Электромагнитная диссоциация ядер на коллайдере FCC-hh

Гунин Сергей Александрович

583 гр. ФПФЭ МФТИ

> Москва 2019

Изучение ядро-ядерных столкновений на коллайдере

- В столкновениях ядер свинца на Большом адронном коллайдере (Large Hadron Collider-LHC) в ЦЕРНе достигаются рекордные значения температуры и плотности ядерного вещества, позволяющие получить кварк-глюонную плазму
- В настоящее время разрабатывается проект нового коллайдера FCC-hh (Future Circular Collider), который помимо изучения протон-протонных столкновений предполагает возможность исследования столкновений ядро-ядро
- Проектная энергия FCC-hh в системе центра масс для ²⁰⁸Pb-²⁰⁸Pb столкновений составит √s=39.4 ТэВ, что почти в 8 раз больше энергии LHC

Цель настоящей работы

- Основная задача коллайдера FCC-hh изучение адронных взаимодействий
- Однако ядра также участвуют в электромагнитных процессах, что приводит к их потере из пучка
- Главной целью настоящей работы является изучение соотношения между количеством электромагнитных и адронных взаимодействий на коллайдере FCC-hh

В зависимости от прицельного параметра наблюдаются либо адронные либо электромагнитные взаимодействия

Плотности ядер перекрываются. Сильные взаимодействия.

Нет перекрытия ядерных плотностей. Дальнодействующие электромагнитные силы. 4

На LHC весьма вероятны ЭМ процессы, приводящие к небольшим изменениям A и Z

- Bound-free e⁺e⁻ pair production (BFPP) (~270 b): ${}^{208}Pb^{82+} + {}^{208}Pb^{82+} \rightarrow ({}^{208}Pb+e^{-}_{1s,2s,2p(1/2)2p(2/3),3s})^{81+} + {}^{208}Pb^{82+} + e^{+}$
- Электромагнитная диссоциация (ЭМД): ${}^{208}Pb^{82+} + {}^{208}Pb^{82+} \rightarrow {}^{208}Pb^{82+} + {}^{207}Pb^{82+} + n$ (~100 b) $\rightarrow {}^{208}Pb^{82+} + {}^{206}Pb^{82+} + 2n$ (~20 b) $\rightarrow {}^{208}Pb^{82+} + {}^{205}Pb^{82+} + 3n$ (~6 b) $\rightarrow {}^{208}Pb^{72+} + {}^{205}Pb^{82+} + 3n$ (~6 b) $\rightarrow {}^{208}Pb^{72+} + {}^{205}Pb^{82+} + 3n$ (~6 b)
- Можно сравнить с сечением адронного взаимодействия

σ_{над}~7.9 барн

Сечение электромагнитной диссоциации ядер (ЭМД)

$$\sigma^{ED} = \int_{E_{min}}^{E_{max}} \frac{dE_1}{E_1} n_{Z_1}(E_1) \sigma_{A_2}(E_1) \, {}^{\text{полное сечение ЭМД в}}_{\text{лидирующем порядке}}$$

 $\sigma_{A_2}(E_1)$ полное сечение фотопоглощения ядром (A_2, Z_2)

 $n_{Z_1}(E_1)$ спектр фотонов от ядра (A_1, Z_1)

Метод эквивалентных фотонов Вайцзеккера-Вильямса

$$n_{Z_1}(E_1) = \frac{2\alpha Z_1^2}{\pi} \frac{1}{\beta^2} \Big(\xi K_0(\xi) K_1(\xi) - \frac{\beta^2 \xi^2}{2} (K_1^2(\xi) - K_0^2(\xi))\Big)$$

 $n_{Z_1}(E_1)$ спектр эквивалентных фотонов

 $\xi = \frac{E_1 R}{\gamma \beta}$ где R-радиус ядра-партнера по столкновению

*K*₀, *K*₁ модифицированные функции Бесселя

Pshenichnov I. A. Phys. Part. Nuclei 42(2011)215

Аппроксимации фотоядерных сечений

^{a)} Kossov M.V. Approximation of photonuclear interaction crosssections, Eur.Phys.J. A 14 (2002) 377

Какие ядра сталкивать на FCC-hh?

beams	E/A (TeV)	E/Z (TeV)	$\sigma_{had}^{a)}$ (b)	σ _{EMD} (b)	σ _{вFPP} (b)	σ _{tot} (b)	$\sigma_{ m had}^{}/\sigma_{ m tot}^{}$
$^{40}{\rm Ar}^{18+}$	22.5	50.	2.764	2.316	~0.02	5.1	54
$^{40}Ca^{20+}$	25.	50.	2.767	3.485	0.042 ^{c)}	6.294	44
⁶³ Cu ²⁹⁺	23.	50.	3.74	9.971	~0.6	14.311	26
⁷⁸ Kr ³⁶⁺	23.	50.	4.29	20.746	~1.	26.036	16
⁸⁴ Kr ³⁶⁺	21.4	50.	4.5	21.918	~1.	27.418	16
$^{115}\text{In}^{49+}$	21.3	50.	5.47	61.762	~9.4	76.632	7
$^{129}\mathrm{Xe}^{54+}$	20.9	50.	5.89	77.271	~18.5	101.661	6
²⁰⁸ Pb ⁸²⁺	19.7	50.	7.9 ^{b)}	294.275	344. ^{c)}	646.175	1
²³⁸ U ⁹²⁺	19.3	50.	8.53	477.229	761. ^{c)}	1246.759	1

^{a)} Modified abrasion-ablation (Glauber-like) model, C. Scheidenberger, et al., PRC **70** (2004) 014902 ^{b)}Glauber MC 3.0 C. Loizides et al., **arXiv:1710.07098**

^{с)} H. Meier et al., PRA **63** (2001) 032713, $\sigma_{\text{в в рер}} = A ln \gamma_c + B$, оценивалось как $\sim Z^7$ для других ядор