МОДЕЛИРОВАНИЕ И АНАЛИЗ МАЛОНУКЛОННЫХ РЕАКЦИЙ ДЛЯ ПОЛУЧЕНИЯ ДАННЫХ О НИЗКОЭНЕРГЕТИЧЕСКИХ ПАРАМЕТРАХ NN-ВЗАИМОДЕЙСТВИЯ

Каспаров Александр Александрович (ИЯИ РАН)

Диссертация на соискание ученой степени кандидата физико-математических наук по специальности 01.04.16 – физика атомного ядра и элементарных частиц

Москва, 2017

СТРУКТУРА РАБОТЫ:

Введение

Глава 1. Низкоэнергетические параметры NN-взаимодействия и зарядовая независимость ядерных сил

Глава 2. Программы кинематического моделирования ядерных реакций

Глава 3. Кинематическое моделирование ядерных реакций

Глава 4. Комплекс сервисных программ для проведения экспериментов

Глава 5. Моделирование эксперимента $d + {}^{2}H \rightarrow p + p + n + n$

Глава 6. Экспериментальное исследование реакции $d + {}^{2}H \rightarrow p + p + n + n$

Заключение

Список литературы – 62 источника Общий объем работы – 105 стр.

НАРУШЕНИЕ ЗАРЯДОВОЙ СИММЕТРИИ В NN-ВЗАИМОДЕЙСТВИИ

Вскоре после открытия нейтрона, В.Гейзенберг сформулировал принцип зарядовой независимости ядерных сил, согласно которому взаимодействие между любой парой нуклонов аналогично. F_{pp} = F_{np} = F_{nn}

Более слабое утверждение – принцип зарядовой симметрии – равенство pp- и nn-сил в синглетном состоянии. $F^{s}_{pp} = F^{s}_{nn}$ в ${}^{1}S_{0}$ состоянии (T=1, S=0)

Благодаря существованию виртуального уровня с энергией близкой к нулю в синглетном ¹S₀ состоянии двух нуклонов длины рассеяния (*a_{nn}* и *a_{pp}*) весьма чувствительны к небольшим различиям *nn*- и *pp*-потенциалов.

НИЗКОЭНЕРГЕТИЧЕСКИЕ ПАРАМЕТРЫ NN-ВЗАИМОДЕЙСТВИЯ

Низкоэнергетические параметры NN-взаимодействия – NN-длины рассеяния и энергии виртуальных NN-состояний

$$\frac{1}{n_{NN}} = -\left(\frac{m_N \varepsilon}{\hbar^2}\right)^{1/2} - \frac{1}{2}r_{NN}\frac{m_N}{\hbar^2} + \dots$$

Планируемые и текущие эксперименты:

 $d + {}^{2}H \rightarrow pp + nn$ $n + {}^{2}H \rightarrow p + nn$ $n + {}^{3}H \rightarrow d + nn$ $d + {}^{1}H \rightarrow n + pp$

Измеренные низкоэнергетические параметры NN-взаимодействия могут оказаться не теми, которые присущи свободным NN-системам

ПРОГРАММЫ КИНЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ЯДЕРНЫХ РЕАКЦИЙ

Необходимы программы кинематического моделирования ядерных реакций с числом конечных частиц ≥3

Программа DBKin (Democratic Breakup Kinematics)

<u>Пример</u>: реакция $1 + 2 \rightarrow 3 + 4 + 5 + ... + n$

ПРОГРАММА DBKin (DEMOCRATIC BREAKUP KINEMATICS)

	N N	- X	JK	1	M	N.	0		0	R	5	T	0	V	W.	X	Y.	2	AA.	Ali	AC	AD A	E AF	AD	AR	A A	AK	AL
8		\$31502				I max	13	14	XS	10	P 3 1	P.4	2.4		thet	there	thest	SINcihot6	There.	TIPOB-KOC	23	E4 I	5 I.6	thet3	there d	hetf thetf	E 0	P.0
2		ml	16 6He	\$606,60684		38,9659	25,9	6,3	4,8	- 2	440	109	\$5,1	- 64	-4.8	-25,9	26,66	0.324697	18,91	-10,0796173	1.00						39,9	670,4
3		m2	2 p	938,790624	-	38,9978	26	3,4	- 2	12.1	441 1	60,4	61,8	119	0,469	3,226	3,076	-8,150142	-6,635	-39,5276234							39,9	670,1
4		m3	11 4He	3728,4313		38,9406	. 26	11	0,8	- 60	441	146	38,9	258	0,778	26,81	1,804	-1,920345									39,9	670,2
ð.		m4	1 a	939,573021	2	38,9541	26,1	5	7,4	93	442.3	97.1	118	30	+1,98	-16,7	-23,16	2,8296632									39,9	670,3
0		105	1 n	939,573021		39,0216	25,9	0,5	10	2,2	441	51,7	140	100	0,192	-17,1	-4,938	9,3116434	18:16	-0,29286576	35,9	0,54 1	0 2,1	8 0,19	-17.1	£ 18,16	40	670,9
7		105	2 p	938,790624		38,9875	26	1,8	4,4	-	441 :	58,3	90,6	115	-1,48	17,22	2,87	0,092328	-5.294	-29,4620087							-40	\$70,6
8		-		0,1		39,018	26	3	7,6		441 1	61,2	119	- 60	0,976	-21,2	3,712	0,05343	1,911	-36,7240514							-40	670,8
1		- 11		40	1	39,0012	26	3,1	3,2	- 22	441	118	22.7	- 21	-1,24	+,253	-16,95	0,3170696	18,49	-27,724509							40	\$70,7
10		P1		670,916182	1	38,9602	26	12	0,8	98	441	152	38,2	-8	0,545	-7,8	-17,79	2,5612676									39,9	670,3
11		Qreact		-0,970891	1	39,1228	26	6,3	3,5	- 64	441	109	10,9	- 80	1,835	4,347	24,44	10,702467	-14.65	-7,94434872							40,1	671,7
12		03		-0	-	38,9479	25,8	2,4	- 6,2	- 12	440 1	67,4	107	12	0,146	18,91	-22,42	01992131	11,56	-13,3919368							39,9	670,2
13	-	703			-	38,9813	20	13		- 21	441	128	8,22		0,921	4,258	-14,8	STREET, STREET, ST		at an end							40	619,3
14		04		0		29,0818	25,9	9,0	- 24	- 24	440	111	-20	- 64	1.0	14,75	-27,48	0.04112.00	8,490	-21,2845909							40,1	871,4
10	-	.104		30	iji	38,9833	20	14	10			104	104	15	1.11	100	-4,942	0.0471		T CONTRACTO							40	870,5
10	-	05		10	-	30,0643	26.1	24	20		440	122	100		-1.47	150	1.117	Concerned and	1.1	-3.8365.294							40	874,4
11		309		30		35,0043	20,1	10	10		120	122	41.4	1.5	0.314		10.27	0.0000040	22.2	10 7780-04							10.0	670.2
10						18 0051	10.0		10	22	400		22.0		0,758	8.018	5.4.47	-0,000024	10000	30,7180404							37,7	870.6
20	TTDORFER'S	0.5	a fairaith an	Constants and a		30 0314	76.1	44			44.5	107	48.4	100	0,370	10.61	39.1	0.410054	14.1	11 1048117							40	670.0
24	Uleran //D/ORFE	804	- CALLE- 19 MIL	toocers spreng	Na Jekoka coopeka	10.0714	76.8	100	1		140	111	10.0		0.181	16.0	11.11	1.									40	\$71.8
22	THE PLAT OF COL	442				10 0470	35.0	1		- 14	100	64 A	1.94	10	1.801	24.41	1.044	1.100.00									40	471.2
73	TEPB TONK (0-1		-O factoria	necros - Flan	obalii 1 imena name	59 1308	25.0	- 4	47		440	14.8	94.1		0.25	14.17	1.689	0.4741.04		-10.0068268							40.2	673.7
34	D	25.9547	- indian ind		contract into the part of	38.9825	25.9	8.7	0.1	24	441	129	15.4	-	4.78	28.37	78.91	0.607478	-37.41	32 2812954							40	670.5
26	AE3	0.2				38,9857	25.8	0.2	1	1.4	440	21.5	131		0.29	22.4	20.42	-0.667466	11-11	15 9562083							40	670.6
28	1000			Buracan		39.016	26.1	3.6	73		442	82.6	197	-41	1.202	9.98	20.66	.0.101611	-36.56	-11.3003134							40	670.8
27			Tarns marrie	on no Stean I w		39.0772	26	45	23	15	441	81.8	-66	109	-1.22	-7.21	25.74	0.045597	2.614	30.1349296							40	671.3
28			columni /T-C	OV no Souge 7 =	3000	39,0646	26	11	6.9		440	141	41.4	1.0	-1.04	4,705	-12.16	0.095523	10047	-1.10006399							40	871.2
29						38,9544	26,1	11	0,6		442	144	32,4	-81	-0.75	0.302	-27.78	0,3849746	23.27	9,19982176							39.9	670,3
30						39,1257	25.8	43	2,7	- 64	438	60.3	71	100	1,8	22,85	17,37	-0,607596	-37,42	-5,18857418							40,1	671,7
31				D. PORTO		39,0054	25,8	2,5	9,1	12	435	68,1	131	- 26	1,757	-5,62	-10,26	0,2546263	17.14	-18,5253338							40	670,7
32				DOWNSTONE		39,058	26	7,7	1,1	48.	441	525	44.5	90	-0,46	11,43	4,373	-0,266564	-13,46	-19,0740114							40	671,2
33						38,9913	26	7,4	0,7	484	441	118	36,8	-96	0,175	16,61	-5,261	0.35265	19:43	-10,6254911							40	670,6
34				9	 в начано 2_3гаде 	38,9335	25,8	0,9	3,9	4.4	459.	40,6	108	110	-0,32	-29	25,75	-0,214309	12,39	-6,66209911							39,9	670,1
30						38,9548	26	2,1	10	12	441 1	62,3	140	-30	-0,95	-2,84	-25,94	2,371841									39,9	670,3
36						29,0444	25,9	1,5	3,4	22	440	119	80,4	18	-0,13	14,38	16,77	-0,804437	-53,56	0,13606774	28,9	7,54 3,	4 2,2	1 -0,1	14,38 1	6,8 \$3,6	-40	671
37			Vacas codum	naŭ (I-O) no ŝte	аре Ј мажно садала	38,9743	26,1	9,4	0,2	18	442	133	38	- 29	-1,59	25,71	1,709	-0,288953	-36.08	27,9479945							39,9	670,5
38	•			-		38,9854	26,1	8,5	2,6	18	442	122	19.5 E	- 28	-1,15	-16,7	1,403	0,7426634	47,96	-1,37836672							40	670,5
38	0 = 1	2-5	InΘ	, + <i>D</i>	∕sin⊎	38,54 4	26	0,1	-	D	141 C	511	nG		-1,31	-9,44	0,225	0,0870403	4,994	3,17472737							39,9	670,2
40		- 3-		5 · P	400	48,9933	26,1	3,1	37	-	11-	98	10.2	- П	1,886	24,58	-13,67	-0,402214	1.2	-31,7092779							40	670,6
41				_	-	39,1055	25,8	12	93	-	439	23,8	1.5.2	10	0,982	9.202	+20,71	APRIL OF A	11.9	-17,9391364							40,1	\$71,6
42	-			-		39,0941	26	88	11		44.2	20,1	142	24	-0,82	-14,4	14,6	0,400100	20.96	8,33506233							40,1	671,5
43	n_{-}	(n.	COS	$\Theta_{-} +$	n.co	50	22.9	-25	414		-	n	CO	ns	0	12	<	ΛP	1,199	-30/0408309							40,1	871,8
44	P 1	(P3	3200	-3 -	P 400	20,000	26		10		441	- n			100	n /	-		1.141	13,1804041							39,9	8/0,4
40	-					39,032	28,1	3,0				202		-26	-0.39	10.7	0,812										40	3/0/2
40	and a strength	come Z	Alte La Later	a secolo d	one one I have	39,0403	22,9	-1-	-	1	100	4144	50.5		-1,83	-18,1	-4,242	1. July 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1.30	-10,0013014							40	(0/2)
	I Stage	SOM	one+n+n(a	Caudies) (urs p-оне / ва	continent	व (नान	e+p+	m+n)	19	9-2 p	He	1							1			0.000		100			

Входные данные: 1) *E*₁ 2) *m*₁; *m*₂; ... ; *m*_n 3) Θ₃; Θ₄; ... ; Θ_{n-1}

Выходные данные: 1) *E*₃; *E*₄; ... ; *E*_n 2) Θ₃; Θ₄; ... ; Θ_n

МОДЕЛИРОВАНИЕ РЕАКЦИИ ⁶He + $p \rightarrow {}^{4}$ He + p + n + n. ПАРАМЕТРЫ: E_{6He} =40 МэВ; Θ_{4He} =0°±2°; Θ_{p} =0°±90°; Θ_{n1} =0°±90°

8

МОДЕЛИРОВАНИЕ ЭКСПЕРИМЕНТА $d + {}^{2}H \rightarrow p + p + n + n$

Моделирование «квазибинарной» реакции: $d + {}^{2}H \rightarrow {}^{2}p^{s} + {}^{2}n^{s}$ Энергия дейтронов 15 МэВ

Выходные данные: $\Theta_{2p}=27^{\circ}; \Theta_{2n}=-36^{\circ}$ Соответствующие энергии: $E_{2p}\sim 6$ МэВ; $E_{2n}\sim 4$ МэВ

МОДЕЛИРОВАНИЕ РЕАКЦИИ $d + {}^{2}H \rightarrow p + p + n + n$. ПАРАМЕТРЫ: E_{d} =15 МэВ, $\Theta_{p1} = \Theta_{p2} = 27^{\circ}$; $\Theta_{n} = -36^{\circ}$

Двумерная диаграмма *E*_{n1} – *E*_{n2} и спектр относительной энергии двух нейтронов

МОДЕЛИРОВАНИЕ РЕАКЦИИ $d + {}^{2}H \rightarrow p + p + n + n$. ПАРАМЕТРЫ: E_d =15 МэВ, $\Theta_{p1} = \Theta_{p2} = 27^{\circ}$; $\Theta_n = -36^{\circ}$

Моделированная зависимость относительной энергии *E_{nn}* от суммарной энергии двух протонов

МОДЕЛИРОВАНИЕ РЕАКЦИИ $d + {}^{2}H \rightarrow p + p + n + n$. ПАРАМЕТРЫ: E_d =15 МэВ, Θ_{ch} =27°±1.5° (ch=p; d; ³He), Θ_n =-36°±1.2°

Моделированная *∆Е–Е* диаграмма

МОДЕЛИРОВАНИЕ РЕАКЦИИ $d + {}^{2}H \rightarrow p + p + n + n$. ПАРАМЕТРЫ: E_{d} =15 МэВ, $\Theta_{p1} = \Theta_{p2} = 27^{\circ}$; $\Theta_{n} = -36^{\circ}$

Отбор событий со значениями относительной энергии пп-системы E_{nn} в интервале ±Г_{nn} (соответствующий развалу виртуального nn-состояния с определенной энергией E_{nn}) выделяет области на двумерной диаграмме и в спектре нейтронов

МОДЕЛИРОВАНИЕ РЕАКЦИИ $d + {}^{2}H \rightarrow p + p + n + n$. ПАРАМЕТРЫ: E_{d} =15 МэВ, $\Theta_{p1} = \Theta_{p2} = 27^{\circ}$; $\Theta_{n} = -36^{\circ}$

Времяпролетные спектры нейтронов при различных значениях *E_{nn} и Г_{nn}* Времяпролетная база 79 см

МОДЕЛИРОВАНИЕ ЭКСПЕРИМЕНТА $d + {}^{2}H \rightarrow p + p + n + n$. ВЫВОДЫ

Кинематическое моделирование реакции $d + {}^{2}H \rightarrow p + p + n + n$:

- Позволило выбрать параметры экспериментальной установки для регистрации двух протонов и нейтрона, определить спектры фоновых реакций.
- Показало возможность отбора событий, отвечающих прохождению двух протонов через ΔE-E телескоп.
- Позволило установить ограничение на суммарную энергию двух протонов E_{p1}+E_{p2}, и, соответственно, снизить фон нерезонансных событий без уменьшения количества полезных (от развала nn-состояния).
- Показало возможность извлечения данных о величине энергии виртуального состояния nn-системы из формы временного спектра нейтронов.

Из результатов моделирования определена схема экспериментальной установки

1) Энергия дейтронов 15 МэВ (НИИЯФ МГУ) **2)** Мишень CD₂ 3) Детекторы протонов и нейтронов под углами вылета ²л и ²*р*-систем 4) Оба протона регистрируются одним телескопом ΔE -E 5) Энергия нейтрона определяется по времени пролета 6) Детектор нейтронов перемещался на угол 83° для временной калибровки

Отбор событий по области *p*+*p* и определение времени пролета нейтрона приводит временному спектру нейтронов

Отбор событий по области *p+p* и определение времени пролета нейтрона приводит временному спектру нейтронов

Экспериментальный времяпролетный спектр нейтронов. Времяпролетная база – 79 см, временное разрешение – 2.5 нс

Сравнение экспериментального времяпролетного спектра с результатами моделирования

Минимум χ² достигается при *E_{nn}*=76±6 кэВ

*a_{nn}=-*22.6±0.6 фм ₁₉

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

- Разработан новый подход для извлечения данных о низкоэнергетических параметрах NN-взаимодействия в реакциях с образованием и развалом виртуальных NN-состояний, основанных на выборе оптимальной геометрии для регистрации развальных частиц, введении ограничений на параметры вторичных частиц и анализе их спектров.
- Создание программ для моделирования реакция с тремя и более частицами в конечном состоянии в рамках этого подхода.
- Обнаружение зависимости формы энергетического спектра развальной частицы от энергии и ширины виртуального NN-состояния.
- 4) На основе расчетов моделирования реакции d + ²H → p + p + n + n определены параметры экспериментальной установки для исследования данной реакции. Проведено соответствующее экспериментальное исследование.

СПИСОК РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

- С.В. Зуев, <u>А.А. Каспаров</u>, Е.С. Конобеевский. Программа для моделирования экспериментов по изучению реакций с тремя частицами в конечном состоянии // Известия РАН. Серия физическая. 2014. Т. 78(5). С. 527–531; Bulletin of the Russian Academy of Sciences. Physics. 2014. V. 78(5). P. 345–349.
- **2)** E.S. Konobeevski, S.V. Zuyev, <u>A.A. Kasparov</u>, V.V. Ostashko. The Results of Simulation of $d + t \rightarrow 3He + 2n$; $2n \rightarrow n + n$ Reaction // Few-Body Systems. 2014. V. 55(8–10). P. 1059–1060.
- 3) Е.С. Конобеевский, С.В. Зуев, <u>А.А. Каспаров</u>, В.М. Лебедев, М.В. Мордовской, А.В. Спасский. Исследование реакции d + d → 2He + 2n при энергии дейтронов 15 МэВ // Ядерная физика. 2015. Т. 78(7–8). С. 687–695; Physics of Atomic Nuclei. 2015. V. 78(5). Р. 643–651.
- 4) С.В. Зуев, <u>А.А. Каспаров</u>, Е.С. Конобеевский. Возможности исследования структуры гало-ядер в реакциях квазисвободного рассеяния протона при низких энергиях // Ядерная физика. 2015. Т 78(7–8). С. 739– 747; Physics of Atomic Nuclei. 2015. V. 78(5), P. 694–702.
- 5) С.В. Зуев, <u>А.А. Каспаров</u>, Е.С. Конобеевский, В.М. Лебедев, М.В. Мордовской, А.В. Спасский. Реакция d + 2H → 3He + n как источник квазимоноэнергетических нейтронов для исследования свойств нейтронных детекторов // Известия РАН. Серия физическая. 2016. Т. 80(3). С. 260–265; Bulletin of the Russian Academy of Sciences. Physics. 2016. V. 80(3). P. 232–236.
- 6) С.В. Зуев, <u>А.А. Каспаров</u>, Е.С. Конобеевский, М.В. Мордовской, И.М. Железных, А.Г. Гасанов, В.М. Лебедев, А.В. Спасский. Установка для изучения NN-корреляций в реакции d + 2H → n + n + p + p // Известия РАН. Серия физическая. 2016. Т. 80(3). С. 254–259; Bulletin of the Russian Academy of Sciences. Physics. 2016. V. 80(3). P. 227–231.
- **7)** <u>А.А. Каспаров</u>, Е.С. Конобеевский, С.В. Зуев. Моделирование кинематики реакции d + d → p + p + n + n // Дифференциальные уравнения и процессы управления. 2016. №2. С. 257–261.
- **8)** Konobeevski E., <u>Kasparov A.</u>, Mordovskoy M., Zuyev S., Lebedev V., Spassky A. Determination of energies of nn-singlet virtual state in d + 2H \rightarrow p + p + n + n reaction // Few-Body Syst (2017) 58: 107.
- 9) E. Konobeevski, <u>A. Kasparov</u>, M. Mordovskoy, S. Zuyev, V. Lebedev, A. Spassky. Determination of n-n correlations in d + 2H → p + p + n + n reaction // Journal of Physics: Conf. Series 798 (2017) P. 012076 (1-4)
- 10) С.В. Зуев, <u>А.А. Каспаров</u>, Е.С. Конобеевский. Математическое моделирование малонуклонных экспериментов с тремя и более частицами в конечном состоянии // Известия РАН. Серия физическая. 2017. Т 81(6). С. 753–757.

БЛАГОДАРНОСТИ

Конобеевскому Евгению Сергеевичу

(за неоценимую помощь в написании работы, проявленное терпение, важные замечания к тексту диссертации)

Зуеву Сергею Викторовичу

(за ценные советы и многочисленные обсуждения результатов, положенных в основу диссертации)

