

ПОИСК ЛЕГКОЙ ТЕМНОЙ МАТЕРИИ Эксперимент NA64 в ЦЕРНе

Н.В. Красников ИЯИ РАН

Н.В.Красников Ученый совет ИЯИ РАН 30 ноября 2017

В последние 5-7 лет модели с легкой темной материей стали привлекать большое внимание специалистов. Один из наиболее часто обсуждаемых вариантов – модели с дополнительным массивным векторным бозоном.

NA64 designed to search for new physics in missing-energy events was approved in March'16. A wider program of searches with e⁻, μ , π , K, p beams was proposed at PBC'16.

e⁻ beam

•dark pseudoscalar(s), vector(A^{\prime}) \rightarrow invisible decays

- •s, $A' \rightarrow$ e+e- decays
- •⁸Be* anomaly: a new light boson?
- •ALP: $a \rightarrow \gamma \gamma$ •milli-Q

No A´signal for 4.3x10¹⁰ EOT

5.

64 A X

July'16 run: A´explanation for(g-2)_{μ} is ruled out

CERN Courier April 2017

News

Regions of the dark-photon parameter space (mixing strength versus mass) excluded by BaBar (green) compared with the previous constraints. The new analysis rules out dark-photon coupling as the explanation for the muon (g-2) anomaly and places stringent constraints on dark-sector models.

of Caltech, who has worked on dark-photon models. "In contrast to massless dark photons, which are analogous to ordinary

h photons, this experiment constrains a slightly different idea of dark force-carrying particles that are associated with a broken symmetry, which therefore get a mass and then can decay. They are more like 'dark Z bosons' than dark photons."

Further reading

BaBar Collaboration 2017 arXiv:1702.03327. NA64 Collaboration 2017 *Phys. Rev. Lett.* **118** 011802.

arXiv: 1710.00971

Exact tree-level calculations of cross sections $\sigma(eZ \rightarrow eZA')$. Large corrections to the WW approximation for $m_{A'} > \sim 100$ MeV.

Projected Sensitivity for Light Thermal Dark Matter

 $\alpha_{\rm D}$ (~ $\alpha_{\rm S}$) = 0.5, m_A⁻ = 0.3m_y

 $\alpha_{\rm D} (\sim \alpha_{\rm EM}) = 0.005, \, m_{\rm A'} = 0.3 m_{\chi}$

- Sensitivity of a beam-dump $\sim \epsilon^2 \times \epsilon^2 \alpha_D (m_{\chi}/m_{A'})^4 = \epsilon^2 y$, NA64 $\sim \epsilon^2$
- Constraints on relic adandance from freeze out annihilation
- Bounds from LSND, SLAC, MiniBooNE for ~10²², 10¹⁹, 10²⁰ POT
- NA64 can cover significant area with ~ a few 10¹² EOT

2016 Results and Expected Bounds on α_{D}

 $m_{A'} = 0.3 m_{\gamma}$

Sensitivity to p-s, A⁻->invisible decays, m_{ps,A} <1MeV

Thanks to J. Jaeckel.

- Pseudoscalar case, m_{ps,V}<1 MeV
- •Calculation of $\sigma_{A'}/\sigma_{S,}$
- •Full simulation in progress

 $g_{ps} = m_e/f_a^e = \varepsilon e$ $\mathcal{L} \supset \overline{-}$ $M_{A'} = M_{\phi}$ 3.4 3.2 σ_{Dark} Photon/σ_{Pseudo-Scalar} 3 2.8 2.6 2.4 2.2 2 10⁻⁵ 10^{-3} 10^{-4} 10^{-2} 10^{-1} M_{Dark State}[GeV]

10.

⁸Be^{*} anomaly: a new light X boson?

PRL 116, 042501 (2016) P1

PHYSICAL REVIEW LETTERS

week ending 29 JANUARY 2016

Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson

A. J. Krasznahorkay,^{*} M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár, T. G. Tornyi, and Zs. Vajta Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

> T. J. Ketel Nikhef National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, Netherlands

A. Krasznahorkay CERN, CH-1211 Geneva 23, Switzerland and Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary (Received 7 April 2015; published 26 January 2016)

Feng et al, 2016

 $2 \times 10^{-4} < \epsilon_{e} < 1.4 \times 10^{-3}$

FIG. 5. Invariant mass distribution derived for the 18.15 MeV transition in ⁸Be.

X cannot be A⁻¹ due to constraints from π^{0} ->X γ decay:

 $m_{\gamma'}$ [GeV]

2016 – test run

2017 - ~ 5 10¹⁰ EOT at 100 GeV. Analysis in progress. 2018+beyond LS2 - ~ 10^{11} EOT at 150 GeV required

μ beam

- (pseudo)scalar, $Z_{\mu\tau} \rightarrow$ invisible decays
- (pseudo)scalar, $Z_{\mu\tau} \rightarrow \mu^+\mu^-$ decays
- $\mu \tau$ conversion

$$Z_{\mu\tau} = L_{\mu} - L_{\tau}$$
 gauge boson

Motivated by g_{μ} -2 and other anomalies, Dark Matter, LFV, ...

1. Search for a new sub-GeV $Z_{\mu\tau}$, (pseudo)scalars coupled to μ and $~\tau$

2. Search for LFV: μ - τ conversion, complementary to e- τ at HERA

Search for $Z_{\mu\tau}$ in missing energy events with M2 beam

Main components :

- clean, mono-energ. 160 GeV μ beam
- \bullet in μ tagging: MM/GEM tracker
- \bullet out μ tagging: GEM/Straw tracker
- 4π fully hermetic detector

Signature:

- in: 160 GeV μ track
- out: < 100 GeV μ track
- no energy in the ECAL, Veto, HCAL
- Sensitivity ~ g_Z^2

Thanks to C. Vallee and COMPASS

- P_{μ}^{in} momentum measurements. Cross-check: available COMPASS data sample vs MC under study.
- M2 μ intensity: $I_{\mu} \sim 10^{7-10^8} \mu$ /spill. Trigger rate.
- Background due to π, K -> μν decays. Hadron contaminantion, expected π/μ ~ 10⁻⁶ or so. Beam test at COMPASS in October. Currenly under study.
- HCAL size optimization :
 - Hermeticity. HCAL transvserse, longitudinal size
 - HCAL length vs P_{μ}^{out} accuracy
- Target size optimization vs P_{μ}^{out} precision measurement

Important feedback from PBC EHN2 muon-WG meetings.

P_uⁱⁿ: BMS vs SM2 test in COMPASS. Data sample 2016.

Measurements of π, K contamination in the M2 beam

Background from $\pi, K \rightarrow \mu\nu$ decays is expected to be small (prelim.)

Projected sensitivity: $Z_{\mu\tau}$, dark leptonic (pseudo)scalars

Plans: Proposal to the SPSC in 2018

$$\mu A \rightarrow \tau X$$
 conversion (preliminary)

The $e - \tau$ and $\mu - \tau$ Lagrangians read:

$$\mathcal{L}_{\ell\tau} = \sum_{I,if,XY} \left(\Lambda_{I_{if,XY}}^{\ell\tau} \right)^{-2} \, \mathcal{O}_{I_{if,XY}}^{\ell\tau} \, + \, \text{H.c.}$$

where $\mathcal{O}_{I_{if}}^{\mu\tau}$ - dimension-6 operators:

 $360 = 6 \times 6 \times 10$ operators for the 6 quark flavors for each quark field and 10 possible chirality $P_{X,Y} = (1 \pm \gamma_5)/2$ combinations

$$\mathcal{O}_{I_{if,XY}}^{\ell\tau} = (\bar{\tau}P_X\Gamma_I l)(\bar{q}_f P_Y\tilde{\Gamma}_I q_i), \quad \Gamma_I\otimes\tilde{\Gamma}_I = I\otimes I, \quad \gamma^{\mu}\otimes\gamma_{\mu}, \quad \sigma^{\mu\nu}\otimes\sigma_{\mu\nu}$$

Mass scale $\Lambda_{I_{if,XY}}^{\ell\tau}$ set strength of low-energy effect of corresponding operator

 $R_{\mu\tau} = \sigma(\mu A - >\tau X) / \sigma(\mu A - >\mu X) < ~10^{-12}$ H1, ZEUS vs NA64 bounds: •S operators: Λ^{eτ}≥ 0.2 TeV; Λ^{μτ}≥ 1.3 TeV •V operators: Λ^{eτ}≥ 0.3 TeV; Λ^{μτ}≥ 2.4 TeV •T operators: Λ^{eτ}≥ 0.3 TeV; Λ^{μτ}≥ 2.6 TeV

π , K, p beams

- • $\pi^0,\eta,\eta' \rightarrow \text{invisible}$
- • $K_S, K_L \rightarrow invisible$
- Leptophobic light Dark Matter in pA->DM+X reactions

159

Copious and important results from experiments performed in 70-80's at IHEP, Protvino

V.N. Bolotov et al., "
– charge exchange

^{a)} Cross sections were determined within the range of four-momentum transfer $0 < -t < 2 (\text{GeV}/c)^2$. ^{b)} All η^0 decay channels are considered, $\Gamma_{2\gamma}/\Gamma_{all} = 0.38$.

Z

π°

Estimate for the yield of π^0 , η , η' , and possibly for K_L, K_S. Measurements of the yield in situ in 2018 run is under study.

Cross sections for the reactions (1) (black points) and (2) (circles) at P = 48 GeV/c. The straight lines are dependences $\sigma \sim Z_3^2$.

Under study: Possibility to search for K_L -> invisible at lower energy with > 10¹³ KOT

Summary of NA64++ Physics Prospects beyond LS2

Beam and process	Motivation	Required number of POT	
1. e ⁻ Z			
 A´-> invisible X(16.7), A´ -> e+e- pseudoscalar ->invisible a -> γγ milli-Q 	S,V mediator of light DM production ⁸ Be anomaly, Leptonic pseudogoldstone, ALP decays, miii-Q	~5x10 ¹² EOT ~5x10 ¹² EOT	
2. μ ⁻ Ζ			
$\begin{array}{l} \diamond \ \mathbf{Z}_{\mu\tau} \ \textbf{->} \ \left\{ \ \mathbf{v}, \ \mu^{+}\mu^{-} \right. \\ \diamond \ \textbf{pseudoscalar} \ \textbf{->} \ \textbf{invisible} \\ \diamond \ \mu\textbf{->}\tau \ \textbf{conversion} \end{array}$	(g-2) _μ , New gauged symmetry L _μ -L _τ . Leptonic pseudo-goldstone, LFV	10 ¹²⁻ 10 ¹³ MOT	
3. π(K) p-> M ⁰ n + E _{miss}			
$* K_L$ -> invisible $* K_S$ -> invisible $* \pi^0$, η,η-> invisible	NHL, φφ, Bell-Steinberger Unitarity, CP, CPT symmetry	~5x10 ¹² P(K)OT	
4. p A -> X+ E _{miss}			
Ieptophobic X	~ GeV DM	~5x10 ¹² POT	

64 XX XX

Summary

New physics (dark sector, new symmetries, hidden particles, ..) at a scale of the visible sector can be effectively probed with the NA64 approach by using e, μ , π , *K*, and *p* beams at CERN in the medium term future. The physics results are expected to be rich. In some cases they might be unexpected.

NA64++ provisional time schedule

e ⁻ , H4 →	$(g-2)_{\mu}$, 8Be, Dark Sector	LS2	8Be,	Dark Sector	LS3	Dark Sector
	μ⁻, M2 → Ргор	osal, Preparation	g _μ -2, D	ark sector, m-τ	LS3	Dark sector, m-τ
	π⁻, K ⁻, H	2-H8,T9 → P	Proposal	π⁰,η,η´,K _L →inv	LS3	π⁰,η,η΄,K ₈ ,K _L →in

BACKUP

TOP VIEW

Beam dump:

Sensitivity $\sim \epsilon^2 \times \epsilon^2 \alpha_D (m_\chi/m_{A'})^4 = \epsilon^2 y$

NA64 approach:

 $\textbf{Sensitivity} \textbf{~} \epsilon^2$

active beam dump + missing energy

 $m_{\gamma'}$ [GeV]

Choice of the HCAL transverse size is a crucial issue !

π^{0} , η , η' , K_{S} , K_{L} -> invisible decays

Motivation for K_L:

•complementary to $K_L \rightarrow \pi^0 v v$ •NHL, ϕ , Bell-Steinberger,...

Source of M⁰: charge exchange reactions: π^- , K⁻+p -> M⁰+ n M⁰= π^0 , η , η' , K_L, K_S...

Main components :

- 20-50 GeV π⁻,K⁻ beam
- MM tracker, ECAL target
- 4π fully hermetic system:
 Veto +ECAL+HCAL

Signature:

- in: 20-50 GeV π, K-track
- out: no energy in ECAL, Veto, HCAL
- Complete disappearance of beam energy !

Status of NA64++

<u>Outline</u>

- Searches with e, μ , π , K, p beams
- Summary