

3D сегментированный сцинтилляционный детектор нейтрино для осцилляционных экспериментов

Ю.Г. Куденко

Ученый совет ИЯИ РАН 30 ноября 2017

Physics motivation

HyperK, 750 kW -10 years, 1.3 kW - 6 years

Relatively small detector of reactor antineutrinos

- 4π uniform detector
- positron detection with high spatial and energy resolution direction of positrons from anti-nu interactions
- efficient neutron detection

3D neutrino target/detector

3D Segmented Scintillator neutrino Detector (3D SSD) Mass ~ few tons Scintillator cubes $1 \text{ cm}^3 \ge 10^6$ Readout : three X,Y,Z WLS fibers per cube \rightarrow ~100 k channels Photosensor: SiPM's

Intergration in near detectors

e/γ separation

Monte Carlo simulations

e Sample

v interactions

Monte Carlo simulations

CCQE

$CC1\pi$

Scintillator cubes

ArXiv:1707.01785

Cubes: 10x10x10 mm³ Material: extruded polystyrene + p-terphenyl White chemical reflector, thickness ~ 50 mkm 3 holes: each of 1.5 mm diameter WLS fibers: Kuraray Y11, double clad 1.0 mm diameter

Prototype for test at CERN

- 125 cubes of 1 cm^3 were tested
- 75 WLS fibers with 75 SiPM readout → 75 readout channels
- Length of Kuraray 1 mm Y11 WLS fibers 130 cm
- 3 fibers inserted in one cube, no glue
- Distance between MPPC and cube in each fiber 100 cm
- Reflector at far end of the fiber white paint Silver Shine
- Trigger counters 3x3 mm²

MPPC : S12571-025C, pixel size 25 microns, PDE about 33% for green light.

Electronics

 Amplitude 75 ADC channels CITIROC ASICs (from Baby-MIND)
Timing and amplitude 15 channels, digitizer CAEN DT5742 5 GHz

T10 area at CERN

Beam test at T10 (CERN) : 28 October - 1 November 2017 p (π , μ) = 6 GeV/c Beam spot ~3 cm (horiz)x 6 cm (vert) Trigger counters (in front/behind prototype) 3 x 3 mm2 Veto counter : beam hole 9 mm diameter

Installation at T10

Light Yield (1)

Digitizer CAEN DT5742

Light Yield (2)

1 cube - readout sum of 2 fibers

1 cube - readout sum of 2 fibers

Sum of 2 cubes, readout sum of 4 fibers

L.Y. ~ number of readout fibers of fired cubes

Timing (1)

Digitizer CAEN DT5742

Signal from 1 fiber

Timing (2)

14

6037

 859.3 ± 14.8

 -0.3801 ± 0.0063

 0.4722 ± 0.0051

8

10

Accuracy of manufacturing

100 cubes

- measurement of 2 sides after cutting $\sigma = 27 \ \mu m$ - measurement of 1 side (extrusion thickness) $\sigma \sim 100 \ \mu m$

R&D to improve precision : 1- extrusion + machining or 2- injection molding

Large prototype/pilot 3D SSD detector

Aim to develop and make a pilot detector in 2018-2019

Full scale prototype 0.5 x 0.5 x 1.0 m³ 250000 detectors of 1 cm³ each 12500 readout channels WLS fibers/SiPM Electronics – 1-5 GHz digitizers Mechanics – thin strong box Optical connectors Assembly Quality tests, calibration

- R&D: extrusion, injection molding, precision, quality control.... electronics, mechanics....

- Beam test in 2018

International collaboration

Proto-collaboration to make 3D SSD is formed

Russia	INR
France	CEA/DAPNIA Saclay, Ecole Politechnique, LPNHE -Paris
Switzerland	University of Geneva, CERN (Neutrino platform)
Italy	INFN/ University Roma, Padova
Poland	NCBJ, Warsaw
	+
Japan	KEK, Tokyo University, Kyoto University

Strong support from CERN Neutrino Platform

Great interest from LBL experiment DUNE US : BNL, U. Rochester, U. Pittsburg, Stony Brook, LSU... UK: Oxford, Imperial Reactor experiments Oxford (Solid experiment)

Mass production: stage 1

Summary/Plan

- Novel 3D SSD neutrino detector is under development
- Small prototype demonstrates good performance
- International proto-collaboration formed
- Next step: 2018-2019 development, construction and test of large scale prototype/pilot detector
- Beam test in 2018
- Our plan: $5 \times 5 \times 5 \text{ cm}^3 \rightarrow 50 \times 50 \times 100 \text{ cm}^3$ (pilot) \rightarrow full scale ($\geq 1 \text{ t}$) detector s