

Магистерская диссертация

Измерение времени жизни К+ в эксперименте NA62 (ЦЕРН)

Студент: Медведева Мария Валентиновна Научный руководитель: к. ф.-м. н. Шайхиев Артур Тагирович

Москва, 2017

План

- 1) Эксперимент NA62
- 2) Предыдущие измерения времени жизни каона
- 3) Метод измерения времени жизни в NA62
- 4) Проверка метода на данных Монте-Карло
- Измерение времени жизни на экспериментальных данных
- 6) Выводы

NA62 ЦЕРН, SPS

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna(JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Liverpool,Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver (UBC)

Основная цель: Измерение BR(К⁺->π⁺νν) с 10% точностью

Предсказание Стандартной модели

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (9.11 \pm 0.72) \times 10^{-11}$$

Экспериментальные данные

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = \left(1.73^{+1.15}_{-1.05}\right) \times 10^{-10} \ E787/949$

Экспериментальная установка NA62

Импульс каонов 75 ГэВ/с Основные компоненты пучка: **6% К**⁺ 23% р 70% π

Kaon ID and direction: CEDAR, GTK, CHANTI Pion ID and direction: STRAW, RICH, CHOD Photon veto: LAV, LKr, IRC, SAC Muon veto: MUV1, MUV2, MUV3

Физика за рамками основного исследования NA62

• Темные фотоны

$$\begin{split} K^+ &\to \pi^+ \pi^0, \ \pi^0 \to A' \gamma \\ BR(\pi^0 \to A' \gamma) &= 2\epsilon^2 \left(1 - \frac{m_A^2}{m_{\pi^0}^2} \right)^3 \times BR(\pi^0 \to \gamma \gamma) \end{split}$$

• Запрещенные распады

 $K^+ \to \pi^- l_1^+ l_2^+, K^+ \to l_1^- \bar{\nu} l_2^+ l_2^+ \ (l_{1,2} = e, \mu), K^+ \to \pi^+ \mu^\pm e^\mp, \pi^0 \to \mu^\pm e^\mp, K^+ \to \pi^+ \pi^+ l^- \nu$

• Редкие распады

 $K^+ \to \pi^+ l^+ l^-$, $K^+ \to \pi^+ \gamma l^+ l^ (l = e, \mu)$, $K^+ \to \pi^+ \pi^0 e^+ e^-$ и $\pi^0 \to e^+ e^-$

• Время жизни каона

Предыдущие результаты измерения времени жизни К+

Что нужно для измерения времени жизни К+ в NA62:

l — расстояние до точки распада К⁺ m — масса K^+ P — импульс K^+ \longrightarrow $\beta = \frac{P}{E} = \frac{P}{\sqrt{P^2 + m^2}}$

Аксептанс

$$t_{decay} = \frac{l_{decay}}{v}, l_{decay} = \sqrt{1 - \beta^2} \times l, v = \beta \times c$$
$$t_{decay} = \frac{\sqrt{1 - \beta^2}}{\beta} \times \frac{l}{c}$$

Критерии отбора распада К⁺->µ⁺v_µ

- One track
- Geometrical Acceptance
- Good Track
- 130 m < Z_{vertex}< 180 m
- Kaon ID with timing
- Photon veto
- Muon ID

Потеря количества событий _{Cuts}

$N_{true}(t) = N_{reco}(t) / Acceptance(t), t=f(L, P)$

True Full – «True» переменные всех сгенерированных распадов

True Cut – «True» переменные для реконструированных событий, прошедших критерии отбора

Reco Cut - – Реконструированные переменные для реконструированных событий, прошедших критерии отбора

Спектр времени распада t_{decav}

 $K^+ - > \mu^+ \nu_{\mu}$ 15.000.000 events

Только KTAG, GTK and CHANTI детекторы

«True» переменные

 $\frac{dN}{dt} = -\lambda N = -\lambda N_0 e^{-\lambda t} \rightarrow Fit$ спектра t_{decay} функцией $Ae^{Slope \times t}$

Время жизни $\tau = -\frac{1}{Slope}$ для 15М: $\tau \approx 12.379$ ns MC: $\tau = 12.38$ ns

Источники систематических ошибок

1) Ошибка измерения импульса

Разрешение Гигатрекера 0.2% -> $\sigma(P)$ =150 МэВ/с

Спектр импульса каонов – 1 ГэВ

2) Разрешение длины пролета:

 $\sigma(I) = 0.1$ м с Гигатрекером

σ(I) = 1 м без Гигатрекера

Расчет систематической ошибки

$$\sigma(t) = \sqrt{\left(\frac{\partial f}{\partial \beta}\frac{\partial \beta}{\partial p}\sigma(p)\right)^2 + \left(\frac{\partial f}{\partial l}\sigma(l)\right)^2}$$

$$t_{decay} = \frac{\sqrt{1-\beta^2}}{\beta} * \frac{l}{c} \implies \sigma(t) = \sqrt{\frac{l^2}{(1-\beta^2)c^2\beta^4}} \frac{m^4}{(m^2+p^2)^3} (\sigma(p))^2 + \frac{1-\beta^2}{c^2\beta^2} (\sigma(l))^2$$

Ошибка каждого бина гистограммы $\sigma(\frac{dN}{dt}) = \frac{\lambda N_0}{\tau} e^{-\frac{t}{\tau}} \sigma(t) \Rightarrow$ Slope error from fitting $\sigma_{syst}(\tau) = \frac{\sigma(Slope)}{Slope^2}$

Статистическая ошибка для Minbias Run 2015 (5 дней с 1% интенсивности)

Количество К⁺->µ⁺v_µ событий ≈ 21.4М

 $T = \Delta t / \tau$, $\Delta t - интервал измерения времени жизни$

$$\frac{\sigma(\tau)}{\tau} = \frac{1}{\sqrt{N}} \frac{e^{T} - 1}{\sqrt{1 + e^{2T} - e^{T}(2 + T^{2})}}$$

Стандартная ошибка оценки правдоподобия для экспоненциальной функции распределения вероятности, проинтегрированной за конечный временной интервал Δ

 $\sigma_{stat}(\tau)/\tau = 0.96\%$ - основной вклад в ошибку

(Статистическая ошибка велика из-за маленького интервала Т)

$$\frac{\sigma(\tau)}{\tau} \simeq 1.02\% \qquad \text{KLOE} \ (2007): \frac{\sigma(\tau)}{\tau} \simeq 0.23\%$$

Проверка метода на смоделированных данных (1.000.000 К⁺->µ⁺v_µ) с учетом данных от Гигатрекера

τ = 12.387 ± 0.039 (сист) ± 0.98 (акс) ± 2.27(стат) нс = = 12.387 ± 2.47 нс

Проверка метода на смоделированных данных (1.000.000 К+->µ+v_µ) без учета данных от Гигатрекера

τ = 12.387 ± 0.4 (сист) ± 1.01 (акс) ± 2.27(стат) нс = = 12.387 ± 2.516 нс

Измерение времени жизни из распада К⁺->µ⁺v_µ с помощью данных Minbias Run 2015

τ = 11.6 ± 0.76 (сист) ± 0.5 (акс) ± 0.42(стат) нс = = 11.6 ± 1.02 нс

Расчет количества необходимых событий

Для того, чтобы достичь результата, соизмеримого по точности с PDG, нужно иметь ошибку около 0.04 нс.

$$\sigma_{syst}^2 + \sigma_{stat}^2 = 0.04$$
 нс, $\sigma_{syst} = 0.039$ нс $\rightarrow \sigma_{stat} = 0.009$ нс

$$N = \left(\frac{\tau}{\sigma(\tau)}\right)^2 \frac{(e^T - 1)^2}{1 + e^{2T} - e^T(2 + T^2)} = 2 \times 10^{10}$$

Расчет максимального количества распадов К⁺->μ⁺ν_μ в ходе эксперимента NA62 за 2016-2018 года

Год	Средняя интенсивность	Кандидаты К⁺->µ⁺v _µ	
2016	30-40%	2x10 ⁸	
2017	60%	4x10 ⁸	
2018	60%	4x10 ⁸	
	Итого:	10 ⁹	

$$\frac{\sigma_{stat}(\tau)}{\tau} = \frac{1}{\sqrt{N}} \frac{e^{T} - 1}{\sqrt{1 + e^{2T} - e^{T}(2 + T^{2})}} = 0.34\%$$

 $\sigma(\tau) = 0.056 \, \text{Hc}$

Триггеры, используемые в NA62

RICH checks that charged particle is not muon:

- Pinunu. Purpose: K⁺->π⁺νν
- Non-muon. Purpose: $K^+ -> e^+ v(\gamma)$

STRAW (STRAWexotics) checks that there is a negatively charged particle

- Multi-track: Purpose: multi-track normalization and control trigger
- Di-muon. Purpose: K⁺->Xμμ
- Di-muon exotic. Purpose: "beam dump" A'-> $\mu^+\mu^-$
- Di-electron. Purpose: K⁺->Xee, π^0 ->Xee, "beam dump" A'->e⁺e⁻, N-> π e
- Muon-electron. Purpose: K⁺->πμe
- Pion-muon. Purpose: "beam dump" N->πμe

Trigger: CHOD/D

Control trigger. Purpose: monitoring and K⁺->μ⁺ν

Заключение

- Разработан метод измерения времени жизни положительно заряженного каона в эксперименте NA62
- Проведена проверка метода на смоделированных данных
- Исследованы источники систематических ошибок, рассчитана систематическая и статистическая ошибки
- Получен результат измерения времени жизни с использованием данных 2015 года для распада К⁺->μ⁺ν_μ: *τ=11.6 нс±1.02 нс*
- Проведена оценка необходимого количества данных для получения ошибки, соизмеримой с результатами предыдущих экспериментов с высокой точностью.
- Рассчитана максимальная достижимая точность измерения времени жизни в ходе эксперимента NA62

BackGround

Триггеры Minbias Run 2015

Run	L0 trigger	Km2 trig [mln]	Km2 cand [mln]
3789	CHOD/2	8.98	0.41
3792	CHOD/4	4.39	0.19
3794	CHOD/4	8.56	0.38
3799	CHOD/3	33.58	1.52
3800	CHOD/2	18.75	0.85
3801	CHOD/2	34.23	1.55
3803	MUV3	9.21	0.78
3805	CHOD×!MUV3	-	-
3809	$CHOD \times !MUV3 + CHOD/2$	41.47	2.01
3810	$CHOD \times !MUV3 + CHOD/2$	77.23	3.70
3811	$CHOD \times !MUV3 + CHOD/3$	26.10	1.26
3812	$CHOD \times !MUV3 + CHOD/D$	1.05	0.05
3813	$CHOD \times !MUV3 + CHOD/6$	52.05	2.51
3814	CHOD×!MUV3 + CHOD/6	9.07	0.44
3817	CHOD×!MUV3 + CHOD/6	1.55	0.07
3818	CHOD×!MUV3 + CHOD/6	49.82	2.40
3819	CHOD×!MUV3 + CHOD/6	3.22	0.16
3821	CHOD×!MUV3 + CHOD/6	65.32	3.16
Total		444.60	21.42

Все критерии отбора

- Событие должно пройти больше, чем через 4 сектора детектора CEDAR
- Не должно быть событий в CHANTI
- Условия на треки частиц в спектрометре:
 - Только один трек
 - Событие задетектировано во всех 4 камерах
 - Заряд частицы равен 1
 - Модуль разницы между импульсом до фитирования и после не превышает 20 ГэВ
 - *− χ2≤20*
 - Импульс заряженной частицы находится в интервале [5 ГэВ;70 ГэВ]
 - Расстояние между скрещивающимися прямыми, с помощью которых восстанавливается вершина, не превышает 25 мм
 - Z координата вершины находится в следующем интервале [130 м;180 м]
 - Модуль разности времени регистрации трека в заряженном годоскопе и CEDAR не должно превышать 10 нс
- Не должно быть кандидатов в IRC и SAC
- Не должно быть кандидатов на событие в фотонном вето (LAV).
- Отношение энергии мюона в LKr к импульсу мюона не должно превышать 0.2
- Разность времени регистрации трека в CEDAR и MUV3 должна быть в следующем интервале (-15нс;10 нс)

Дифференциальный черенковский счетчик (CEDAR)

- Сосуд высокого давления 3.85 бар, заполненный водородом
- Сферическое зеркало
- Кольцевая диафрагма
- 8 октантов по 48 фотоумножителей

Гигатрекер (GTK)

Спектрометр, состоящий из 3 станций, установленных между четырьмя

магнитами

Каждая станция:

- гибридный кремниевый
 пиксельный детектор с общим
 размером 63.1 мм х 29.3 мм
- Размеры пикселей 300 х 300 µм²
- Общее количество пикселей 18 000 пикселей
- Толщина пикселей 200 µм2

Разрешения:

- по импульсу *σ(p)/p ~ 0.2 %*
- по направлению 16 *µ*рад
- временное 150 пс

Детектор анти-совпадений (CHANTI)

6 станций сцинтилляционных пластин, окружающих пучок

Каждая станция:

- Два слоя в направлениях Х и У
- Длина наружней стороны квадрата составляет 300 мм
- прямоугольное отверстие 90 мм х 50 мм для прохождения частиц пучка

CHANTI накладывает вето на 95% неупругих взаимодействий каона в третьей камере GTK

Фотонное вето больших углов (LAV)

- Полярные углы от 8.5 мрад до 50 мрад
- 12 станций, которые созданы из переработанных блоков из свинцового стекла

Калориметр на жидком криптоне (LKr)

Подавление фоновых фотонных событий в угловом диапазоне от 1 мрад до 8.5 мрад

