SEARCH for PeV PHOTONS

Sergey Troitsky (INR, Moscow) for the Carpet Collaboration

WASDHA 2018, INR, September 18

SEARCH for PeV PHOTONS

D.D. Dzhappuev, E.A. Gorbacheva, I.M. Dzaparova, A.U. Kudzhaev, A.N. Kurenya, N.F. Klimenko, A.S. Lidvansky, O.I. Mikhailova, V.B. Petkov, M.M. Khadzhiev, A.F. Yanin, I.S. Karpikov, K.V. Ptitsyna, Ya.V. Zhezher, S.V. Troitsky *INR, Baksan & Moscow*

Photon cascades

Pair production on background radiation Nikishov 1962

Photon cascades

Pair production on background radiation

PeV photons//WASDHA2018

Fate of PeV photons

Pair production on background radiation

Why expect any PeV photons?

PeV photons//WASDHA2018

Why expect any PeV photons? $pp, p\gamma$ π^0 π^{\pm} μ ν_{μ} ν_{μ}, ν_{e}

✓ High-energy (E>100 TeV) neutrinos are accompanied by HE photons (if from π mesons)

✓ Cascades on CMB → strong suppression for extragalactic sources

Searches for the HE photons distinguish between galactic and extragalactic origins of IceCube astrophysical neutrinos

slide 7 of 22

- +/- isotropic flux of high-energy (60 TeV a few PeV) neutrinos
- no Galactic disk excess
- if extragalactic origin, then problems with the Fermi-LAT diffuse gamma-ray background
- excitement with a 3-sigma coincidence with a blasar flare, but <7% of the flux from blazars
- a certain disagreement in spectra below and above ~200 TeV (two components?)

• the low-energy component should be Galactic to avoid Fermi-LAT constraints!

PeV photons//WASDHA2018

the low-energy component should be Galactic to avoid Fermi-LAT constraints!

- diffuse flux:
 - ✓ dark matter? heavy dark matter decays
 - ✓ local source? "local bubble"
- numerous point sources?

• the low-energy component should be Galactic to avoid Fermi-LAT constraints!

- diffuse flux:
 - ✓ dark matter? heavy dark matter decays
 - ✓ local source? "local bubble"

• numerous point sources?

Kachelriess, Neronov, Semikoz 2018

18.09.2018 slide 11 of 22

How to find PeV photons?

- PeV photons produce extensive air showers in the atmosphere
- Low fluxes, need an EAS array like those used for cosmic-ray searches
- Need to separate primary photons from cosmic-ray protons/nuclei
- The best separation strategy: muons

?-ray air showers are **muon-poor**

slide 12 of 22

How to find PeV photons?

- PeV photons produce extensive air showers in the atmosphere
- Low fluxes, need an EAS array like those used for cosmic-ray searches
- Need to separate primary photons from cosmic-ray protons/nuclei
- The best separation strategy: muons

? -ray air showers are **muon-poor**

Next: results of the real search for PeV photons based on this strategy

slide 13 of 22

PeV photons//WASDHA2018

EAS+muon detector installation

Carpet-2: air-shower array @ Baksan Neutrino Observatory

✓ surface scintillator detector ✓ 175 m² muon detector (E_{μ} >1 GeV) ✓ ~10 years of data

PeV photons//WASDHA2018

Search for PeV photons with Carpet

?-ray showers are **muon-poor**

 $- \log_{10}(n_{\mu})$

- 3080 days live
- ZA<40° = DEC>0°
- \bullet angular resolution 1.7 $^\circ$
- efficiency (ZA, E)
- 115821 events
- 523 photon candidates

photon candidate cuts from Monte-Carlo: \checkmark min $N_{\rm e}$ to include 90% of E>PeV photons \checkmark max $n_{\rm u}/N_{\rm e}$ to include ½ of E>PeV photons

Search for PeV photons with Carpet, results

• point sources:

correlate arrival direction of photon candidates with source positions in the sky

- pre-defined list of 4 sources
- stacked arrival directions of IceCube events
- IceCube alerts (direction+time)

• diffuse flux:

need to be careful with hadronic backgrounds, more Monte-Carlo to come

slide 16 of 22

Stacked arrival directions of IceCube events

ID	R.A.	DEC	Error
HES13	67.9	+40.3	1.2
HES38	93.34	+13.98	1.2
HES47	209.36	+67.38	1.2
HES62	187.9	+13.3	1.3
HES63	160.0	+6.5	1.2
HES82	240.9	+9.4	1.2
DIF2	298.21	+11.74	0.45
DIF4	141.25	+47.80	0.43
DIF5	306.96	+21.00	2.13
DIF7	266.29	+13.40	0.54
DIF8	331.08	+11.09	0.55
DIF10	285.95	+3.15	1.09
DIF12	235.13	+20.30	1.71
DIF13	272.22	+35.55	0.85
DIF16	36.65	+19.10	1.96
DIF17	198.74	+31.96	0.96
DIF20	169.61	+28.04	0.85
DIF23	32.94	+10.22	0.52
DIF24	293.29	+32.82	0.56
DIF25	349.39	+18.05	2.70
DIF27	110.63	+11.42	0.37
DIF28	100.48	+4.56	1.08
DIF29	91.60	+12.18	0.40
DIF30	325.5	+26.1	1.62
DIF31	328.4	+06.00	0.55
DIF32	134.0	+28.00	0.45
DIF33	197.6	+19.9	2.33
DIF34	76.3	+12.6	0.66
DIF35	15.6	+15.6	0.53
EHE3	46,58	+14.98	0.78
EHE5	77.43	+5.72	0.83
EHE6	340.0	+7.40	0.47
AHES1	240.57	+9.34	0.60
AHES4	40.83	+12.56	0.88

34 IceCube tracks in the Carpet field of view

- expected γ candidates: 38.1
- observed γ candidates: 34

stacked flux limit: <1.4×10⁻¹⁴ cm⁻² s⁻¹ (90% CL)

Carpet-2 preliminary

Direction+time: IceCube alerts

Only one IceCube track in the (live) Carpet field of view

16/12/10	UT 20:07:16	RA=46,58°	DEC=+14,98°
			-

±3 days, observed y candidates: 0
 E>PeV y fluence limit: <0.2 GeV cm⁻² (90% CL, E⁻²)

Carpet-2 preliminary

slide 18 of 22

PeV photons//WASDHA2018

Predefined point sources

	photon candidates		Flux $(E_{\gamma} > \text{PeV}),$	
source	expected	observed	95% CL upper limit,	
			$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	
Crab	0.17	0	2.2×10^{-13}	
Cyg X-3	0.46	1	1.3×10^{-13}	
Mrk 501	0.46	0	7.7×10^{-14}	
Mrk 421^{\dagger}	0.43	2	1.9×10^{-13}	
			Carpet-	2 preliminary

[†] Mrk 421, 2.6 σ detection, best-fit flux 4.7 × 10⁻¹⁴ cm⁻²s⁻¹.

slide 19 of 22

Upgrade to Carpet-3

- 410 m² muon detector
- increased surface area
- assembled, to be commissioned by 12/2018

Target: diffuse photons above 100 TeV

PeV photons//WASDHA2018

18.09.2018

slide 20 of 22

Expected sensitivity to diffuse photons

slide 21 of 22

Conclusions

motivation to search for PeV photons
✓IceCube neutrinos, origin unclear

first ever results for PeV photons associated with IceCube events

 \checkmark 34 stacked directions + 1 event in the field of view

☐ first limits on PeV point-source fluxes ✓ Crab, Cyg X-3, Mrk 501, Mrk 421

□ Carpet-3 upgrade and diffuse fluxes to come soon!

STAY TUNED!

slide 22 of 22

PeV photons//WASDHA2018