + \text{h.c.}$$

hence

$$\Lambda \sim 3 imes 10^{14} \, ext{GeV} imes eta_L imes \left(rac{3 imes 10^{-3} \, ext{eV}^2}{\Delta m_{ ext{atm}}^2}
ight)^{1/2}$$

The model has to be UV-completed at the neutrino scale $\Lambda_{\nu} < \Lambda$

What is beyond the neutrino scale Λ_v ?

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

2 Bonus: What else they can be responsible for?

3 Neutrino role in cosmology: present limits and future searches

4 Conclusion

Scheme: seesaw type I

ä

Sterile neutrino lagrangian

Most general renormalizable with 2(3...) right-handed neutrinos N_l

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

Parameters to be determined from experiments

9(7): active neutrino sector		
$2 \Delta m_{ii}^2$:	oscillation	
	experiments	
$3 \theta_{ij}$: oscillatio	n experiments	
1 CP-phase:	oscillation	
	experiments	
2(1) Majorana pha	ases: 0 <i>vee</i> ,	
	Ονμμ	
1(0) m_v : ³ H –	$arrow^3$ He + $e + \bar{v}_e$,	4
(cosmology,	

: N = 2 sterile neutrinos (works if $m_v = 0$!

Majorana masses M_{N_l}
New Yukawa couplings $f_{\alpha l}$
which form2: Dirac masses $M^D = f \langle H \rangle$
3+1: mixing angles
2+1: CP-violating phases

4 new parameters in total help with leptogenesis

8: N = 3 sterile neutrinos:

Majorana masses M_N

: New Yukawa couplings $f_{\alpha I}$ which form

3: Dirac masses $M^D = f \langle H \rangle$

B: mixing angles

3+3: CP-violating phases

9 new parameters in total both BAU and DM are possible

Sterile neutrino lagrangian

Most general renormalizable with 2(3...) right-handed neutrinos N_l

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

Parameters to be determined from experiments

9(7): active neutrino sector	11: $N = 2$ sterile neutrinos (works if $m_v = 0$!!!)	18: $N = 3$ sterile neutrinos:
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2: Majorana masses M_{N_l} 9: New Yukawa couplings $f_{\alpha l}$ which form 2: Dirac masses $M^D = f\langle H \rangle$ 3+1: mixing angles 2+1: CP-violating phases	 3: Majorana masses M 15: New Yukawa couplings which for 3: Dirac masses M^D = f(X 3+3: mixing angl 3+3: CP-violating phas
1(0) m_v : ³ H \rightarrow ³ He+e+ \bar{v}_e , cosmology,	4 new parameters in total help with leptogenesis	9 new parameters in total both BAU and DM are possibl

(▲ 문) - 문)님

Sterile neutrino lagrangian

Þ Most general renormalizable with 2(3...) right-handed neutrinos N_l

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

Parameters to be determined from experiments

9(7): active neutrino sector	11: $N = 2$ sterile neutrinos (works if $m_v = 0$!!!)	18: <i>N</i> = 3 sterile neutrinos:
$\begin{array}{ccc} 2 \ \Delta m_{ij}^2: & \text{oscillation} \\ & \text{experiments} \\ 3 \ \theta_{ij}: & \text{oscillation experiments} \\ 1 \ \text{CP-phase:} & \text{oscillation} \\ & \text{experiments} \end{array}$	2: Majorana masses M_{N_l} 9: New Yukawa couplings $f_{\alpha l}$ which form 2: Dirac masses $M^D = f\langle H \rangle$ 3+1: mixing angles	3: Majorana masses M_{N_I} 15: New Yukawa couplings $f_{\alpha I}$ which form 3: Dirac masses $M^D = f\langle H \rangle$ 3+3: mixing angles
2(1) Majorana phases: $0vee$, $0v\mu\mu$	2+1: CP-violating phases	3+3: CP-violating phases
1(0) m_v : ³ H \rightarrow ³ He+e+ \bar{v}_e , cosmology,	4 new parameters in total help with leptogenesis	9 new parameters in total both BAU and DM are possible

Scheme: seesaw type I

Seesaw mechanism: $M_N \gg 1 \text{ eV}$

With $m_{active} \lesssim 1 \text{ eV}$ we work in the seesaw (type I) regime:

$$\mathscr{L}_{N} = \overline{N}_{l} i \partial N_{l} - f_{\alpha l} \overline{L}_{\alpha} \widetilde{H} N_{l} - \frac{M_{N_{l}}}{2} \overline{N}_{l}^{c} N_{l} + \text{h.c.}$$

When Higgs gains $\langle H \rangle = v / \sqrt{2}$ we get in neutrino sector

$$\mathscr{V}_{N} = v \frac{f_{\alpha l}}{\sqrt{2}} \overline{v}_{\alpha} N_{l} + \frac{M_{N_{l}}}{2} \overline{N}_{l}^{c} N_{l} + \text{h.c.} = \left(\overline{v}_{1}, \dots, \overline{N}_{1}^{c} \dots\right) \begin{pmatrix} 0 & v \frac{\hat{t}}{\sqrt{2}} \\ v \frac{\hat{t}^{\dagger}}{\sqrt{2}} & \hat{M}_{N} \end{pmatrix} (v_{1}, \dots, N_{1} \dots)^{\mathsf{T}}$$

Then for $M_N \gg \hat{M}^D = v \frac{\hat{t}}{\sqrt{2}}$ we find the eigenvalues:

$$\simeq \hat{M}_N$$
 and $\hat{M}^v = -(\hat{M}^D)^\dagger \frac{1}{\hat{M}_N} \hat{M}^D \propto f^2 \frac{v^2}{M_N} \ll M_N$

Mixings: flavor state $v_{\alpha} = U_{\alpha i}v_i + \theta_{\alpha I}N_I$

active-active mixing: $U^{\dagger} \hat{M}^{v} U = diag(m_1, m_2, m_3)$

$$heta_{lpha I} = rac{(M^D)^{\dagger}_{lpha I}}{M_I} \propto \hat{t}^{\dagger} rac{v}{M_N} \ll 1$$

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

▲ 글 ▶ _글|님

Seesaw mechanism: sterile neutrino scale

For $M_N \gg \hat{M}^D = v \frac{\hat{t}}{\sqrt{2}}$ we found the eigenvalues:

$$\simeq \hat{M}_N$$
 and $\hat{M}^v = -(\hat{M}^D)^{\dagger} \frac{1}{\hat{M}_N} \hat{M}^D \propto f^2 \frac{v^2}{M_N} \ll M_N$

SEESAW says nothing about the sterile neutrino scale M_I !

Unitarity:
$$f \lesssim 1 \implies M_N \lesssim 3 \times 10^{14} \text{ GeV} \times \left(\frac{3 \cdot 10^{-3} \text{ eV}^2}{\Delta m_{atm}^2}\right)^{1/2} \longrightarrow \Lambda \text{ in } (LH)^2 / \Lambda$$

At given M_N without fine tuning the scale of Yukawas \hat{f} and strength of active-sterile mixing $\theta_{\alpha I} = \frac{(M^D)_{\alpha I}^{\dagger}}{M_I} \propto \hat{f}_{M_N}^{V} \ll 1$ are fixed 1203.3825

▲ 글 ▶ _글|님

2 Bonus: What else they can be responsible for?

3 Neutrino role in cosmology: present limits and future searches

4 Conclusion

Bonus: depends on the sterile neutrino mass range

NB: With fine tuning in \hat{M}_N and $\hat{f}^{\dagger}\hat{f}$ we can get a hierarchy in sterile neutrino masses, and 1 keV and even 1 eV sterile neutrinos

 $M_N \sim 1 \, {\rm eV}{-}5 \, {\rm GeV}$

- keV-scale dark matter
- BAU via leptogenesis
- Neutrino anomalies (1 eV sterile neutrinos?)

direct searches!

There are different regions:

 $M_N\sim 50\,{
m GeV}$ -5 TeV

BAU via leptogenesis

 $f \sim 10^{-6} \simeq Y_e$

but with fine tuning or new global or gauge symmetries (e.g. $SU(2)_L \times SU(2)_R$)

direct searches at LHC

 $M_N \sim 10^{12} \cdot 10^{14} \, {
m GeV}$

BAU via leptogenesis

Froggatt-Nielsen mechanism

Extended seesaw

- $f \simeq 0.01 1$
- Untestable...?

		- ALC 1	
	- N		_
		_	

Sterile neutrinos in cosmology

14.05.2013, Xlth Readings 12 / 33

Superheavy sterile neutrinos: $M_N \simeq 10^{12} \cdot 10^{14} \, \text{GeV}$

- Motivation: close to GUT scales, e.g. SO(10)
- Bad fact: huge finite quantum corrections $\delta m_H^2 \propto f^2 M_N^2 \gg m_H^2 (\Rightarrow M_N < 10^7 \text{ GeV})$ SUSY solution? (New fileds...new problems: e.g. gravitino overproduction with high T_{reh} for leptogenesis)
- Good fact: If *T* > *M_N* decays of thermal sterile neutrino yield the lepton asymmetry in the early Universe: M.Fukugita, T.Yanagita (1986)

$$\delta \equiv \frac{\Gamma(N_1 \to lh) - \Gamma(N_1 \to \overline{l}h)}{\Gamma_{tot}} = \frac{1}{8\pi} \sum_{l=2,3} f\left(\frac{M_{N_1}}{M_{N_l}}\right) \cdot \frac{\operatorname{Im}\left(\sum_{\alpha} f_{1\alpha} f_{l\alpha}^*\right)^2}{\sum_{\gamma} |f_{1\gamma}|^2} \,.$$

Needs $M_{N_1} \gtrsim 10^9 \,{
m GeV}$ or $M_{N_1} \gtrsim 10^{12} \,{
m GeV}$ without fine tuning in \hat{f}

• Exciting fact: to avoid washing out of Δ_L in $hI_{\alpha} \leftrightarrow h\overline{I}_{\beta}$ we need ...

 $M^{v} < 0.1 - 0.3 \,\mathrm{eV}$!!!

 $\bullet\,$ Cooling down: No way to test further. Can get $\Delta_B \sim 10^{-10}$ even with

 $\theta_{13} = \delta_{CP} = 0!$

13/33

NB: can work for nonthermal case as well

production by inflaton decay G.Lazaridies, Q.Shafi (1991)

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

e.g. in R²-inflation D.G., A.Panin (2010)

14.05.2013. Xlth Readings

Lepton asymmetry from sterile neutrino decays

Most general renormalizable lagrangian with Majorana neutrinos N_l , $l, \alpha = 1, 2, 3$.

$$\mathscr{L}_{SM} + \overline{N}_I i \partial N_I - y_{I\alpha} \overline{L}_{\alpha} \widetilde{H} N_I - \frac{M_I}{2} \overline{N}_I^c N_I + \text{h.c.}$$

where $H_i = \varepsilon_{ij}H_j^*$, i, j = 1, 2; complex Yukawas, Majorana mass: $\Delta L \neq 0$ lepton number violating processes ($N = N^c$!):

$$egin{aligned} N_I &
ightarrow h l_lpha \;, \quad N_I &
ightarrow h ar{l}_lpha \;, \ h l_lpha &
ightarrow h ar{l}_eta \;, \end{aligned}$$

At tree level one obtains ZERO

$$\Gamma_{N_l}^{tree} = \sum_{eta} rac{\left| \mathcal{Y}_{leta}
ight|^2}{8\pi} M_l \ .$$

 $\Gamma^{tree}(N_l o h l_{lpha}) = \Gamma^{tree}(N_l o h ar{l}_{lpha}) \ .$

Lepton asymmetry δ at 1-loop level $y_{I\alpha} \overline{L}_{\alpha} N_I \widetilde{H}$

$$\Gamma(N_1 \to lh) = \frac{M_1}{8\pi} \cdot \sum_{\alpha} \left| y_{1\alpha} + \frac{1}{8\pi} \sum_{\beta,l} f\left(\frac{M_1}{M_l}\right) \cdot y_{1\beta}^* y_{l\alpha} y_{l\beta} \right|^2, \quad m_v \ll M_l$$

$$\delta \equiv \frac{\Gamma(N_1 \to lh) - \Gamma(N_1 \to \overline{l}h)}{\Gamma_{tot}} = \frac{1}{8\pi} \sum_{I=2,3} f\left(\frac{M_1}{M_I}\right) \cdot \frac{\operatorname{Im}\left(\sum_{\alpha} y_{1\alpha} y_{l\alpha}^*\right)^2}{\sum_{\gamma} |y_{1\gamma}|^2} .$$
$$M_{2,3} \gg M_1 , f\left(\frac{M_1}{M_I}\right) = -\frac{3}{2} \frac{M_1}{M_I} , \ \delta = -\frac{3M_1}{16\pi} \frac{1}{\sum_{\gamma} |y_{1\gamma}|^2} \sum_{\alpha\beta I} \operatorname{Im}\left[y_{1\alpha} y_{1\beta} \left(y_{l\alpha}^* \frac{1}{M_I} y_{l\beta}^*\right)\right] .$$

Dmitry Gorbunov (INR)

For the seesaw-neutrino

$$y_{I\alpha} \overline{L}_{\alpha} N_I \widetilde{H}$$

$$m_{\alpha\beta} = -\frac{v^2}{2} \sum_{I} y_{I\alpha} \frac{1}{M_I} y_{I\beta} , \quad \delta = -\frac{3M_1}{16\pi} \frac{1}{\sum_{\gamma} |y_{1\gamma}|^2} \sum_{\alpha\beta I} \operatorname{Im}\left[y_{1\alpha} y_{1\beta} \left(y_{I\alpha}^* \frac{1}{M_I} y_{I\beta}^* \right) \right] .$$

get an estimate for the microscopic asymmetry

$$\delta \lesssim rac{3\,M_{1}}{8\,\pi\,v^{2}}m_{atm} \simeq 10^{-8} imes rac{M_{1}}{10^{8}\,{
m GeV}} \; .$$

() >) ≥ | ≥

Production of macroscopic asymmetry

Let sterile neutrinos be in equilibrium at $T > M_1$

 $\Gamma_{N_1}^{tot} = \frac{M_1}{8\pi} \sum_{\alpha} |y_{1\alpha}|^2,$

 $\Gamma_{N_1}^{tot} \lesssim H(T \sim M_1) \simeq M_1^2/M_{Pl}^*$

- Need strong hierarchy in $y_{I\alpha}$
- At $T \gtrsim H(T = M_1)$ other interactions are responsible for sterile neutrino production in plasma
- For the final lepton asymmetry (at *T* ≪ *M*₁)

$$\Delta_L \sim \boldsymbol{\delta} \cdot \frac{n_{N_1}(M_1)}{s(M_1)} \sim \frac{\boldsymbol{\delta}}{g_*(M_1)} \sim 10^{-2} \times \boldsymbol{\delta}$$

• So, $M_1 \gtrsim 10^9 \text{ GeV}$

$$m_{\alpha\beta} = -\frac{v^2}{2}\sum_l y_{l\alpha} \frac{1}{M_l} y_{l\beta} ,$$

$$\Gamma_{N_1}^{tot} \gtrsim H(T \sim M_1) = M_1^2/M_{Pl}^*$$

• Without any hierarchy [inverse decay]

$$K \equiv \frac{\Gamma_N^{tot}}{H(T \sim M_1)} = \frac{m_{atm}M_{Pl}^*}{4\pi v^2} \sim 10^2$$

 For the final lepton asymmetry (at *T* ≪ *M*₁)

$$\Delta_L \sim \frac{\delta}{g_*(M_1) \cdot K \cdot \log K} \sim 10^{-5} \times \delta$$

• So, $M_1 \gtrsim 10^{12} \text{ GeV}$

▲ 글 ▶ 그리님

N

Saving macroscopic asymmetry from "washing out"

e.g., due to scatterings $hI_{lpha} o har{I}_{eta}$ with exchange of virtual neutrino

at the interesting stage $T \ll M_1$ we estimate cross section for seesaw neutrino

$$\sigma_{lh}^{tot} \propto \sum_{\alpha\beta l} \left| \frac{y_{l\alpha}y_{l\beta}}{M_{\gamma}} \right|^2 \propto \frac{\text{Tr}\left(mm^{\dagger}\right)}{v^4} \propto \frac{1}{v^4} \sum m_v^2$$

The asymmetry is safe if:

 $\Gamma_{lh} = \text{const} \cdot \sigma_{lh}^{tot} \cdot T^3 \lesssim H(T) \text{ for } T = M_1, M_1 / \log K \text{ one has } m_v < 0.1 - 0.3 \text{ eV}$ coincidence?

Certainly, everything can be obtained by numerical solution of the Boltzmann equation for the plasma components in the expanding Universe

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

▲ 글 ▶ _글|님

Superheavy sterile neutrinos: $M_N \simeq 10^{12} \cdot 10^{14} \, \text{GeV}$

- Motivation: close to GUT scales, e.g. SO(10)
- Bad fact: huge finite quantum corrections $\delta m_H^2 \propto f^2 M_N^2 \gg m_H^2 (\Rightarrow M_N < 10^7 \text{ GeV})$ SUSY solution? (New fileds...new problems: e.g. gravitino overproduction with high T_{reh} for leptogenesis)
- Good fact: If *T* > *M_N* decays of thermal sterile neutrino yield the lepton asymmetry in the early Universe: M.Fukugita, T.Yanagita (1986)

$$\delta \equiv \frac{\Gamma(N_1 \to lh) - \Gamma(N_1 \to \overline{l}h)}{\Gamma_{tot}} = \frac{1}{8\pi} \sum_{l=2,3} f\left(\frac{M_{N_1}}{M_{N_l}}\right) \cdot \frac{\operatorname{Im}\left(\sum_{\alpha} f_{1\alpha} f_{l\alpha}^*\right)^2}{\sum_{\gamma} |f_{1\gamma}|^2} \,.$$

Needs $M_{N_1} \gtrsim 10^9 \, {
m GeV}$ or $M_{N_1} \gtrsim 10^{12} \, {
m GeV}$ without fine tuning in \hat{f}

• Exciting fact: to avoid washing out of Δ_L in $hI_{\alpha} \leftrightarrow h\overline{I}_{\beta}$ we need ...

 $M^{v} < 0.1 - 0.3 \,\mathrm{eV}$!!!

• Cooling down: No way to test further. Can get $\Delta_B \sim 10^{-10}$ even with

 $\theta_{13} = \delta_{CP} = 0!$

19/33

NB: can work for nonthermal case as well

production by inflaton decay G.Lazaridies, Q.Shafi (1991)

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

e.g. in R²-inflation D.G., A.Panin (2010)

14.05.2013. Xlth Readings

Very heavy sterile neutrinos: $M_N \simeq 50 \text{ GeV-5 TeV}$

- Good fact: small finite quantum corrections $\delta m_H^2 \propto f^2 M_N^2 \ll m_H^2$ No hierarchy between Λ_v and Λ_{EW}
- Bad fact: Without extra symmetries, fine tuning or new interactions No generation of lepton asymmetry and hence No BAU
- Way out: fine tunning can help: e.g. resonant enhancement of CP-violation in out-of-equilibrium sterile neutrino decays:
 leptogenesis for M_N ≥ 1 TeV if ΔM_N ~ Γ_N
- Further cooling down:

can be directly produced but at a tiny amount only: $f \sim 10^{-6}!$

 Conclusion: Seesaw type I is generally untestable in direct searches: Yuakawa couplings are too small, while sterile neutrinos are quite heavy.

To make interesting either NEW fields or fine tuning (or symmetries, e.g. $SU(2)_L \times SU(2)_R$) are required!!!

∢ 글 ▶ _글|님

Heavy sterile neutrinos: $M_N \simeq 1 \text{ keV-5 GeV}$ vMSM

• Good fact: small finite quantum corrections $\delta m_H^2 \propto f^2 M_N^2 \ll m_H^2$ True low-energy scale modification of the SM

• Good fact: At T > 100 GeV active-sterile neutrino oscillations produce lepton asymmetry in the early Universe, if $\Delta M_N \ll M_N$ E.Akhmedov, V.Rubakov, A.Smirnov (1998)

- To make phenomenologically complete: Dark Matter?
 - NOT a seesaw neutrino! $m_v \ll m_{atm,sol}$

 $\tau_{N \to 3\nu} \sim 1/\left(G_F^2 M_N^5 \theta_{\alpha N}^2\right) \sim 1/\left(G_F^2 M_N^4 m_\nu\right) \sim 10^{11} \, \text{yr} \, (10 \, \text{keV}/M_N)^4$

either decay or equilibrate and then contribute to hot dark matter

 production in primordial plasma due to mixing with active neutrinos is ruled out from searches at X-ray telescopes

► Possible for 1-50 keV (WDM-CDM range) either with further unbelievable fine-tuning in M_{N_I} ($\Delta M_N \sim 10^{-7}$ eV) to get $L \gg B$ and use the resonant production or with ANOTHER source of production, e.g. inflaton decays... then untestable

M.Shaposhnikov, I.Tkachev (2006), F.Bezrukov, D.G. (2009)

T.Asaka, S.Blanchet, M.Shaposhnikov (2005)

general statement

Light sterile neutrinos: $M_N \lesssim 1 \text{ eV}$

٩	For $M_N \sim m_v$ generally the active-sterile mixing is not smalls it dangerous? acceptable? preferable?	I, $ heta_{se} \sim$ 1
٩	We certainly change cosmology (BBN, CMB, structure formation, etc.) It can be found on top of quintessence (but cancel by $f(R)$)	Dark radiation, Hot Dark matter A.Starobinsky (2012)
٩	And they contribute to the active neutrino oscillations (Neutrino anomalies at: LSND, gallium experiments, MiniBooNE, reactor experiment	nts)
٩	Today It looks preferable! Thou	gh why not PQ-axion or dilaton?
٩	Impact on astrophysics (say, SN explosion, if needed)	e.g., G.Raffelt (2010)
٩	Either special symmetry or not a seesaw: 1 eV by hand	

possible motivation: Mirror World?

→ 문 ▶ 문/님

Outline

- Scheme: seesaw type I
- 2 Bonus: What else they can be responsible for?
- 3 Neutrino role in cosmology: present limits and future searches

4 Conclusion

∢ 글 ▶ _글|님

Probing leptogenesis... on example of vMSM

D.G, M.Shaposhnikov (2007) lower bound at $\times 10^{-4}$ Br $(D \rightarrow IN) \lesssim 2 \cdot 10^{-8}$ Br $(D_s \rightarrow IN) \lesssim 3 \cdot 10^{-7}$ Br $(D \rightarrow KIN) \lesssim 2 \cdot 10^{-7}$ Br $(D \rightarrow K'IN) \lesssim 5 \cdot 10^{-8}$ Br $(D \rightarrow K^*IN) \lesssim 7 \cdot 10^{-8}$ Br $(B \rightarrow DIN) \lesssim 7 \cdot 10^{-8}$ Br $(B \rightarrow D^*IN) \lesssim 4 \cdot 10^{-7}$ Br $(B_s \rightarrow D_s^*IN) \lesssim 3 \cdot 10^{-7}$

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

14.05.2013, Xlth Readings 24 / 33

Probing leptogenesis... on example of vMSM

D.G, M.Shaposhnikov (2007) **lower bound at** $\times 10^{-4}$ Br $(D \rightarrow IN) \lesssim 2 \cdot 10^{-8}$ Br $(D_s \rightarrow IN) \lesssim 3 \cdot 10^{-7}$ Br $(D \rightarrow KIN) \lesssim 2 \cdot 10^{-7}$ Br $(D \rightarrow K'IN) \lesssim 5 \cdot 10^{-8}$ Br $(D \rightarrow K^*IN) \lesssim 7 \cdot 10^{-8}$ Br $(B \rightarrow DIN) \lesssim 7 \cdot 10^{-8}$ Br $(B \rightarrow D^*IN) \lesssim 4 \cdot 10^{-7}$ Br $(B_s \rightarrow D_s^*IN) \lesssim 3 \cdot 10^{-7}$

14.05.2013, XIth Readings 24 / 33

$$Y_{p} = 0.2581 \pm 0.025$$
,
 $D/H|_{p} = (2.87 \pm 0.21) \times 10^{-5}$

1103.1261

similar results from other recent studies including structure formation

1001.4440, 1001.5218, 1202.2889

 $N_{v} < 4.2$ @ 95%CL

 N_v < 3.6 from D/H,

1205.3785

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

14.05.2013, XIth Readings

25 / 33

Light sterile neutrinos at recombination and later

With larger N_v and fixed Ω_M we get later RD/MD transition, hence:

- DM perturbations start to grow $\delta \rho_{DM} / \rho_{DM} \propto a$ later
- gravity potential evolution changes later
- oscillations in baryon-photon plasma change

CMB is sensitive to $(T_{eq} - T_{rec})$!

LSS is sensitive to T_{eq} if initial $\delta \rho_{DM} / \rho_{DM}$ is fixed

$$\rho_{r} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{eff}\right] \rho_{\gamma}$$

Sterile neutrinos become nonrelativistic at $T \sim M_{v_s}/3 \sim 0.1 - 0.3 \text{ eV} \dots$

- neutrinos start to contribute to $\rho_M \propto 1/a^3$
- neutrino perturbations of large lengths contribute to DM perturbations δρ_M
- neutrino perturbations of small scales disappear because of free streaming (Landau damping)
- oscillations in baryon-photon plasma: change ratio of acoustic and damping angular scales, thus smoothing the CMB damping tail

LSS is sensitive to both N_v and M_{v_s} ... Not to forget about active neutrino masses!

$$\Omega_v = \frac{M_v}{93 \, h^2 \, \mathrm{eV}}$$

1 eV neutrino contributes to dark matter but only a tiny amount!

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

14.05.2013, XIth Readings 26 / 33

▲ 글 ▶ 그리님

LSS: SZ-clusters, Weak lensing of CMB

- ΔN_v amplifies shear power: cancel with quintessence contribution and flattening of spectrum, $n_s \rightarrow 1$
- M_N reduces power
- $$\begin{split} N_{eff} &= 3 \rightarrow M_V < 0.46\,\text{eV} \\ M_V &= 0 \rightarrow N_{eff} = 3.8\pm0.4 \\ M_V < 0.62\,\text{eV} \rightarrow N_{eff} = 3.9\pm0.4 \end{split}$$

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

14.05.2013, XIth Readings

27 / 33

However lensing is far from canonical

1304.6217

Nevertheless, taking Planck $N_{eff} = 3.30 \pm 0.27$

Future: EUCLID-like survey of galaxies

1304.2321

30/33

Outline

2 Bonus: What else they can be responsible for?

3 Neutrino role in cosmology: present limits and future searches

4 Conclusion

∢ 글 ▶ _글|님

Summary on sterile neutrinos

- Most economic explanation of neutrino oscillations within renormalizable approach:
 - N = 2 Majorana neutrinos
- Capable of explaining baryon asymmetry of the Universe easily even with $\theta_{13} = \delta_{CP} = 0$
- One more neutrino can serve as (naturally Warm) dark matter this specia does not explain oscillations!
- Light sterile neutrino may be welcome in cosmology or to explain anomalies (LSND, ...)

but can not serve everywhere!

- If kinematically allowed: direct searches are feasible
- In the nearest future: CMB (Planck, ⁴He), LSS, reactor/gallium experiments;
 N in atmospheric v (IceCube, talk by C.Spiering) LSND/MiniBooNE: SPS beam with Li-Ar detectors

▲ 글 ▶ 그리님

Conclusion

N

Sterile neutrinos: the only unknown part of particle physics?!

- SM does not describe
 - Neutrino oscillations
 - Dark matter: sterile neutrino as DM
 - Baryon asymmetry: leptogenesis via sterile neutrino oscillations
 - vMSM explains these

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

- Dark energy (Ω_Λ)
- Inflation: R², RH[†]H, ...
- Strong CP: changing topology,
- Gauge hierarchy: No scales!
- Quantum gravity
- explained by Plank-scale physics ?

∢ 글 ▶ _글|님

▲ 문 ▶ 문/님

Backup slides

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

14.05.2013, XIth Readings 35 / 33

▲ 문 ▶ 문 문 문

ЯN ИК

Combined analysis for sterile and active neutrinos

LSND+MiniBooNE

talk by A.Starobinsky

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

14.05.2013, XIth Readings 36 / 33

Light sterile neutrinos: $M_N \lesssim 1 \text{ eV}$

Essentially no bounds from kink searches, and even from $0v\beta\beta$

0901.3589: $0v\beta\beta$ -bound is stronger by 10, 1205.3867

글 🛌 글 🔁

船

LSND & MiniBooNE anomalies in $ar{v}_{\mu} ightarrow ar{v}_{e}$

vMSM parameter space with resonant DM

L.Canetti, M.Drewes, M.Shaposhnikov 1204.3902

Dmitry Gorbunov (INR)

Sterile neutrinos in cosmology

14.05.2013, Xlth Readings 39 / 33

() >) ≥ | ≥

Lightest sterile neutrino N_1 as Dark Matter

Non-resonant production (active-sterile mixing) is ruled out

 $\begin{array}{l} \mbox{Resonant production (lepton asymmetry) requires} \\ \Delta M_{2,3} \lesssim 10^{-16} \mbox{ GeV} \\ \mbox{arXiv:0804.4542, 0901.0011, 1006.4008} \end{array}$

Dark Matter production from inflaton decays in plasma at $T \sim m_{\chi}$

Not seesaw neutrino!

M.Shaposhnikov, I.Tkachev (2006)

 $M_{N_l} \bar{N}_l^c N_l \leftrightarrow f_l X \bar{N}_l N_l$ Can be "naturally" Warm (250 MeV $< m_{\chi} < 1.8 \, \text{GeV}$)

F.Bezrukov, D.G. (2009)

∢ 글 ▶ _글|님

$$M_1 \lesssim 15 imes \left(rac{m_\chi}{300 \ {
m MeV}}
ight) {
m keV}$$

Dmitry Gorbunov (INR)