

Baikal-GVD neutrino experiment

Olga Suvorova (INR RAS)

on behalf of the Baikal collaboration

The 9th international Workshop in Air Shower Detection at High Altitudes, 17-18 September 2018, INR RAS, Moscow, Russia

Baikal-GVD collaboration: Gigaton Volume Detector in Lake Baikal

INR

JINR

9 institutes, ~60 scientists, head – G.V.Domogatsky

St-Petersburg Marin Tech. U

EvoLogics, Germany

> Czech Technical U Comenius U, Slovakia.

N-Novgorod Tech. U

Irkutsk Univ

baikalweb.jinr.ru

Why would we want to build a Gigaton Volume neutrino detector?

- Multi-messenger high energy astrophysics: EM radiation, GW, neutrinos, CR
- the discovery of PeV events and latest confirmation of cosmic neutrinos with IceCube (S.P.), while it is alone detection
- need a cubic kilometer detector in the North hemisphere (Baikal-GVD, km3NET)
- dark matter

Neutrino detection: direction, energy, flavor

 $v + N \rightarrow 1 + X$

Detection principle

M.Markov, **1960**: "We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation" Proc. 1960 ICHEP, Rochester, p. 578.

Environment properties

absorption, scattering, light background -K⁴⁰, bioluminescence

Arrival times & amplitudes, PMTs arrangement and orientation

Baikal-GVD project: search for astrophysical neutrinos

- 1370 m maximum depth
- Distance to shore ~4 km
- Absence of high luminosity bursts from biology and K⁴⁰ background
- Water properties: Abs. length: 22 ± 2 m Scatt. length: L_s~30-50 m $L_{s}/(1-\cos\theta) \sim 300-500 \text{ m}$

Strongly anisotropic phase $<\cos\theta > \sim 0.9$ function:

Possibility to deploy the detector from the ice of the lake

N 51,76° E 104,41° **Basic approach in GVD** construction:

- Flexible structure allowing an expand, upgrade and rearrange of the detection system and
- * Simplicity of the basic detector elements

Толовинная

3D array, 10⁴ photodetectors Eff. volume ~1.5 км³ Google eart Data INTAS Project 99-1669 Image @ 2012 TerraMelocs

48 U 456355 55 x 8 5785282 13 x C ENDOTS HAD VINCENEN WORD: 312 x

Высота намеры нал уповнем мола

Date avenue: 5 10 2012

South Baikal in Feb and Apr

The Optical Module

PMT Hamamatsu R7081-100 \emptyset =10 inch QE \approx 35% @ 400nm Gain \sim 10⁷, Dark current \sim 8 kHz

- OM electronics Mu-metal cage
- PMT Optical gel

Pressure-resistant glass sphere VITROVEX (17")

The Cluster of strings

- 288 OMs at 8 strings
 - 36 OMs per string, 15 m spacing
 - depth 750 1275 m
 - 60 m between strings
- Cluster DAQ center (30 m below surface)
 - Trigger, power, data transfer systems of the cluster
- Electro-optical cable to shore
- Acoustic positioning system (4 beacons on each string)
- 3 calibration light beacons (matrix of LEDs)
 - Interstring time calibration

String: 3 Sections×12 OMs&ADC module

Ε

525

Baikal-GVD

Triggering and Data Transmission

SECTION

CLUSTER

Status-2018 of the Baikal-GVD project

- Cluster 1 since 2016
- Cluster 2 since 2017
- Cluster 3 since 2018
- Powerful isotropic laser source

Data transmition

- 40 Gb per cluster per day to shore
- 5 Mb/s 40 km radio channel to Baikalsk
- Raw data transferred to storage Dubna facility through Internet

Third cluster April 2018 All 3 clusters taking data

Stages of deployment of the GVD-1

Configuration	2015	2016	2017	2018	
The number of OMs	192	192 288 576		864	
Geometric sizes, m	c sizes, m Ø80×345 Ø120×525 2ר120×52		2ר120×525	3ר120×525	
Eff. Vol	0.03 km ³ 0.05 km ³ 0.1 km ³		0.1 km ³	0.15 km ³	
GVD-2017	boat bathymetry	ender en	r 2 algo de la companya de la compan	2018 NT200 Ister 1 Domotion International In	

Baikal-GVD: phase 1 (2020-2021)

Data processing and analysis steps

- Extraction of hit parameters from waveforms
- Joint events production
- Time and Amplitude calibration with light sources (laser source, LED matrixes, built-in OM LEDs) and atmospheric muons
- Geometry calibration with acoustic positioning system
- Data and Trigger quality monitoring

\rightarrow Telescope response:

OM numbe

OM number

Stability of the cluster operation

Performance of acoustic positioning system

Detector response

Search for muon neutrinos

(analysis of 2016 data sample - PRELIMINARY!)

Muon neutrino are detected as a muon tracks from bottom hemisphere

After reconstruction: 1 cluster, 33 live days

After track reconstruction and cuts on quality variables have been done, Boosted decision tree (BDT) was used

First neutrinos selected

33 live days were used

Angular distribution BDT > 0.2 cut

- 23 events were selected in the signal region in data
- ~ 3 events estimation of atm. muons background
- ~36 events estimation of signal atm. neutrinos

Near vertical events: start searches for DM from the Earth core

MC original Reconstructed (20 hits)

Example: nuEnergy =1.6TeV; Theta_MC= 4.60°; Theta_rec=3.99°

Experimental data sample:

1st GVD-cluster 2016, 182 l.days, total number of events 4.5x10⁸, 5674 selected candidates to look for neutrinos: 144 events with 6 hits, 15 events with 7 hits, 6 events - 8 hits and only one of them has 10 hits, .

Selection criteria: presence at one string the chain of 5 hits or more with velocities of speed of light between OM pairs within physical window 0.2—0.4 m/ns, while their amplitudes per OM should be higher 3p.e. Also preferable is a single pulse per hit.

2016, 1st cluster, Run 404, event with no gap in 10 hits

Search for cascades induced by astrophysical neutrinos

Directional resolution of cascades in water: 3° - 5°

Cascade selection:

- Causality cuts (noise rejection);
- Reconstruction of cascade ⁴ position direction and energy and cuts on quality parameters;
- $N_{hit} > 20$

Expected number of events in GVD Cluster from astrophysical neutrinos for 1 yr.

About 0.6 events/year are expected for 1 GVD cluster

A search for cascades induced by astrophysical neutrinos (analysis of 2016 data- PRELIMINARY!)

Life time – 15 693 192 s = 182.0 days

Total number of accumulated events – 6.86x10⁸ events (thresholds: low/high = 1.5/4 ph.el. & Q >1.5 ph.el.)

> After causality cuts -3.27×10^8 events

$$(N_{hit} > 4; |t_i - t_j| < \Delta r_{ij}/v + \delta t)$$

Cascade analysis with the first GVD cluster 2016

All hit OMs (93 hits)

Cuts	Events	Rejection		
Coordinates reconstruction & N _{hit} >9	577495	1		
χ ² < 4	2405	1/240		
Energy reconstruction				
L _a < 20	374	1/6.4		
η > 0	159	1/2.4		
E > 10 TeV	57	1/2.8		
E > 100 TeV	5	1/11.4		
Total rejection fact	1/115499			

E=157 TeV, θ = 57°, ϕ_{loc} = 249°, x=-25m, y=-37m, z=11m, ρ =44m

Selected hits for reconstruction (53 hits)

2015: E = 107 TeV, θ = 56.6°, $\phi_{loc} = 130^{\circ}$, ρ = 68 m, z = -59 m

Skymap on two GVD cascade events with E>100 TeV

MJD 57342, E_{sh} 107 TeV

GVD_2015/Nov/16: Decl +5.56

MJD 57507, E_{sh} 157 TeV

GVD_2016/Apr/29: Decl +13.95

analysis in term of p-val is in progress

No TeV cat, MJD 54800-56008

2017: GVD horizon in time of 2 cosmic events

GW170817: NGC4993 Decl -23.38

IC170922A: TXS0506+056

GW: 17.08.2017, (Advanced LIGO & Advanced VIRGO) GRB170817A - 1.7 s delay (Fermi-GBM and INTEGRAL)

Cascade mode: search for events in two time-windows: GW \pm 500 sec (prompt emission): zenith angle θ = 93°. GW +14 days (delayed emission); 74° < θ < 150°

IceCube on 22 September 2017: the first evidence for the existence of an astrophysical source of highenergy neutrinos

Cascade mode: analysis is in progress

Search for neutrinos toward GW170817 within ± 500 sec

0 5000 10000150002000025000300003500040000 Run_time, sec

Search for neutrinos within GW ± 500 s time-window

Expected energy distribution of events. 90 % of E^{-2} events within 5 TeV < E < 10 PeV

Search for neutrinos in GW170817 following 14 days time-window

Coordinates of NGC4993 zenith angle range $74^{\circ} < \theta < 150^{\circ}$

Selection cuts

Cut	Events in 14 day window		
N _{hit} > 7 OM/ 3 Str.	384116		
$\chi^{2}_{t} < 6$	12186		
η > 0	445		
L _a < 30	372		
ψ < 20°	0		

Neutrino detection area

Upper limits on fluence of neutrinos associated with GW170817

No neutrino events associated with event GW170817A have been found in cascade search mode within the time window ± 500 seconds and 14 days after neutron stars merging.

Assuming E⁻² spectral behavior and equal fluence in all flavors, upper limits at 90% c.l. have been derived on the neutrino fluence from GW170817 for each energy decade.

BAIKAL-GVD-1

2304 light sensors combined in 8 clusters of vertical strings at 750 – 1300 m depths. Detection volume 0.4km³

Timeline GVD 1

Year	2016	2017	2018	2019	2020	2021
Nb. of	1	2	3	5	7	9
clusters	288	576	864	1440	2016	2592
Nb. of OMs						

Summary

- Prototyping & Early Construction Phase of Baikal-GVD project is concluded with construction of the first GVD Cluster in 2015, that was upgraded to baseline configuration in 2016
- The second and the third full-scale GVD clusters were installed and commissioned in April 2017 and April 2018
- Experimental data obtained in period 2015 2017 were used to search for neutrino events of astrophysical nature
- Completion of the GVD-1 is expected in 2020-2021

