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Standard Astrophysical Model: �dormant� quasar
Milky Way: normal galaxy and �Fermi bubble�



Keck Observatory: Twin Telescopes on Mauna Kea, Hawaii
Interferometer: 2 × ø 10 m× 36, segments



Very Large Telescope Array, ESO

Interferometer: 4× ø 8.2 m + 4× ø 1.8 m



Weighing the supermassive black hole SgrA* in the Galactic Center

Elliptic orbits of fast S�stars

Virial star velocity v ∼ 102 km/s
S�star velocities vS0−2 ' 1.5 103 km/s

vS0−16 ' 1.2 104 km/s

Mass of the central star cluster 107M�, radius 1 pc



Supermassive black hole SgrA* in the Galactic
Center

Mh = (4.1± 0.4)106M�



Supermassive black hole SgrA* in the Galactic
Center

S2-star: Tϕ= 16 yrs, Mh = (4.1± 0.4)106M�



Periodic motion in the central �eld



Power density pro�le of dark matter (DM)

ρ(r) = ρh

(
r

rh

)−β

In�uence radius of black hole

rh =
GMh

〈vh〉
∼ 1 pc, 〈vh〉 ∼ 102 km/s

β = 7/4 � �nite DM Gurevich 1964

β = 1/2 � in�nite DM Zeldovich & Novikov 1971

β = 1.7− 1.9 � DM galactic halo Gurevich & Zybin 1988

β = 1− 3 � numerical DM halo simulation NFW 1995



Precession angle during one orbital period δφ
Power DM pro�le ρ ∝ r

−β

Correction to the black hole potential

δU =

{
Ar2−β + C1

r
+ C , if β 6= 2,

4πGρhr
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+ C , if β = 2,
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β
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Precession angle (Landau & Lifshitz, Mechanics)

δφ =
∂
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2m

L

π∫
0

r2(φ)δUdφ


r(φ) = p(1 + e cosφ)−1, p = L2/(GMhm) = a(1− e2)
e = 0.89, rp = a(1− e) = 0.58 mpc, ra = a(1 + e) = 9.4 mpc



Precession angle during one orbital period δφ

δφ = −
4π2ρhr

β
h p

3−β

(1− e)4−βMBH
2F1

(
4− β,

3

2
; 3;−

2e

1− e

)
VD & Yu.N.Eroshenko 2015

p = L2/(GMBHm) = a(1− e2) � orbit parameter

L � conserved angular momentum of star

Hypergeomertic function

2F1 (a, b, c, z) =
Γ(c)

Γ(b)Γ(c − b)

1∫
0

tb−1(1−t)c−b−1(1−tz)−adt

1. Gauss relations for the adjacent Hypergeomertic functions

2. Method of osculating elements

3. P. E. El'yasberg �Theory of Flight of Arti�cial Earth Satellites�

(Nauka, Moscow, 1965; Israel Program for Sci. Transl., Jerusalem, 1967),

Chap. 11



Weighing of DM in the Galactic Center: MDM =?

Total mass of DM inside sphere of radius r

MDM(r) =
4πρhr

β
h

3− β

[
r3−β − R

3−β
min

]
Rmin � minimal radius of DM distribution

DM fraction inside S0 star orbit

ξ ≡
MDM(ra)

Mh

=?

ra = a(1 + e) ≤ 10−2 ïê � apsidal radius of S0 star



Fitting of S0-2 star orbit: ξ = 3 10−2
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Left: star trajectory in the viewing plane
Right: star trajectory in the orbit plane



Fermi-Lat: gamma-radiation from Galactic Center
After reduction of the known background sources



Orbit precession of S0-2 star δφ
in dependence of density pro�le index of DM distribution β

Colored region excluded by DM particles annihilation (neutralino)



Mass fraction of DM ξ
in dependence of DM density pro�le index β for δφ = 0.01

Colored region excluded by DM particles annihilation (neutralino)



Sommerfeld enhancement
DM mass fraction ξ in dependence of η

〈σv〉 = 〈σv〉0
(
v0

v

)η



New projects of very large telescopes
ø 39.3 m European Extremely Large Telescope (E-ELT), Chile ∼ 2020



New projects of very large telescopes

ø 30 m, 492 segments Thirty Meter Telescope (TMT), Hawaii ∼ 2021



New projects of very large telescopes
USA, Australia, South Korea

ø 24.5 m (7× ø 8.4 m) Giant Magellan Telescope (GMT), Chile ∼ 2020



Results and Conclusion

Observations of nonrelativistic precession of the S0 star

orbits is a promising method for measuring the total DM

mass near the supermassive black hole SgrA* at the

Galactic Center

An analytical expression for the precession angle has

been obtained under the assumption of a power-law

pro�le of the DM density

In the near future, modern telescopes will be able to

measure the precession of the orbits of S0 stars or to

obtain a strong bound on it


