Выпускная квалификационная работа (магистерская диссертация)

«Трансмутация ядер свинца в столкновениях встречных пучков на БАК»

студентки 283а группы Дмитриевой Ульяны Александровны

Потери ядер пучка LHC

Тяжелые ядра разрушаются в результате ультрапериферических электромагнитных взаимодействий электромагнитной диссоциации (ЭМД).

Вторичные ядра транспортируются по траекториям, близким к траектории первичного ²⁰⁸Pb. Эти ядра могут попадать в конструкционные элементы LHC и приводить к их локальному нагреву.

Ядра пучка 208Рb82+: синяя линия.

Вторичные ядра:

зеленая — ²⁰⁸Pb⁸¹⁺, красная — ²⁰⁷Pb⁸²⁺, желтая — ²⁰⁶Pb⁸²⁺ R. Bruce et al., Phys. Rev. ST Accel. Beams 12, 071002 (2009)

Ядро-остаток в ЭМД можно определить, регистрируя вылетающие из первичного ядра нейтроны и протоны. В эксперименте ALICE такие нуклоны попадают в нейтронные и протонные Zero Degree Calorimeters (ZDC).

Central Barrel ($|\eta|$ <0.9) study of hadronic signals, photons and dielectrons

Dimuon arm (-4<η<-2.5) study of muon pair production C.Oppedisano et al., Nucl.Phys.B (Proc.Suppl.) 197(2009)206

с вылетом определенного количества нейтронов

Отбор событий: отсутствие сигнала в протонном ZDC на той же стороне

Функции, используемые для фитирования откликов ZDC для событий с различным количеством нуклонов, строятся как сумма гауссианов, соответсвующих i = 1, 2, ...n нуклонам:

$$F(E) = \sum_{i=1}^{n} f_i(E) = \sum_{i=1}^{n} \frac{N_i}{\sqrt{2\pi\sigma_i}} e^{-\frac{(E-\mu_i)^2}{2\sigma_i^2}}$$

Каждый пик имеет три параметра, среднее значение μ_i , дисперсию σ_i и нормировочный коэффициент N_i , который пропорционален количеству событий в пике.

Значения μ_1, σ_1 и N_1 являются свободными параметрыми. При этом μ_1 должно соответствовать энергии одного нуклона E_0 . Параметры остальных гауссианов выбираются следющим образом: $\sigma_i = \sqrt{i(\sigma_1^2 - \sigma_{ped}^2) + \sigma_{ped}^2}$

где σ_{ped} ширина пьедестала, $\mu_i = i \mu_1$, а N_i остается свободным параметром для всех гауссианов.

Простая вероятностная модель, учитывающая аксептанс в эксперименте (arXiv:1805.01792)

Связь между числами зарегистрированных ${\sf n}_i$ и вылетевших вперёд нуклонов ${\sf N}_i$

$$\begin{pmatrix} \mathsf{n}_1 \\ \mathsf{n}_2 \\ \mathsf{n}_3 \\ \mathsf{n}_4 \end{pmatrix} = \begin{pmatrix} \mathsf{p}_{11} & \mathsf{p}_{21} & \mathsf{p}_{31} & \mathsf{p}_{41} \\ 0 & \mathsf{p}_{22} & \mathsf{p}_{32} & \mathsf{p}_{42} \\ 0 & 0 & \mathsf{p}_{33} & \mathsf{p}_{43} \\ 0 & 0 & 0 & \mathsf{p}_{44} \end{pmatrix} \begin{pmatrix} \mathsf{N}_1 \\ \mathsf{N}_2 \\ \mathsf{N}_3 \\ \mathsf{N}_4 \end{pmatrix} = \mathsf{P} \begin{pmatrix} \mathsf{N}_1 \\ \mathsf{N}_2 \\ \mathsf{N}_3 \\ \mathsf{N}_4 \end{pmatrix}$$

Элементы матрицы определяются биномиальным распределением: $p_{nk} = \binom{n}{k} p^k (1-p)^{n-k}$, где р - вероятность регистраци нуклона в ZDC Вероятность k нуклонам попасть в ZDC из их общего числа n в событии. Действительное число нуклонов N можно получить используя обратную матрицу P^{-1}

05/07/2018

соответствующие образованию 203,204,205,206,207 Pb

ZN	ZP	$\sigma_{\rm raw} \pm \sigma_{\rm stat}$ (барн)		$\sigma + \sigma = - (6 \circ n u)$	<i>с</i> (бору)
		Сторона С	Сторона А	$0 \pm 0_{\text{stat}} \pm 0_{\text{syst}} \text{ (0aph)}$	σ_{RELDIS} (oaph)
1n	0p	101.3 ± 0.2	102.2 ± 0.2	$104.9 \pm 0.3 \pm 5.2$	103.8 ± 5.2
2n	0p	22.41 ± 0.08	21.54 ± 0.08	$23.3 \pm 0.1 \pm 1.3$	22.0 ± 1.1
3n	0p	6.62 ± 0.04	6.44 ± 0.04	$6.67 \pm 0.05 \pm 0.37$	7.53 ± 0.38
4n	0p	4.23 ± 0.03	4.27 ± 0.03	$4.35 \pm 0.04 \pm 0.21$	4.30 ± 0.22
5n	0p	3.15 ± 0.03	3.26 ± 0.03	$2.81 \pm 0.03 \pm 0.22$	3.00 ± 0.15

Видимые и с поправкой на аксептанс сечения эмиссии одного, двух, трех, четырех и пяти нейтронов при условии отсутствия протонной эмиссии на стороне А или С в ЭМД ядер свинца в результате ²⁰⁸Pb²⁰⁸Pb столкновений с энергией $\sqrt{s_{NN}} = 5.02$ ТэВ

Энергетический спектр в протонных ZDC

Трансмутация ядер Pb в столкновениях встречных пучков на БАК

- С помощью подсчета нуклонов, испущенных в ЭМД ядер ²⁰⁸Pb на LHC можно достоверно оценить выходы соответствующих вторичных ядер. Наши результаты измерений эмиссии нейтронов в ЭМД ядер ²⁰⁸Pb хорошо согласуются с моделью RELDIS.
- Заметим, что каналы с протонной эмиссией имеют значительно более низкие сечения и, следовательно, оказывает меньше влияния на работу ускорителя.
- С помощью модели RELDIS можно оценить выходы вторичных ядер для столкновений других ядер (Ar, Cu, Xe) при энергиях будущего адронного коллайдера FCChh, что важно для его проектирования и выбора ядер для столкновений в нем.

10

11

Данный анализ важен для проектирования будущего адронного коллайдера FCC-hh

Inst. Nucleon–Nucleon Luminosity per Bunch

С уменьшением зарядов ядер растет время жизни пучка

M. Schaumann, Heavy ions at FCC-hh, 30 May 2017, FCC-Week, Berlin

æ

Разработаны программы анализа данных ALICE и графического представления результатов с помощью программной среды AliROOT

Подготовлена ALICE Analysis Note (авторы U.A. Dmitrieva, I.A. Pshenichnov) с результатами анализа данных, на основе которой, после утверждения результатов внутри коллаборации, будет подготовлена статья

Подготовлена и направлена в журнал Nuclear Instruments and Methods A работа U.A. Dmitrieva, I.A. Pshenichnov, «On the performance of Zero Degree Calorimeters in detecting multinucleon events» с описанием метода учета поправок к данным на ограниченный аксептанс ZDC и иллюстрацией его применения для ZDC экспериментов ALICE и NICA/MPD (https://arxiv.org/abs/1805.01792)

12

Настоящая работа выполнена в Лаборатории релятивистской ядерной физики Института ядерных исследований РАН.

Автор благодарит своего научного руководителя И.А. Пшеничнова за постановку задачи, методические рекомендации и поддержку, оказанную в ходе выполнения работы.

Автор благодарна и.о. заведующего Лабораторией Т.Л. Каравичевой и другим сотрудникам лаборатории за полезные замечания и помощь в работе.

13

СПАСИБО ЗА ВНИМАНИЕ!

Потери ядер пучка на LHC

- Рождение e⁺e—пар с захватом электрона $^{208}Pb^{82+} + ^{208}Pb^{82+} \rightarrow (^{208}Pb+e^{-}_{1s})^{81+} + ^{208}Pb^{82+} + e^{+}$ (~280 (BFPP): барн)
- Электромагнитная диссоциация (ЭМД): ${}^{208}\text{Pb}^{82+} + {}^{208}\text{Pb}^{82+} \rightarrow {}^{208}\text{Pb}^{82+} + {}^{207}\text{Pb}^{82+} + n$ (~100 барн)

$$\rightarrow {}^{208}\text{Pb}^{82+} + {}^{206}\text{Pb}^{82+} + 2n \qquad (\sim 20 \\ \text{барн})$$

→ другие каналы

Данные процессы изменяют магнитную жесткость ядра $p/Ze = (B\rho)$ в магнитном поле ускорителя, где ρ — радиус траектории частицы в магнитном поле **B**.

В результате ЭМД ядро теряет нейтроны и протоны, что приводит к изменению его заряда и массы: $A_0 \rightarrow A$, $Z_0 \rightarrow Z$, при этом меняется магнитная жесткость ядра: $B\rho \rightarrow B\rho(1+\delta)$, где $\delta = Z_0 A/Z A_0 - 1$, что может привести к потере ядер пучка и соответствующему уменьшению светимости LHC.

R. Bruce et al., Phys Rev ST Accel Beams 12, 071002 (2009) and other publications

Трансмутация ядер Pb в столкновениях встречных пучков на БАК

выходы нуклонов в ЭМД

17

Эксклюзивные каналы ЭМД		Инклюзивное рождение определенного нуклида		Эмиссия определенного числа нейтронов	
Канал	о (барн)	Нуклид	о (барн)	Множественность нейтронов	о (барн)
²⁰⁷ Pb + 1n	101.6	$^{207}\text{Pb} + \text{X}$	103.3	1n + 0p	0 103.8
206 Pb + 2n	120-34	206 Pb + X	of 21.3	2n + 0p	22.06
²⁰⁵ Pb + 3no ⁴	5.99	²⁰⁵ Pb + Xo	6.77	3n + op	7.53
²⁰⁴ Pb - 4n	2.88	²⁰⁴ Pb X X	3.45	412 + 5 p	4.30
A ACT		Acoret		A ctor	

Трансмутация ядер Pb в столкновениях встречных пучков на БАК

Нейтрон-нейтронные и нейтрон-протонные корреляции

На корреляциях видны, как одиночная, так и взаимная ЭМД

19

Адронные события характеризуются наличием

сигнала в электромагнитных калориметрах ZEM

Вылетающие вперёд нуклоны не все попадают в ZDC

- A
- Происходит рассеяние на трубе коллайдера, воздухе
- Пространство для размещения ZDC бывает ограничено
- ZDC могут частично загораживать коллиматоры пучков, расположенные сразу после точки взаимодействия
- Подобные эффекты учитывались, в частности, в работе E.V.Karpechev et al., Nuc. Phys. A921 (2014) 60 при измерении сечений вылета нейтронов от ЭМД ядер индия с энергией 158А ГэВ на CERN SPS

Анализ важен для проектирования будущего адронного коллайдера FCC-hh

Мощность пучков вторичных ядер

Траектории вторичных ядер

M. Schaumann, Heavy ions at FCC-hh, FCC week Berlin, 30.05.2017

23

Энергетический спектр в нейтронных ZDC

пьедестал

24

пьедестал

25

Протонный спектр при эмиссии менее 3 нейтронов

Для выделение диапазона энергий, соответствующего вылету одного протона вместе с несколькими нейтронами

Эмиссия нескольких нейтронов

вместе с одиночным протоном

Планируется выполнить подобный анализ с использованием двумерного фитирования, чтобы избежать ошибок, связанных с выбором диапазона для проекций

Видимые и с поправкой на аксептанс сечения эмиссии одного, двух и нейтронов вместе с эмиссией одиночного протона в ЭМД ядер свинца ²⁰⁸Pb с энергией √s_№ = 5.02 ТэВ

ZN	ZP	$\sigma_{\rm raw} \pm \sigma_{\rm stat}$ (барн)		$\sigma \pm \sigma \pm \sigma$ (facul)	(500H)
		Сторона С	Сторона А	$0 \pm 0_{\text{stat}} \pm 0_{\text{syst}} \text{ (0aph)}$	$\sigma_{\rm RELDIS}$ (0aph)
1n	1p	0.55 ± 0.01	0.57 ± 0.01	$0.71 \pm 0.02 \pm 0.04$	3.64 ± 0.18
2n	1p	0.83 ± 0.01	0.77 ± 0.01	$1.05 \pm 0.02 \pm 0.07$	3.51 ± 0.17
3n	1p	0.76 ± 0.01	0.71 ± 0.01	$1.21 \pm 0.03 \pm 0.06$	3.11 ± 0.16

Для протонных ZDC необходимо выполнение полного Монте-Карло моделирования для учета их аксептанса

Аналогичный анализ проводится для сеанса столкновений ядер Хе, проходившего в 2017 году

