Поиск тяжелых нейтрино в ближнем детекторе ND280 эксперимента T2K

Выполнил:	
студент 183 группы	Суворов С.Б.
Научный руководитель:	
д.фм.н., профессор	Куденко Ю.Г.

выпускная квалификационная работа (магистрская диссертация) МФТИ, ИЯИ РАН 5 июля 2017

Тяжелые нейтрино

- Расширение Стандартной модели (СМ) введением правых (стерильных/тяжелых/HNL) нейтрино и их смешивания с активными.
- Возможность объяснить образование массы активного нейтрино, барионную асимметрию, кандидат на темную материю.
- vMSM (Shaposhnikov, Asaka Phys.Lett.B631,2005) одна из теорий, описывающая природу HNL.
- Широкий спектр допустимых масс:
 - ~10⁹ ÷ 10¹⁴ GeV: масштабы GUT, объяснение барионной асимметрии через распады HNL. <u>Нет возможности экспериментальной проверки.</u>
 - $\sim 10^2 \div 10^3$ GeV: возможность проверки на энергетических масштабах LHC
 - ~10⁻³ ÷ 10² GeV: наиболее интересный диапазон массы известных лептонов и кварков. Возможность решить многие проблемы SM. Изучается в данной работе
 - ~ eV: аномалии нейтринных осцилляций. Не имеет отношения к темной материи и барионной асимметрии.
- «Минимальность» теории: 18 новых параметров: 6 масс, 6 элементов смешивания и 6 СР-нечетных фаз, их нахождение – актуальная задача экспериментальной физики.

Существующие ограничения на

элементы смешивания

- В исследуемой области 140 MeV < M_{hnl} < 500 MeV наиболее строгие ограничения (<u>arXiv:1502.00477</u>) получены экспериментом PS191 (CERN) и E949 (BNL).
- В теоретических работах предсказывается возможность улучшения в эксперименте T2K (Asaka et al <u>arXiv:1212.1062v2</u>).

Как искать тяжелые нейтрино

• Реакции, не рассматриваемые в данной работе:

 $N \rightarrow \gamma \nu$ $N \rightarrow \nu \pi^0$ $N \rightarrow 3\nu$

Мы исследуем возможность детектирования частиц от распадов HNL, в свою очередь рожденных в каонных распадах:
Количество событий ~|U|⁴

Эксперимент Т2К

- Эксперимент T2K (Tokai to Kamioka) с длинной базой для исследования (анти-)нейтринных осцилляций ν_μ → ν_e, ν_μ → ν_μ.
- Первые измерения θ_{13} , уточнение θ_{23} , δm^2_{23} и сечений нейтринных взаимодействий.
- Квазимоноэнергетический пучок мюонных нейтрино $E_{\nu} \sim 0.6 \text{ GeV}$.

Ближний детектор ND280

- Off-axis магнитный трековый детектор на расстоянии 280 метров от мишени.
- Нас интересует активный объем время-проекционных камер, заполненных газом (Ar) малая плотность → малый фон от активных нейтрино.
- Есть возможность восстановить вершины взаимодействий, разделение заряженных частиц в магнитном поле.

Поток тяжелых нейтрино

- Используем результаты моделирования моды Кµ2 (К $\to \mu^+ \nu_\mu)$, где имеется информация о родительских частицах.
- Пересчитываем вероятность попадания в детектор для массивного нейтрино. MC estimation Asaka et al (<u>arXiv:1212.1062v2</u>)

Распад тяжелых нейтрино

- Количество событий мы оцениваем исходя из:
 - потока HNL φ
 - чувствительной площади детектора S_{det}
 - вероятности распада HNL в TPC P_{decay}^{TPC}
 - вероятности распада по данной моде *Br_{mode}*

 $N_{\text{events}} = \varphi(\text{HNL}/10^{21}\text{p.o.t/cm}^2) \cdot S_{det} \cdot P_{decay}^{TPC} \cdot Br_{mode}$

au - время жизни HNL

Распады HNL

- Используя пакет для Монте-Карло моделирования в ND280, было изучено поведение частиц в детекторе, получены примеры сигнальных событий, подтверждена однородность потока HNL.
- Были получены энергетические и угловые спектры вторичных частиц.
- Значительная часть частиц обладает E < 2 GeV, что позволяет их эффективно восстанавливать в ТРС. Ожидается рост эффективности восстановления в области высоких масс.

Распад тяжелых нейтрино

Стратегия анализа

- Возможно два метода анализа:
 - 1. Поиск пика в распределении инвариантной массы
 - необходимо хорошее разрешение по инвариантной массе 🚫
 - необходима хорошая модель фона 🚫
 - 2. Сильное подавление фона и поиск редких событий
 - необходимы критерии отбора, сильно подавляющие фон 💊
 - После подавления фона почти до 0, все наблюдаемые события интерпретируются как фон.
 - Верхняя граница на элемент смешивания:

 $|U_i|_{limit}^2 = \sqrt{\frac{U_n}{N_{events}}}$ U_n статистическое значение для 90% С.L.

$$U_n = U_{n0} \left\{ 1 + (U_{n0} - n) \frac{\sigma_{Acc}^2}{2} \left(1 + \left(\frac{(U_{n0} - n) \sigma_{Acc}}{2} \right)^2 \right) \right\}$$

Учет систематических ошибок σ_{Acc}

Анализ событий

- Были разработаны следующие критерии отбора:
- 1. Вершина в объеме ТРС с двумя разноименными треками
- 2. Нет активности в предыдущем детекторе
- 3. Нет дополнительной активности во время-проекционной камере
- 4. Идентификация как $e\pi$ или $\mu\pi$
- 5. Ограничение на инвариантную массу
- 6. Ограничение на полярный угол HNL

Эффективность восстановления сигнальных событий

Фоновые процессы

 Для оценки фона были использованы данные разных нейтринных генераторов

10 ²¹ <i>POT</i>	NEUT	GENIE	NuWro	NEUT $\overline{\nu}$
$N o \mu \pi$	0.70	0.69	1.07	1.07
$N \to e\pi$	0.48	0.95	0.35	0.35
$N o \mu\mu\nu$	2.18	1.63	1.22	1.22

 Нормируя фон на доступную для анализа статистику данных (6.2v + 3.9 v)10²⁰ POT (2010-2015)

BG		
$N o \mu \pi$	0.94	
$N \to e\pi$	0.73	
$N o \mu\mu\nu$	1.83	

Систематические ошибки

Систематические ошибки возможны только при предсказании числа событий:

$$N_{\text{events}} = \varphi(\text{HNL}) \cdot \frac{V_{TPC}}{c\beta\gamma} \cdot \Gamma_{decay} \cdot Eff_{det}$$

• φ(HNL) - поток тяжелых нейтрино. Наследует ошибки моделирования пучка каонов

- по данным NA61 ошибка сечений рождения каонов около 20%
- это доминирующая ошибка в оценке пучка
- *V*_{*TPC*} чувствительный объем время-проекционных камер
- βγ кинематические параметры
- *Eff_{det}* эффективность детектора. Здесь должна быть учтена систематика детектора.
 - систематика для всех мод составляет около 4-5%

Чувствительность

Заключение

- Промоделированы рождения и распады тяжелых нейтрино в ближнем детекторе ND280, проведен анализ сигнальных событий.
- Сформулированы критерии отбора сигнальных и подавления фоновых событий, найдена эффективность реконструкции распадов HNL.
- Оценены систематические ошибки анализа
- При статистике 10²¹ РОТ в эксперименте Т2К возможно улучшить ограничения на элементы смешивания |U|²
- Ожидаемая статистика в эксперименте 8×10²¹ РОТ
- Планируется продлить набор статистики до 20×10²¹ *РОТ*

В данным момент работа проходит рецензию в коллаборации для одобрения анализа реальных данных

Благодарности

Автор выражает благодарности
Измайлову А.О, Шайхиеву А.Т., Marco ZITO, Mathieu
LAMOUREUX за консультации по теме.

BackUP

Распад тяжелых нейтрино

• Двухчастичный распад. Рассматриваемые реакции:

$$N \to e^{-}\pi^{+}$$
$$N \to \mu^{-}\pi^{+}$$

• Трехчастичный распад. Рассматриваемые реакции:

$$N \to \mu^{\pm} e^{\pm} \nu_{e,\mu}$$
$$N \to l^{-} l^{+} \nu_{l}$$

NC взаимодействие интересно тем, что можем рассматривать элемент смешивания $|U_{\tau}|$ $N \rightarrow l^{-}l^{+}v_{e,\mu,\tau}$

Элементы смешивания

- Ограничения при рассмотрении 3-х частичных мод распада HNL.
- Ограничение PS191, предсказание Asaka, МК моделирование

Взаимодействие через NC в приближении малого $|U_{\mu}|$

Элементы смешивания

• Таким образом мы можем оценить чувствительность эксперимента к элементам смешивания при отсутствии фона и статистике 10²¹ p.o.t.

•
$$|U_{lim}|^2 = \sqrt{\frac{2.44}{N_{events}}}$$
 - 90% CL

• Ограничение PS191, феноменологическое предсказание Asaka et al, МК моделирование $|U_e|^2$ $|U_\mu|^2$ $|U_e||U_\mu|$

• Систематика детектора

	μπ	еπ			
Variation-Like					
Distortions of magnetic field	0.17%	0.13%			
TPC momentum scale	0.1%	0.1%			
TPC momentum resolution	0.99%	0.74%			
TPC dE/dx particle ID	0.43%	1.67%			
Efficiency-like					
TPC cluster efficiency	<<1%	<<1%			
TPC tracking efficiency	0.3%	3%			
TPC charge ID efficiency	5.95%	6.22%			
TPC-FGD matching efficiency	0.69%	0.82%			
Pion secondary interactions	2.67%	2.43%			
Global Vertexing	0.87%	0.79%			
Total	7.48%	8.11%			

23