

Обнаружение осцилляций мюонных нейтрино в электронные нейтрино эксперименте Т2К

Ю.Г. Куденко ИЯИ РАН

XI Марковские чтения ИЯИ РАН, 14 мая 2013 г.

Standard Model: neutrinos are *massless* particles

V13,

U

- Zero value of θ_{13} would be a hint on a new symmetry (tri-bi-maximal)
- Zero value of θ_{13} would eliminate a possibility for the CKM mechanism in neutrino mixing
- A non-zero value of θ_{13} opens a door for searching of leptonic CP violation
- A non-zero (and not small) value of θ_{13} gives good chances for measurement of mass hierarchy and CP violation in neutrino oscillations using present neutrino beams and detectors

The size of $\theta_{13} \rightarrow$ Future Program of neutrino physics

Sensitivity to oscillation parameters of accelerator LBL experiments

Long-Baseline Neutrino Oscillation Experiment

JAPAN

SuperKamiokande

Toyama

Kamioka Mine

12 countries59 institutes

• $\simeq 500$ collaborators

Canada, France, Germany, Italy, Japan, Korea, Poland, Russia, Spain, Switzerland, UK, USA.

JPARG

Токио

Tokai

Tokyo/Narita Airport

T2K layout

T2K off-axis ν beam

Off-axis near detector

Measurement of unoscillated v beam, Composition, Normalisation, Cross section measurements Completed in 2009

v beam

(ND280)

INR contribution: SMRD detector

T2K events at SK

FC events for 4.5x10²⁰ POT

KS p-value = 65.7%

T2K neutrinos detected by SK Timing structure (8 bunches) of proton beam

 ΔT_0 (nsec)

Particle ID

 v_{μ}/v_{e} misidentification probability ~ 1%

Selection of v_e events

T2K statistics for 3.1x10²⁰ POT

- Event time compatible with expected arrival time
- Fully contained in the fiducial volume (>2m from the wall)

v_e events

Fully-contained events with:

- 1 electron-like ring
- No decay electron
- No pi0-like invariant mass from 2nd ring
- 100 MeV < Energy < 1250 MeV

v_e events

Detected 11 evens Expected 3.3 ± 0.4 (syst) events for $\theta_{13}=0$, NH and $\delta = 0$

T2K Collaboration, arXiv:1304.0841 15

3.1 σ observation of $v_{u} \rightarrow v_{e}$

Super-Kamiokande IV

T2X Beam Num 32 spill 472240
Num 66719 sub 196 rvent 44452935
10-04-07:00:84:17
T1X beam dt = 3003.5 mg
Inner: seve hits, save ge
cuter: 4 hits, 3 ge
Trigger: component
s_Mall: esc.s cm
mu-like, p = 1070.7 mgw/c

126

1000

Times (ns)

1500

2000

800

Charge(pe)

3.1x10²⁰ POT

Measurement: 58 events observed Monte Carlo: 196.2 events no oscillations Monte Carlo: 57.8 events with oscillations

Maximum Likelihood fit

Best fit results: $\sin^2 2\theta_{23} = 1.00$ $\Delta m_{32}^2 = 2.45 \times 10^{-3} \text{eV}^2$

"Atmos r	heri	c ″	naramete	ers
Aunosp			paramete	

T2K	obtained			
best	sensitivity			
to mixing angle θ_{23}				

90% CL

 $2.14\times 10^{-3} \mathrm{eV}^2 < |\Delta m^2_{32}| < 2.76\times 10^{-3} \mathrm{eV}^2$

 $\sin^2 2\theta_{23} > 0.957$

Method	$\Delta m^2_{\ 32}$ (x 10 ⁻³ eV ² /c ⁴)	sin2(20 ₂₃)
Likelihood Ratio	2.443	1.0
Max. Likelihood	2.45	1.0

Neutrino Mixing

$$c_{ij} = cos(\theta_{ij}), \, s_{ij} = sin(\theta_{ij})$$

$$U_{\alpha i} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric: $38^{\circ} < \theta_{23} < 52^{\circ}$ Super-K, MINOS
CP sector: $\theta_{13} = (9 \pm 0.6)^{\circ}$ Daya Bay, Reno, DChooz,
T2K, MINOS
Solar: $\theta_{12} = (34 \pm 1)^{\circ}$ SNO, KamLAND
 $\theta_{23} = \pi/4$, or $> \pi/4$, or $< \pi/4$??
T2K \rightarrow best precision for θ_{23}

 $\theta_{13} \neq \mathbf{0}$

Strength of CP violation in neutrino oscillations

Jarkslog invariant J_{CP}

$$J_{CP} = Im(U_{e1}U_{\mu 2}U_{e2}^{*}U_{\mu 1}^{*}) = Im(U_{e2}U_{\mu 3}U_{e3}^{*}U_{\mu 2}^{*}) =$$
$$= cos\theta_{12}sin\theta_{12}cos^{2}\theta_{13}sin\theta_{13}cos\theta_{23}sin\theta_{23}si$$

all mixing angles $\neq 0 \rightarrow J_{CP} \neq 0$ if $\delta \neq 0$

Quark sector $J_{CP} \approx 3 \times 10^{-5}$ neutrinosquarksLepton sector $J_{CP} \sim 0.02 \times \sin \delta$ $V_{MNS} \sim \begin{pmatrix} 0.8 & 0.5 & 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$ $V_{CKM} \sim \begin{pmatrix} 1 & 0.2 & 0.001 \\ 0.2 & 1 & 0.01 \\ 0.001 & 0.01 & 1 \end{pmatrix}$

Real chance to test CP violation in neutrino oscillations

Large $\theta_{13} \rightarrow T2K$ next step? I

Next goal:

0 i High statistics with muon v's, anti-v run \rightarrow Initial search for CP violation

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31}$$

$$= 4C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23} \cos \delta - S_{12}S_{13}S_{23}) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21}$$

$$= 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23} \sin \delta \sin \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21}$$

$$= 44S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13} \cos \delta) \cdot \sin^{2}\Delta_{21}$$

$$= 8C_{13}^{2}S_{12}^{2}S_{23}^{2} \cdot \frac{a}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31}$$

$$= 8C_{13}^{2}S_{23}^{2}\frac{a}{\Delta m_{13}^{2}}(1 - 2S_{13}^{2}) \sin^{2}\Delta_{31}$$
Matter effect
$$P(\nu_{\mu} \rightarrow \nu_{e})$$

$$= 0^{004}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04}$$

$$= 0^{04$$

T2K and Nova (I)

G.Feldman, LBNE Workshop, 2012

For $sin^22\theta_{13}=0.1$, approximately (at 90%C.L.):

- MH: ≈50% coverage
- CPV: ≈30-40% coverage

T2K and Nova (II)

Conclusion

- T2K:
 - Observation of $v_{\mu} \rightarrow v_{e}$ appearance at 3.1 σ significance
 - Precision measurement of "atmospheric" parameters
 - Continue data taking. Expected to accumulate 7.5×10²⁰ POT by August 2013 \rightarrow > 5 σ significance for $v_{\mu} \rightarrow v_{e}$
- Large θ_{13} opens door for searching of CP-violation in lepton sector
- Time to start MH and δ measurements

спасибо за внимание!