ГиперКамиоканде и DUNE

Юрий Куденко ИЯИ РАН

Ученый Совет ИЯИ РАН 18 октября 2018

Hyper-Kamiokande Project

12countries> 350 collaborators

Water tank 60 m(H)x74m(D) Total volume 260 kt Fiducial volume 190 kt ~10xSuper-K 40000 50 cm ID PMTs PMT coverage 40% 6700 20 cm OD PMT's Photon sensitivity ~2 times better than Super-K Construction of 2nd tank in Korea (1-3 deg off axis, 2nd oscill. maximum) is under study

J-PARC

Water tank

Photosensors

Quantum efficiency [%]

Hamamatsu R12860-HQE B&L 50 cm PMT

40000 PMTs 40% photocoverage

Other 50-cm candidates:

- Hybrid Photo-Detector
- MCP PMT
- Multi-PMT

1 p.e. time resolution 1.1. ns charge resolution 35%

Hamamatsu R5912-HQE B&L 20 cm PMT

Tokai-to-Hyper-K (T2HK)

J-PARC neutrino beam

2.5° off-axis, peak energy 600 MeV (oscillation maximum), current beam power 485 kW

Physics

Accelerator neutrinos

- search for CP violation
- precise measurement of oscillation parameters

Atmospheric and solar neutrinos

- mass hierarchy
- θ_{23} octant

Nucleon decays

Neutrino astronomy and astrophysics

Search for CP violation

Sensitivity to CP

 $v: \overline{v} = 1:3$ $\sin^2 2\theta_{13} = 0.1$

Integrated beam power 1.3 MW x 10^8 s \rightarrow 2.7 x 10^{22} POT with 30 GeV proton beam

Exclusion of δ =0 at 8 σ (for δ = - π /2) 5 σ (3 σ) significance for 57 (80)% of possible δ values

Prospects for δ measurements

J-PARC upgrade

ND280 upgrade

- Reduction of systematics

arXiv: 1606.08114; 1412.3086

- Cross sections

E61: Movable Water Cherenkov detector

Inner diameter 8 m Inner detector height 6-8 m Multi-PMTs Load detector with Gd₂(SO₄)₃ to enhance neutron detection

Anti-electron neutrino Proton Positron Cherenkov light

Measurement of neutron mutiplicity to understand Gd n-capture signal in Super-K and Hyper-K New upstream tracker:

Two Horizontal TPCs

One 3D fine-grained scintillator target SuperFGD TOF system around new tracker

3D highly granular scintillator detector (SuperFGD):

- precise measurement of neutrino energy;
- cover full solid angle and low momentum for charged particles from neutrino interactions;
- measure electron neutrino cross sections;
- measure nuclear effects in neutrino interactions
- reduce systematic uncertainties to 3-4% level in oscillation measurements

arXiv:1609.04111

SuperFGD

- Volume 200 x 200 x 60 cm³
- 2 x 10^6 scintillator cubes , 1 x 1 x 1 cm³
- Each cube has 3 holes, diameter 1.5 mm
- 3D (x,y,z) WLS readout
- About 60000 readout WLS/MPPC channels
- Total active weight about 2 t

Efficienc

0.1E

-0.5

0.5

Fully active, highly granular, 4π scintillator neutrino detector with 3D WLS/MPPC readout

Technology

Cubes are manufactured at Uniplast, Vladimir

Extrusion \rightarrow injection molding

New machine for injection molding was bought and commissioned at Uniplast in July 2018

hes D cubes tor: sheet

Assembly, mechanics, tests, fibers,

photosensors at INR

Beam tests at CERN

T9 channel at CERN: muons, pions, protons, electrons 0.5 – 5.0 GeV

- -First small prototype:
 - -125 cubes, 75 readout channels
- Beam test October 2017

Large prototype Length 48 cm Width 24 cm Height 8 cm 9216 cubes, each 1x1x1 cm³ 1728 Y11 WLS fibers, 1 mm diameter Readout: 1728 MPPC's 2 beam tests: June-July 2018 August-September 2018

Beam events Top views

Positron, 1 GeV, B = 0.2 T

Muon, 5 GeV, 45 deg

Stopped proton, 0.5 GeV, 45 deg

Results

MIP: time resolution per fiber

MIP: Light yield per fiber

Schedule for SuperGFD

Manufacturing of detector elements Assembly Tests Installation into ND280 pit 01.2019 - 12.2020 10.2020 - 09.2021 07.2021 - 09.2021 10.2021

Participants :

INR; KEK, U.Tokyo, U.Kyoto; U.Geneva, CERN; Ecole polytechnique, Saclay; Uppsala; NCBJ,Warsaw; LSU, Stony Brook

Status of Hyper-K and T2HK

Official statement, 12 September 2018

- Seed funding for Hyper-Kamiokande construction was allocated within MEXT 2019 budget
- The University of Tokyo pledges to ensure construction of Hyper-Kamiokande in April 2020

LBNF/DUNE project

Main goals: - discovery of CP violation in leptonic sector

- neutrino mass hierarchy at >5 σ level
- neutrino astronomy
- proton decay search

Far detector 40 kt (4 x 10kt) LAr TPC

Single and Dual phase detectors

Flagship FNAL project

30 countries 161 institutions > 1000 collaborators $E_p = 60-120 \text{ GeV}$ Beam power 1.2 -> 2.4 MW
On axis neutrino beam $Ev \sim 1-6 \text{ GeV}$ L=1300 km from FNAL to
SURF, S.Dakota

Sensitivity to CP violation

2021 – installation of 1st far detector 2024 – 2 modules operational 2026 – deliver neutrino beam

Detector prototyping

Detector R&D of LAr detectors within the CERN neutrino platform start in 2016 beam in 2018

Both prototypes are installed at CERN, in a dedicated extension of the North Area

Single Phase TPC

1st 10 kt module of DUNE - single-phase TPC
6m x 2.3 m anode and cathode planes 3.6 m spacing
Photon detectors – light guides + SiPMs embedded in APAs

Dual Phase TPC

Demonstrator: $3x1x1 \text{ m}^3 - 5 \text{ tons}$

ProtoDUNE DP: 6x6x6 m³ 300 tons active mass

Measurements with test beam in 2018

First events in SP TPC

DUNE Near Detector

Concept study

T2HK and DUNE: CPV Significance

Hyper-K

- Single tank
 Normal hierarchy
 Systematics 3-4%
 v: v = 1:3
- CPV (δ = -90 deg, 5 σ) \rightarrow 1.3MW x 4 years

arXiv:1807.10334

DUNE

- Staging plan
- Normal hierarchy
 - $v: \overline{v} = 50\%: 50\%$
- CPV (δ = -90 deg, 5 σ) 253 kt·MW·year \rightarrow 6.5 years

Combination T2K-II and NOvA can reach 4.0-4.5 σ for δ = -90 deg by 2026

Nucleon Decay sensitivities

Summary

Hyper-Kamiokande and DUNE - the major next generation neutrino experiments

Very broad physics program:

- search for CP violation in neutrino oscillations
- proton decay
- rich program with atmospheric and solar neutrinos
- supernova neutrinos
- + other interesting physics

Detector (Far and Near) R&D and upgrade in progress → good results

Experiments are expected to start data taking in 2026

Backup slides

$p \rightarrow e^+ \pi^0$ events

v_e and \overline{v}_e events

1 Hyper-K tank , 1.3MW, 10x10⁷sec, v : anti-v = 1:3 , $sin^2 2\theta_{13} = 0.1$

Appearance v mode

 δ = 0 deg

Appearance \overline{v} mode

δ = 0 deg	Appearance signal	Wrong sign	Beam $ u_{e}$ background	NC background
ν mode	1643	15	259	134
anti-v mode	1183	206	317	196

T2HKK: δ precision

T2HKK : study oscillations at 1st and 2nd oscillation maxima

- \rightarrow better sensitivity to mass hierarchy
- \rightarrow better sensitivity to CP violation

Proton Decay: $p \rightarrow \pi^0 e^+$

HyperK

Proton Decay: $p \rightarrow \overline{v} K^+$

HyperK

