## Status and results of the Telescope Array observatory

Grigory I. Rubtsov for the Telescope Array Collaboration

9th international Workshop in Air Shower Detection at High Altitudes 2018 September 18, 2018, Møscow



### **Telescope Array Collaboration**

R.U. Abbasi<sup>1</sup> M. Abe<sup>13</sup> T. Abu-Zayyad<sup>1</sup> M. Allen<sup>1</sup> R. Azuma<sup>3</sup> E. Barcikowski<sup>1</sup> J.W. Belz<sup>1</sup> D.R. Bergman<sup>1</sup> S.A. Blake<sup>1</sup> R. Cady<sup>1</sup> M.J. Chae<sup>20</sup> B.G. Cheon<sup>4</sup> J. Chiba<sup>5</sup> M. Chikawa<sup>6</sup> E.J. Cho<sup>4</sup> W.R. Cho<sup>7</sup> T. Fujii<sup>9</sup>
M. Fukushima<sup>10,11</sup> T. Goto<sup>9</sup> W. Hanlon<sup>1</sup> Y. Hayashi<sup>9</sup> N. Hayashida<sup>10</sup> K. Hibino<sup>12</sup> K. Honda<sup>2</sup> D. Ikeda<sup>10</sup> N. Inoue<sup>13</sup> T. Ishii<sup>2</sup> R. Ishimori<sup>3</sup> H. Ito<sup>27</sup> D. Ivanov<sup>1</sup> C.C.H. Jui<sup>1</sup> K. Kadota<sup>15</sup> F. Kakimoto<sup>3</sup> O. Kalashev<sup>16</sup> K. Kasahara<sup>17</sup> H. Kawai<sup>18</sup> S. Kawakami<sup>9</sup> S. Kawana<sup>13</sup> E. Kido<sup>10</sup> H.B. Kim<sup>4</sup> J.H. Kim<sup>4</sup> J.H. Kim<sup>4</sup> S. Kitamura<sup>3</sup> Y. Kitamura<sup>3</sup>
V. Kuzmin<sup>16</sup> M. Kuznetsov<sup>16</sup> Y.J. Kwon<sup>7</sup> J. Lan<sup>1</sup> S.I. Lim<sup>20</sup> J.P. Lundquist<sup>1</sup> S. Machida<sup>3</sup> K. Martens<sup>11</sup> T. Natsuda<sup>8</sup> T. Matsuyama<sup>9</sup> J.N. Matthews<sup>1</sup> M. Minamino<sup>9</sup> Y. Mukai<sup>2</sup> I. Myers<sup>1</sup> K. Nagasawa<sup>13</sup> S. Nagataki<sup>21</sup> T. Nakamura<sup>22</sup>
T. Nonaka<sup>10</sup> A. Nozato<sup>6</sup> S. Ogio<sup>9</sup> J. Ogura<sup>3</sup> M. Ohnishi<sup>10</sup> H. Ohoka<sup>10</sup> K. Oki<sup>10</sup> T. Okuda<sup>23</sup> M. Ono<sup>30</sup> A. Oshima<sup>9</sup> S. Ozawa<sup>17</sup> I.H. Park<sup>20</sup> M.S. Pshirkov<sup>24</sup> D.C. Rodriguez<sup>1</sup> G. Rubtsov<sup>16</sup> D. Ryu<sup>19</sup> H. Sagawa<sup>10</sup> N. Sakurai<sup>9</sup>
L.M. Scott<sup>14</sup> P.D. Shah<sup>1</sup> F. Shibata<sup>2</sup> T. Shibata<sup>10</sup> H. Shimodaira<sup>10</sup> B.K. Shin<sup>4</sup> I.S. Shin<sup>10</sup> J.D. Smith<sup>1</sup> P. Sokolsky<sup>1</sup>
R.W. Springer<sup>1</sup> B.T. Stokes<sup>1</sup> S.R. Stratton<sup>1:14</sup> T. Stroman<sup>1</sup> T. Suzawa<sup>13</sup> M. Takamura<sup>5</sup> M. Takeda<sup>10</sup> A. Taketa<sup>25</sup> M. Takita<sup>10</sup> Y. Tameda<sup>10</sup> H. Tanaka<sup>9</sup> K. Tanaka<sup>26</sup> M. Tanaka<sup>9</sup> S.B. Thomas<sup>1</sup> G.B. Thomson<sup>1</sup> P. Tinyakov<sup>24:16</sup>
I. Tkachev<sup>16</sup> H. Tokuno<sup>3</sup> T. Tomida<sup>27</sup> S. Troitsky<sup>16</sup> Y. Sunesada<sup>3</sup> K. Tsutsumi<sup>3</sup> Y. Uchihori<sup>28</sup> S. Udo<sup>12</sup> F. Urban<sup>24</sup> G. Vasilov<sup>1</sup> T. Wong<sup>1</sup> R. Xmane<sup>9</sup> H. Yamaoka<sup>8</sup> K. Yamazaki<sup>9</sup> J. Yang<sup>20</sup> K. Yashiro<sup>5</sup> Y. Yoneda<sup>9</sup> S. Yoshida<sup>18</sup> H. Yoshii<sup>29</sup> Ya. Zhezher<sup>16</sup> R. Zollinoger<sup>1</sup> Z. Zundel<sup>1</sup>

 <sup>1</sup> University of Utah <sup>2</sup> University of Yamanashi <sup>3</sup> Tokyo Institute of Technology <sup>4</sup>Hanyang University <sup>5</sup> Tokyo University of Science <sup>6</sup>Kinki University <sup>7</sup> Yonsei University <sup>8</sup>KEK <sup>9</sup>Osaka City University <sup>10</sup>University of Tokyo (ICRR)
 <sup>11</sup> University of Tokyo (Kavli Institute) <sup>12</sup>Kanagawa University <sup>13</sup>Saitama University <sup>14</sup> Rutgers University <sup>15</sup> Tokyo City University, <sup>16</sup> Russian Academy of Sciences (INR) <sup>17</sup> Waseda University <sup>18</sup>Chiba University <sup>19</sup>Chungnam National University <sup>20</sup> Ewha Womans University <sup>21</sup> Kyoto University <sup>22</sup> Kochi University <sup>23</sup> Ritsumeikan University <sup>24</sup>Universite Libre de Bruxelles <sup>25</sup> University of Tokyo (Earthquake Institute) <sup>26</sup> Hiroshima City University <sup>27</sup> RIKEN <sup>28</sup>Japanese National Institute of Radiological Science <sup>29</sup> Ehime University <sup>30</sup> Kyushu University

#### Belgium, Japan, Korea, Russia, USA

### Telescope Array Observatory



Largest cosmic ray observatory in the Northern hemisphere.

~700 km<sup>2</sup>  $\rightarrow \leq$  land area of New York City.

Millard County, Utah 39.30° N 112.91° W 1550 m ASL

~800 g/cm<sup>2</sup> vertical depth

The High Energy component of Telescope Array – 38 fluorescence telescopes (9728 PMTs) at 3 telescope stations overlooking an array of 507 scintillator surface detectors (SD) operational as of 2008.

## Telescope Array surface detector





- 507 SD's, 3 m<sup>2</sup> each
- 680 km<sup>2</sup> area
- 10 years of operation

### Largest UHECR statistics in the Northern Hemisphere

## **TA Fluorescence Detectors**



## **Typical Fluorescence Event**



Monocularitiming fit (time vs\angle)ews

**Reconstructed Shower Profile** 

## **Example Event**



### Outline

Selected Telescope Array results on the ultra-high-energy cosmic rays:

- I. Energy spectrum
- II. Anisotropy
- III. Mass composition
- IV. Search for photons and neutrino
- V. Prospects

## **Energy Scale Check and Resolution**



# TA SD spectrum (9 yrs)

Matthews ICRC2017, CRI172



## Auger and TA spectra



# **Declination dependence in TA**

Submitted to Ap. J. arXiv: 1801.07820



## TA Low Energy Extension (TALE) Galactic to Extra-Galactic Transition



TALE-FD : 10 telescopes (Sep. 2013 ~ ) elevation : 31°~59°, azimuthal : 114°

TALE-SD array : 80 SDs (Feb. 2018 ~)

## **Nearby Events with Cerenkov**



TALE Aperture (Any: Ckov/Scin/Mixed)



# TALE-FD mono spectrum(2yrs)

#### Data: Jun. 2014 - Mar. 2016

Submitted to Astroparticle physics

arXiv: 1803.01288



## Compared to recent measurements

Submitted to Astroparticle physics arXiv: 1803.01288



## Exposure depends on composition

Submitted to Astroparticle physics arXiv: 1803.01288





# Full range TA spectrum

Submitted to Astroparticle physics arXiv: 1803.01288





### Outline

Selected Telescope Array results on the ultra-high-energy cosmic rays:

- I. Energy spectrum
- II. Anisotropy
- III. Mass composition
- IV. Search for photons and neutrino
- V. Prospects

## **TA SD data**

### 9-year data: 12.05.2008 - 11.05.2017

### "anisotropy set"

- zenith angle <55°</li>
- · core inside array boundary
- angular resolution: <1.5°</li>
- energy resolution: ~20%

### "hotspot set"

- loose cuts (4 stations)
- angular resolution: <1.7°</li>

- 3691 above 10 EeV
- 257 above 40 EeV
- 108 above 57 EeV

- 143 above 57 EeV
- 23 above 100 EeV

## **Global anisotropy**

### supergalactic coordinates



Kolmogorov-Smirnov p-value = 0.01 for SG latitude, E>57 EeV

other thresholds/coordinates = isotropic

## Large-Scale Structure





C: Centaurus SCI (60 Mpc); Co: Coma CI (90 Mpc); E: Eridanus CI (30 Mpc); F: Fornax CI (20 Mpc); Hy: Hydra SCI (50 Mpc); N: Norma SCI (65 Mpc); PI: Pavo-Indus SCI (70 Mpc); PP: Perseus-Pisces SCI (70 Mpc); UM: Ursa Major CI (20 Mpc); and V: Virgo CI (20 Mpc).

- Sky map of expected flux at E > 57 EeV (Galactic coordinates);
- smearing angle is 6°.

## Large-Scale Structure







E>5.7×10<sup>19</sup> eV Consistent with LSS Inconsistent with isotropy

E>57 EeV - Years 1-5 excess map TA 2014



Total events: 72 Observed: 19 Expected : 4.5 Best circle center: RA=146.7°, Dec=+43.2° Best circle radius: 20° Local significance : 5  $\sigma$ Global significance : 3  $\sigma$ 

### Years 1-9 bin scan TA very preliminary

"Li-Ma":

approximation to Poisson statistics based on on-source/off-source exposure

- "On": inside the circle, "off": the rest
- Scan for circle center (0.1 deg steps) and radius (15°, 20°, 25°, 30°, 35°)

| Bin size | 15  | 20  | 25  | 30  | 35  |
|----------|-----|-----|-----|-----|-----|
| σ        | 4.4 | 4.7 | 5.1 | 5.0 | 4.7 |

- Find the strongest excess is local significance
- Repeat the procedure for isotropic Monte-Carlo sets global significance (look-elsewhere correction = penalty factor)

### E>57 EeV - Years 1-9 excess map



Total events: 143 Observed: 34 Expected : 13.5 Best circle center: RA=144.3°, Dec=+40.3° Best circle radius: 25° Local significance : 5  $\sigma$ Global significance : 3  $\sigma$ 



## Spectral anisotropy at the hot spot



### Outline

Selected Telescope Array results on the ultra-high-energy cosmic rays:

- I. Energy spectrum
- II. Anisotropy
- III. Mass composition
- IV. Search for photons and neutrino
- V. Prospects

## UHECR $\gtrsim 10^{18}$ eV composition measurements

| Experiment      | detector                      | Observable         |  |
|-----------------|-------------------------------|--------------------|--|
| HiRes           | fluorescence stereo           | X <sub>MAX</sub>   |  |
| Pierre Auger    | fluorescence + SD<br>(hybrid) | X <sub>MAX</sub>   |  |
| Telescope Array | stereo                        | X <sub>MAX</sub>   |  |
| Telescope Array | hybrid                        | X <sub>MAX</sub>   |  |
| Telescope Array | SD                            | multiple           |  |
| Yakutsk         | muon                          | $ ho_{\mu}$        |  |
| Yakutsk         | LDF slope                     | $\eta$             |  |
| Pierre Auger    | SD                            | $X^{\mu}_{MAX}$    |  |
| Pierre Auger    | SD                            | risetime asymmetry |  |

SD – surface detector

 $X_{MAX}$  – depth of the shower maximum

 $X^{\mu}_{MAX}$  – muon production depth

risetime – time from 10% to 50% for the total integrated signal

## **Xmax Technique**

- Shower longitudinal development depends on primary particle type.
- FD observes shower development directly.
- Xmax is the most efficient parameter for determining primary particle type.





# <Xmax> plot: BRM-LR hybrid

Data: 27 May 2008 - 29 Nov. 2016

Ap. J., 858, 76(2018) arXiv: 1801.09784



# <Xmax>- $\sigma$ Xmax plot: BRM-LR hybrid

Ap. J., 858, 76(2018) arXiv: 1801.09784



## Shape of Xmax distributions: BRM-LR hybrid

Ap. J., 858, 76(2018)

arXiv: 1801.09784

Compare shape of  $X_{\text{max}}$  distributions of Data and MC allowing Xmax shift

 $18.2 < \log(E/eV) < 18.3$ QGSJet II-04 helium QGSJet II-04 proton z Xmax shift data Monte Carlo proton : +29g/cm<sup>2</sup> Monte Carlo fit He:  $+7a/cm^2$ Proton Helium N:-21g/cm<sup>2</sup> Fe : -43a/cm<sup>2</sup> X\_\_\_\_ (g/cm<sup>2</sup>) X\_\_\_ (q/cm QGSJet II-04 nitrogen OGS.let II-04 iron Systematic uncertaiinty Nitrogen ror <Xmax>: 17.4g/cm<sup>2</sup> Xmax (g/cm Xmax (g/cm

#### <Xmax> plot: BRM-LR hybrid Ap. J., 858, 76(2018) arXiv: 1801.09784 We cannot reject protons as being compatible with the data for all energy (Best fit Xmax shifts are slightly larger than 17.2 g/cm<sup>2</sup>) For helium, the shapes of the data and Monte Carlo do not agree for $log_{10}(E/eV) < 19.0$ Color of the markers (Best fit Xmax shifts are smaller than protons) indicate best-fit shift of Xmax o-value Systematic 20 uncertainty Protor of <Xmax> Nitrogen is 17.2 a/cm<sup>2</sup> $\ln E > 10^{19.2} \text{ eV}.$ 10data with current -20 statistics is not capable of QGSJet II-04 proton $10^{-2}$ Helium Iron -40 QGSJet II-04 helium discriminating QGSJet II-04 nitrogen primary types. QGSJet II-04 iron -60 Not tested with 10<sup>-3</sup> 18.4 18.6 18.8 19 19.2 19.4 19.6 log (E/eV) mixed composition

# Alternative technique: mass composition with the surface detector data



### Outline

Selected Telescope Array results on the ultra-high-energy cosmic rays:

- I. Energy spectrum
- II. Anisotropy
- III. Mass composition
- IV. Search for photons and neutrino
- V. Prospects

## Search for ultra-high-energy photons and neutrino

- We search for photons and neutrino with the surface detector data
- Both primaries produce younger showers than hadronic ones
- ► Multiple SD observables are affected: front curvature, Area-over-peak, number of FADC signal peaks,  $\chi^2/d.o.f.$ ,  $S_b$

See the talk by Mikhail Kuznetsov (this session)

## Results: photon flux limits



Photon flux upper-limit, E > 1 EeV



### diffuse flux

### point source flux

### Diffuse neutrino search

► Single flavor diffuse neutrino (down-going) flux limit for  $E > 10^{18}$  eV:  $E^2 f_{\nu} < 1.4 \times 10^{-6}$  GeV cm<sup>-2</sup>s<sup>-1</sup>sr<sup>-1</sup> (90% C.L.)



G.Rubtsov, ICRC'2017

#### Plot: T. Okuda



## TA Observation: "Burst" Events

- 5 year data (2008-2013)
- 10 surface detector bursts seen
  - 3 or more SD triggers,  $\Delta t < 1$  msec
  - Occasional  $\Delta t$  ~ 10  $\mu sec$
- "Normal" SD trigger rate < 0.01 Hz. These cannot be cosmic ray air showers.
- Found to have close time/space
   coincidence with U.S. National Lightning Detection Network (NLDN) activity.
- Abbasi et al. Phys. Lett. A 381 (2017).

# Lightnings produce EM showers: some are misidentified as photons

### Outline

Selected Telescope Array results on the ultra-high-energy cosmic rays:

- I. Energy spectrum
- II. Anisotropy
- III. Mass composition
- IV. Search for photons and neutrino

## V. Prospects

# Telescope Array Observatory is under major upgrade after 10 years of successful operation.

New hardware will be accompanied with up-to-date analysis techniques.

- Detector
  - TAx4 construction
  - TALE SD operation
- Analysis
  - Machine learning techniques are widely adopted

## TA×4

#### TA SD (~3000 km<sup>2</sup>): Quadruple area

Approved by Japanese government 2015 500 scintillator SDs

2.08 km spacing

3 yrs construction, first 180 SDs have arrived in Utah

Next 60 SDs to be prepared at ICRR and SKKU in 2018 and shipped to Utah

#### 2 FD stations (12 HiRes-II telescopes)

Approved by US NSF 2016 Telescopes/electronics being prepared at Univ. of Utah

First light at the northern station! Site construction underway at the southern station.

#### Get 19 TA-equiv years of SD data by 2020 Get 16.3 (current) TA years of hybrid data



# TALE hybrid



TALE FDs

Sa- 4/0 1

### TALE FD station

TALE SDs prepared for deployment

# TALE hybrid



Low energy extension of TA sensitivity : FDs observing higher elevation Densely-arrayed SDs Precise measurement of the composition : FD + SD hybrid measurement

TALE-FD : 10 telescopes ( Sep. 2013 ~ ) elevation : 31°~59°, azimuthal : 114°

TALE-SD array : 80 SDs ( Feb. 2018 ~ )

**Expected specifications of TALE hybrid** Threshold energy E : logE=16.0 Event rate : ~5,000 events/year  $\Delta \theta = 1.0^{\circ}$  (FD mono : 5.3°)  $\Delta Xmax = 20 \text{ g/cm}^2$  (FD mono : 60g/cm<sup>2</sup>)

### Event reconstruction with the convolutional neural network



### /PRELIMINARY/ angular resolution with machine learning





## Thank you for attention!



# **Backup slides**

### Years 6-9 vs. 1-5

### no hypothesis – no tests



Years 6-9 vs. 1-5

## "would-be hypothesis" - "would-be tests"

global  $\neq$  local P-value positive fluctuation, need to correct our expectations



Years 6-9 vs. 1-5

## "would-be hypothesis" - "would-be tests"

global ≠ local P-value positive fluctuation, need to correct our expectations



## Neutrino search strategy

#### young shower, $\theta = 19.5^{\circ}$



neutrino shower,  $\theta = 78.6^{\circ}$ 





- Neutrino-induced showers are young while very inclined
- Waveform has many peaks
   upper layer lower layer

## Method

- Cuts:
  - 5 or more detectors triggered
  - core distance to array boundary is larger than 1200m

  - ▶ 45° < θ < 90°</p>
  - no energy cut

### 197250 events after cuts

- Multivariate analysis is used
  - ► The set of observables is the same as for photon search (Energy is replaced with *S*<sub>800</sub>)
  - Method: Boosted decision tree trained with inclined proton (background) and all-flavor down-going neutrino (signal) Monte-Carlo
  - The cut on  $\xi$  is optimized in a similar to photon search way

## Distribution of MVA estimator ( $\xi$ ) for data and MC



data neutrino MC proton MC

## Results

- 0 neutrino candidates after cuts,  $\bar{n}_{\nu}$  < 2.44 (90% C.L.)
- Exposure:
  - Geometric exposure for  $\theta \in (45^\circ, 90^\circ)$ : 8042 km<sup>2</sup> sr yr
  - probability to interact in the atmosphere:  $1.4 \times 10^{-5}$
  - $\blacktriangleright\,$  trigger, reconstruction and quality cuts efficiency  $\sim 7\%$
  - $\xi$  cut efficiency:  $\sim$  24%
  - total exposure (all flavors):  $A = 1.9 \times 10^{-3} \text{ km}^2 \text{ sr yr}$
- ► Single flavor diffuse neutrino flux limit for  $E > 10^{18}$  eV:  $E^2 f_{..} < 1.4 \times 10^{-6}$  GeV cm<sup>-2</sup>s<sup>-1</sup>sr<sup>-1</sup> (90% C.L.)

