Поиск экзотических частиц на протонных ускорителях

Ю.Г. Куденко

ИЯИ РАН

Марковские чтения, Москва, 16 мая 2018 г.

Поздравления лауреатам !

ПРЕМИЯ ИМ. М. А. МАРКОВА В 2018г.

"За вклад в теоретические исследования гипотетических элементарных частиц и развитие методов их экспериментальных поисков".

Дмитрий Сергеевич Горбунов член-корреспондент РАН, профессор РАН

Эдуард Эрнстович Боос д.ф. - м.н., профессор

Physics beyond the SM

-Neutrino masses and mixings

-Baryon Asymmetry of Universe

- Dark matter and dark energy

Extensions of SM

Hidden sector

Heavy Neutral Leptons (massive neutrinos)

Dark Photons

Axion-Like Particles

Heavy Neutral Leptons

Neutrino oscillations, BAU, DM can be explained in vMSM model with 3 heavy right handed Majorana neutrinos (heavy neutral leptons) N_1 , N_2 , N_3 .

Mixing between active and heavy sterile v's:

 \rightarrow production of heavy v's in weak decays of mesons.

The same mixing: \rightarrow decay of heavy v's to SM particles

vMSM Model, T.Asaka, M.Shaposhnikov PL B620 (2005) 17

3 heavy sterile neutrinos N (Neutral leptons) coupled with active neutrinos $-N_1: m_1 \sim O(10 \text{ keV}) \rightarrow \text{dark matter candidate}$

 $-N_{2,3}$: m_{2,3} ~ O(1 GeV) \rightarrow extra-CPV: baryon asymmetry, mv \neq 0 (seesaw)

How to search for HNL's?

- Meson decays
 - search for extra peaks R.Shrock, PRD, 24, 1232 (1981)

$$\Gamma(K^{+} \to \mu^{+}N) = \rho \Gamma(K^{+} \to \mu^{+}v_{\mu}) \left| U_{\mu N} \right|^{2} \quad \underline{K^{+}}$$

- Decays of HNL's
 - "nothing" leptons and hadrons

$$p + A \rightarrow \text{mesons} + \dots \qquad \stackrel{K}{\longrightarrow} \nu_{\mu} \stackrel{\mu}{\xrightarrow{\theta_{\mu}^{2}}} \qquad \stackrel{N}{\longrightarrow} \nu_{\mu} \stackrel{\pi^{\pm}}{\xrightarrow{\theta_{\mu}^{2}}} \qquad \stackrel{N}{\longrightarrow} \nu_{\mu} \stackrel{\mu}{\xrightarrow{\theta_{\mu}^{\pm}}} \stackrel{N}{\longrightarrow} \nu_{\mu} \stackrel{\nu}{\xrightarrow{\theta_{\mu}^{\pm}}} \stackrel{\nu}{\xrightarrow{$$

Experiment E949 at BNL

Main goal: measurement of rare decay $K \rightarrow \pi v v$

7 events detected

$$Br(K^+ \to \pi^+ \nu \overline{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$$

$p_{K} = 710 \text{ MeV/c}$

- Stopped K+ decays in active target
- Momentum and energy of charged particles from kaon decays measured by drift chamber and range stack
- Photon detectors suppress events with photons

Trigger: decay of stopped kaon -> muon track -> stop and decay + no any activity in detector

1.7x10¹² decays of stopped kaons were analyzed

Mass interval

$$K^+$$
 μ^+ ν_{μ} λ' $N_{2,3}$

Search for peaks in the muon spectra from kaon decays

$$P_{\mu} = \frac{1}{2}M_{K}\sqrt{1 + (\frac{m_{\mu}^{2}}{M_{K}^{2}})^{2} + (\frac{m_{N}^{2}}{M_{K}^{2}})^{2} - 2(\frac{m_{\mu}^{2}}{M_{K}^{2}} + \frac{m_{N}^{2}}{M_{K}^{2}} + \frac{m_{\mu}^{2}}{M_{K}^{2}}\frac{m_{N}^{2}}{M_{K}^{2}})}$$

after $\pi \rightarrow \mu \rightarrow e$ trigger

Muon spectrum

	Br	Trigger + Cuts	Total rejection
$K_{\mu 3}$	3.3×10 ⁻²	$\sim 10^7$	~ 10 ⁹
$K_{\mu\nu\gamma}$	6.2×10 ⁻³	$\sim 10^4$	$\sim 10^{7}$

Suppression of kaon decays

Muon spectrum after all cuts

E949 sensitive to heavy neutrinos in the mass region 175-300 MeV

Search for peaks

$$L(\mu,\theta) = \left\{ \prod_{i=1}^{N_{bin}} \frac{(\mu \cdot \epsilon s_i + \beta b_i)^{n_i}}{n_i!} e^{-(\mu \cdot \epsilon s_i + \beta b_i)} \right\}$$

 $\times Gauss(\epsilon; \epsilon_{peak}, \sigma_{\epsilon_{peak}}),$

E949 result

Phys.Rev. D91 (2015) 5, 052001

 $M_{N_{2,3}} = 175 - 300 \,\mathrm{MeV} \left| \mathrm{U}_{\mu\mathrm{H}} \right|^2 < 10^{-7} - 10^{-9} (90\% \mathrm{C.L.})$

Experiment OKA

Collaboration IHEP-INR-JINR

 $p_{K} = 17.7 \text{ GeV/c}$ $I_{K} = 2.5 \times 10^{5} \text{ kaon/spill}$

Kaon decays in-flight Data accumulated in 2012

OKA result

Method: search of a peak in spectrum of missing mass

PL B778 (2018) 137

Experiment sensitive to mixing of heavy and muon neutrino in mass region 0.22 – 0.37 GeV

Missing mass spectrum after all cuts

NA62 at CERN

Main goal:

Measurement of the rare decay $K^+ \rightarrow \pi^+ \nu \nu$

- Collect about 80 events at the SM prediction
- Extract $|V_{td}|$ with a precision of 10%

NA62 is to accumulate 1.2x10¹³ kaon decays in the fiducial volume

~200 participants from ~30 institutes: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino,Roma I, Roma II, San Luis Potosi, Sofia, Torino,TRIUMF, Vancouver UBC.

Experiment NA62

SPS Beam:

- ☆ 400 GeV/c protons
- ★ 2.10¹² protons/spill
- ጵ 3.5s spill

Secondary positive Beam:

- ☆ 75 GeV/c momentum, 1 % bite
- * 100 mrad divergence (RMS)
- ☆ 60x30 mm² transverse size
- ☆ K⁺(6%)/p⁺(70%)/p(24%)
- ☆ 33x10¹¹ ppp on T10 (750 MHz at GTK3)

Decay Region:

- 60 m long fiducial region
- ☆ ~ 5 MHz K⁺ decay rate
- ☆ Vacuum ~ O(10⁻⁶) mbar

First NA62 result

Data 2016: Number of kaon decays in fiducial volume = 1.21 x 10¹¹ First NA62 result: one K⁺ $\rightarrow \pi^+\nu\nu$ event observed

Acceptance to HNL

Trigger: - one electron - one muon

Missing mass

2015 data: $\sim 3 \times 10^8$ K+ $\rightarrow e^+\nu$, $\sim 1 \times 10^8$ K+ $\rightarrow \mu^+\nu$

NA62 result: search for HNL

No signal observed Upper limits on $|U_{eN}|^2$ and $|U_{uN}|^2$

UL on |U |² at 90% CL 0 0 0

10⁻⁷

10⁻⁸

10⁻⁹

50

TRIUMF (1992)

PIENU (2017)

 $\pi^+ \rightarrow e^+ N$

π+→e+N

 N_{23}

PL B778 (2018) 137

Experiment T2K

Study of neutrino oscillations, search for CP violation, v cross sections....

Off-axis near neutrino detector ND280

Principle of HNL detection

- vertex of NHL decay in TPC volume (Ar+CO₂)
- 2 tracks of opposite charge
- suppression of neutrino interactions

 $- p_T = 0$

Three TPC's \rightarrow total decay length = 3m

T2K result

Neutrino mode 6 x 10²⁰ POT Anti-neutrino mode 6.5 x 10²⁰ POT

Preliminary

Limits (90% CL) to mixing elements $|U_{\mu}|^2$, $|U_e|^2$, $|U_{\tau}|^2$

Expected background ~1 event

Dark photons

New force between dark sector and visible particles – dark photon (A')

 $m_{A^{'}} {\leq} 1 ~GeV$

 $e Z \rightarrow e Z A' A' \rightarrow invisible$

 $E_{\text{measured}} = E_0 - E_{A'}$

 $E_0 = 100 \text{ GeV}$ I = (3-4) x 10⁶ e/spill

NA64 result

No events observed

Invisible A' with masses ≤100 MeV is excluded as an explanation of the g – 2 muon anomaly

Expected number of background events in the signal box for 2.75 x 10⁹ eot

NA62 at CERN

Invisible decay

 $\begin{array}{l} K^{+} \rightarrow \pi^{+} \pi^{0} , \ \pi^{0} \rightarrow A' \ \gamma, \quad A' \rightarrow invisible \\ \mathsf{BR}(\pi^{0} \rightarrow \mathsf{A'} \ \gamma) = 2\epsilon^{2} [1 - (\mathsf{m}_{\mathsf{A'}} / \mathsf{m}_{\pi 0})^{2} \]^{3} \times \mathsf{BR}(\pi^{0} \rightarrow \gamma \gamma) \\ K^{+} \rightarrow \pi^{+} A' \ (by product \ of \ K^{+} \rightarrow \pi^{+} \ \nu \nu \) \end{array}$

Main background $\pi^0 \rightarrow \gamma \gamma$ with one photon missed

Analysis of 4% of 2016 data \rightarrow 1.5 x 10¹⁰ K+ decays

No events observed, 90% CL upper limit

P.Mermod, NuFact17

Visible decay

 $\begin{array}{ll} \mathsf{pN} \to \mathsf{X}\pi^0 & \pi^0 \to \mathsf{A'} \ \gamma & \mathsf{A'} \to \mathsf{I^+I^-} \\ \mathsf{pN} \to \mathsf{X} \ \mathsf{A'} & \mathsf{A'} \to \mathsf{I^+I^-} \end{array}$

M.Mirra, Moriond 2018

$3 imes 10^{17}$ PoT acquired in 2016/17 with di-muon parasitic trigger, $5 imes 10^{16}$ PoT with ee trigger

Visible decay

 $\begin{array}{ll} \mathsf{pN} \to \mathsf{X}\pi^0 & \pi^0 \to \mathsf{A}' \ \gamma & \mathsf{A}' \to \mathsf{I}^+\mathsf{I}^- \\ \mathsf{pN} \to \mathsf{X} \ \mathsf{A}' & \mathsf{A}' \to \mathsf{I}^+\mathsf{I}^- \end{array}$

Assuming 10¹⁸ POT, 400 GeV protons, beam-dump mode

Axion-like particles

ALP's (a) can be a mediator between DM particles and SM particles

Production of ALP's in proton-nucleus interaction through the coherent scattering between proton and nuclei (Primakoff effect) Cross section ~Z²

NA62: sensitivity to ALP's

Analysis of 2017 data in progress

Experiments sensitive to hidden particles

Current experiments:

T2K \rightarrow T2K-II \rightarrow T2HK NA62, NA62 beam dump NA64

Future projects:

DUNE - LBL neutrino experiment SHIP at CERN

Experiment SHIP at CERN

arXiv:1505.04956

SHIP Principle

SHIP expected sensitivity

Form masses ≤ 500 MeV almost excluded by E949,T2K, NA62

SHIP expected sensitivity

Dark photons

Conclusion

Fixed target experiments at proton accelerators have good chances to test New Physics (hidden sector) beyond SM:

- sensitive to HNL (heavy sterile neutrinos) in the mass range up to ~ few GeV
- probe "dark photons"
- search for ALP's