Status of SiPM Camera for Cherenkov Telescope in LHAASO Experiment

Shoushan Zhang

Institute of High Energy Physics, Beijing, China

WASDHA-2018, Moscow, Sept. 17-18, 2018

KM2A: 5195 EDs 1171 MDs

WCDA:78,000 m² 3000 cells (25m²/cell)

Daochen, Sichuan (29°21' 31" N, 100°08'15" E, 4410 m a.s.l., 600 g/cm)

150 m

WFCTA: 18 Cherenkov telescopes (1024 pixels/telescope)

LHAASO science in cosmic ray measurement

- Measure individual cosmic ray spectra from 10TeV to EeV
- Multi-parameters, Multi-stages
- 0.1-10 PeV (Cherenkov mode)
 - pure proton and light nuclei (P+He) spectra
 - \sim 6 telescopes (30° in zenith) + ¹/₄ WCDA
- 1- 100 PeV (Cherenkov mode)
 - Pure iron or heavy nuclei spectra
 - 18 telescopes (45[°] in zenith) + scintillator detectors + muon detectors array

>100 PeV (fluorescence mode)

2nd knee

Wide Field of View Cherenkov Telescope (WFCTA)

- > 5m² spherical mirror
- > 32×32 SiPMs array
- > Pixel size 0.5°
- > FOV: 16° \times 16°
- Portable design: easy to switch the array configurations

WFCTA: 18 Cherenkov telescopes (1024 pixels/telescope)

A prototype of WFCTA

SiPM-based Cherenkov telescope To get a higher duty cycle

- SiPM can not be aging due to strong light exposure:
- SiPM-based camera can be operated in moon conditions, thus achieve a higher duty cycle than PMT-based camera.
- The duty cycle of SiPM-based camera is more than 30%, while the PMT is about 10%.

55000

55200

55400

55600

55800

56000 mid

LHAASO-WFCTA prototype (PMT-based) PMT aging with exposure time

LHAASO-WFCTA SiPM (HAMAMASTU) parameters

Performances
TSV-MPPC, 3 $ imes$ 3 channels array, 5 mm $ imes$ 5mm/channel
15 mm $ imes$ 15 mm
25 μm $ imes$ 25 μm
8×10 ⁵ , (V _{br} =53V)
>29%@400nm, >23%@350nm, >18%@310nm
~60 kHz/mm² @ 20°C
<5%
<5.5%
~54mV/°C, gain variation: 1%/°C

- Is made of an (APD + quenching resistor) array
- APD: operates in Geiger mode, the output signal is 0 and 1 analog signal
- 1600 APDs/mm² (25µm) , 360,000 APDs in total, can handle the dynamic range from 10 pe to 32,000 pe

Schematic diagram of SiPM camera assembly

In the clean room

Square SiPM: 15 mm×15 mm

- Light concentrator (Winston cone): is to increase the effective area of the SiPM
- SiPM board: 16 SiPMs, 16 temperature sensors (embedded in the SiPM chip), and 16 pre-amplifiers
- Slow control board:
 - 16 temperature and high voltage compensation loops;
 - 16 channels of high voltage power supply.
- Analogue board: 16 channels of amplifier and shaping circuit
- Digital board: 50 MHz FADC and FPGA

Square SiPM: 15 mm×15mm

Pixel size: 25.4 mm imes 25.4 mm SiPM size: 15 mm imes 15 mm

Light concentrator (cone): Outlet: 15 mm×15 mm Inlet: 25.4mm×25.4mm Height: 25.3mm

light concentrators (cone)

64 sub-clusters have been assembled in the clean room

64 sub-clusters have passed the test.

Gain monitor

- UV-LEDs are mounted at the center of the mirror to monitor and calibrate the gain of the SiPM-based camera.
 - The SiPM gain is sensitive to the temperature.
 - The SiPM gain varies with the intensity of the sky background light, because the voltage drop on the R0 varies with the intensity of the sky background light.
 - To monitor the high gain and the low gain of the electronics.
- UV-LEDs configuration
 - LEDs is working in a thermostat system to keep LED stable.
 - The photons intensity: ~3000 photons/pixel.
 - Frequency of LED pulse: 1 Hz
- Monitoring accuracy: <1% per minute.

Summary

- The first SiPM camera has been built in the lab and its performance is under test.
 - The duty cycle of SiPM-based camera is more than 30%
 - The threshold of telescope is about 15 TeV @ moon less night and 100 TeV @ full moon night
- Time schedule
 - The first SiPM camera will be send to LHAASO site in October
 - The first telescope will be run in November
 - 6 telescopes will be built before May 2019.

- 6 Movable/adjustable containers have been built and is under test.
- Mirrors for 6 telescopes have been produced and will be assembled in the container in next two month.

Thank you for your attention!

Signal to noise ratio

SiPM: 15mm \times 15mm , 25 μm

	FBK	SensL	Hamamatsu	PMT (R7899)
Relative PDE/QE	38%@400 nm	31%@400 nm	29%@400 nm	16%@400 nm
Dark count rate @ threshold=0.5pe	18 MHz	11.3MHz	11.3MHz	<1kHz
Sky background noise	~49 MHz	~40 MHz	~37 MHz	~21MHz

$$\frac{Signal}{Noise} = \frac{N_s^{ph} \bullet PDE}{\sqrt{N_{BG}^{ph} \bullet PDE + N_{DCR}^{pe}}}$$

$$\frac{S / N(\text{SiPM})}{S / N(\text{PMT})} \ge 1$$

LHAASO-WFCTA vs. CTA

	CTA-SSTs	LHAASO-WFCTA
Energy range	3 TeV – 300 TeV	30 TeV – 1 EeV (Cherenkov mode: 30TeV – 10 PeV, 10PeV-100PeV; Fluorescence mode: > 100PeV)
Diameter of mirror	~ 4 m	~ 2.3 m
Pixel size	~ 0.25	~ 0.5
Number of pixels	1296	1024
Dynamic range	1 pe - 2000 pe	10 pe – 32000 pe
Light pulse duration	6 ns - 50 ns	6 ns - 3 μs
Observation mode	Cherenkov light	Cherenkov and Fluorescence light

Air shower Cherenkov light spectrum

Trigger algorithm

- First level trigger: single channel trigger
 - Signal to noise ratio: S/N>n
 - Threshold varies with the intensity of the sky background light.
- Second level trigger: pattern recognition

Round-shaped pattern

Line-shaped pattern

One of Cherenkov event

Fluorescence event

