Партонные распределения в ядрах

С.А. Кулагин

Институт ядерных исследований РАН, Москва

Доклад на УС ИЯИ РАН 29 января 2015 г.

PHYSICAL REVIEW C nuclear physics Highlights Recent Accepted Authors Referees Search About 🖩

Editors' Suggestion

Nuclear parton distributions and the Drell-Yan process Phys. Rev. C **90**, 045204 - Published 16 October 2014

S. A. Kulagin and R. Petti

In this work we study nuclear PDFs and discuss how nuclear corrections depend on C-parity $(q + \bar{q} \text{ vs. } q - \bar{q})$ and isospin (u + d vs. u - d). We also calculate the DY process cross section and compare in detail our results with the data of E772 and E866 experiments at Fermilab. This work is based on previous studies *S.K. & R. Petti, Nucl. Phys. A765 (2006) 126; Phys Rev D76 (2007) 094023;*

Phys Rev C82 (2010) 054614

С.Кулагин (ИЯИ РАН)

Historic EMC measurement of nuclear effects in DIS

Exciting observation, although the small-x part turned out to be time dependent (the effect changed sign with time).

Available DIS data span the region $10^{-4} < x < 1.5$ and $0 < Q^2 < 150 \text{ GeV}^2$. About 800 data points for the cross section ratio (or F_2^A/F_2^B) with $Q^2 > 1 \text{ GeV}^2$. Nuclear targets from ²H to ²⁰⁸Pb.

Features of data: a weak Q^2 dependence and a strong x dependence of **oscillating shape**:

- Suppression (shadowing) at small x (x < 0.05).
- Enhancement (antishadowing) at 0.1 < x < 0.25.
- A well with a minimum at $x \sim 0.6 \div 0.75$ (EMC effect).
- Enhancement at large values of x > 0.75 ÷ 0.8 (Fermi motion region).

Hadronic muon pair production (Drell-Yan process)

FIG. 3. Ratios of the Drell-Yan dimuon yield per nucleon, Y_{cl}/Y_{slp} , for positive x_r. The curves shown for Fe/²H are predictions of various models of the EMC effect. Also shown are the DIS data for Sn/²H from the EMC (Ref. 4).

Drell-Yan production of a lepton pair in hadron collisions:

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}x_B \mathrm{d}x_T} = \frac{4\pi \alpha^2}{9Q^2} K \sum_a e_a^2 \left[q_a^B(x_B) \bar{q}_a^T(x_T) \right. \\ \left. + \bar{q}_a^B(x_B) q_a^T(x_T) \right] \\ \left. x_T x_B = Q^2/s, \right]$$

Selecting small Q^2/s and large x_B we probe the target's sea. In E772 experiment $s = 1600 \text{ GeV}^2$. At $x_B > 0.1$ the process is dominated by $q^B \bar{q}^T$ annihillation \Longrightarrow DY process probes antiquarks in the target.

$$\frac{\sigma_A^{\mathsf{DY}}}{\sigma_B^{\mathsf{DY}}} \approx \frac{\bar{q}_A(x_T)}{\bar{q}_B(x_T)}$$

Why nuclear corrections survive at high energy?

In the lab frame it is useful to think of PDFs as scattering amplitudes. Typical DIS space-time regions in the target rest frame as derived from uncertainty principle:

- DIS proceeds near the light cone: $t^2 z^2 \sim Q^{-2}$ and $r_{\perp} \sim Q^{-1}$.
- Characteristic DIS time and longitudinal distance $t \sim z \sim L = (Mx)^{-1}$ NOT small in hadronic scale (in the target rest frame) \Rightarrow the reason for nuclear effects to survive even at high Q^2 .
- *L* has to be compared with average distance between bound nucleons $r_{\rm NN}$ \Rightarrow two different kinematical regions:
 - $L < r_{\rm NN}$ (or x > 0.2) \Rightarrow Nuclear DIS \approx incoherent sum of contributions from bound nucleons.
 - $L \gg r_{\rm NN}$ (or $x \ll 0.2$) \Rightarrow Coherent effects of interactions with a few nucleons are important.

Understanding the nuclear corrections

In the lab frame it is useful to think of PDFs as scattering amplitudes. Two different mechanisms of DIS:

(I) Quasielastic scattering off bound quark. This process dominates at intermediate and large values of x and the structure functions are determined by the quark wave (spectral) functions.

Nuclear effects are due to averaging with nucleon distributions in a nucleus.

(II) Conversion $\gamma^* \to q\bar{q}$ with subsequent propagation of a $q\bar{q}$ state dominates at small x since the life time of a $q\bar{q}$ state grows as $(Mx)^{-1}$. The structure functions are determined by quark scattering amplitudes.

Nuclear effects are due to propagation of $q\bar{q}$ state in nuclear environment.

Note that (II) will dominate at small values of Bjorken x while (I) will be relevant at large x.

Modelling nuclear corrections

A quantitative model of nuclear corrections: S.K. & R.Petti, Nucl.Phys.A765 (2006) 126

 $q^A = q_{\rm incoh} + \delta_{\rm coh} q + \delta_{\rm MEC} q$

Incoherent scattering contribution: $q_{\text{incoh}} = \int dy dp^2 f_{N/A}(y, p^2) q_N(x/y, Q^2, p^2)/y$

- $f_{N/A}$ is the bound nucleon distribution. The calculations of $f_{N/A}$ were discussed intensively starting from the work of INR group *S.V.Akulinichev*, *G.M.Vagradov*, *SK* (1984).
- $q_N(x,Q^2,p^2) = q_N(x,Q^2)(1 + \delta f \frac{p^2 M^2}{M^2})$ is the parton distribution in a nucleon with four-momentum p.
- δf is a function describing off-shell behavior of PDF
- $\delta_{\cosh q}$ is a correction from coherent multiple scattering effect of propagation of intermediate states. Relevant at small x.
- $\delta_{\mathsf{MEC}}q$ is a meson-exchange current correction

Model ctd.

Shape a quantitative model

- We aim to determine the unknown off-shell function $\delta f(x)$ and effective scattering amplitude a_T of intermediate hadronic component of virtual photon in a fit to data on nuclear DIS.
- In particular we study the ratios $R_2(A/B) = F_2^A/F_2^B$ in DIS region for a variaty of targets. The data are available for $A/^2H$ and $A/^{12}C$ ratios (overall about 560 points for data before 1996).
- Verify the model by comparing the calculations with data not used in analysis (newer measurements).

Results

- The x, Q² and A dependencies of the nuclear ratios are reproduced for all studied nuclei (⁴He to ²⁰⁸Pb) in a 4-parameter fit with χ²/d.o.f. = 459/556.
- Global fit to all data is consistent with the fits to different subsets of nuclei (light, medium, heavy nuclei).
- Parameters of the off-shell function δf and effective amplitude a_T are determined with a good accuracy.

For detailed discussion and comparison with data see S.K. & R.Petti, Nucl Phys A765(2006)126.

Nuclear corrections for C-even vs. C-odd PDFs

Relative nuclear corrections for *C*-even $q_0^+ = u + d + \bar{u} + \bar{d}$ and *C*-odd $q_0^- = u + d - \bar{u} - \bar{d}$ calculated for ${}^{184}W/D$ at $Q^2 = 20$ GeV².

Nuclear antiquarks

Nuclear corrections for antiquark distribution $\delta \mathcal{R}_{sea} = \delta \bar{q}_A / \bar{q}_N$ are directly derived from those for *C*-even $q + \bar{q}$ and *C*-odd $q - \bar{q} = q_{val}$ PDFs

Note a partial cancellation between pion and shadowing effects for nuclear antiquark distribution for large $x \sim 0.05 - 0.15$.

С.Кулагин (ИЯИ РАН)

Nuclear corrections for Drell-Yan production cross sections DY process cross section $\propto \sum e_q^2 \left[q^B(x_B) \bar{q}^T(x_T) + \bar{q}^B(x_B) q^T(x_T) \right]$. The kinematic variables are related as $Q^2 = sx_Bx_T$. For E772 kinematics $s \approx 1600 \text{ GeV}^2$.

Comparison with E772 data

С.Кулагин (ИЯИ РАН)

Detailed compasison for each of Q^2 -bins

С.Кулагин (ИЯИ РАН)

Summary

- A detailed semi-microscopic model of nuclear DIS was developed which includes the QCD treatment of nucleon structure function and addresses a number of nuclear effects such as shadowing, Fermi motion and nuclear binding, nuclear pion and off-shell corrections to bound nucleon structure functions
- A quantitative study of existing data from charged lepton-nucleus DIS has been performed in a wide kinematic region of x and Q^2 .
- Note the importance of the nuclear binding along with the off-shell corrections to the bound nucleon structure function. Those corrections are responsible for a large fraction of nuclear effects at intermediate and large Bjorken x.
- Nuclear effects on PDFs are not universal. We predict the dependence on C parity and isospin.
- The nuclear DY process is also sensetive to partonic energy loss in nuclei.
- Good agreement with the Drell-Yan data from E772 and E866 experiments. Here we note a cancellation between different nuclear effects.