Нейтронные исследования конденсированных сред.

Садыков Равиль Асхатович

Соавторы-Коптелов ЭА., Сидоркин С.Ф., Литвин В.С., Трунов Д.Н., Аксенов С.Н., Марин В.Н., Алексеев А.А., Гаврилюк А.Г., Лебедь Ю.Б.

ИЯИ РАН

rsadykov@inr.ru

В настоящее время в ИЯИ РАН формируется центр нейтронных исследований для физики конденсированных сред. Основой центра являются установки на двух источниках нейтронов - ИН06 и РАДЭКС.

Уже смонтированы установки 1-ой очереди для нейтронного рассеяния на 4х экспериментальных каналах ИН06 со следующими опциями измерения: -дифракция,

- -рефлектометрия,
- -малоугловое рассеяние.
- -Сделано эскизное проектирование дополнительный зал и 3 нейтронограф. установки.

Также для комплексного исследования конденсированных сред имеются установки:

- -3 современных рентгеновских дифрактометра,
- -ЯГР спектрометр с криостатом и
- -оптический спектрометр (Раман).

1- главное здание ЛУ;

2- экспериментальный комплекс;

3- накопительгруппирователь (не завершен);

4- установка РАДЭКС (модифицированная ловушка) с нейтроноводами для ТОГ спектрометрии; 5- импульсный нейтронный источник ИН-06 с нейтроноводами для спектрометрии конденсированного состояния;

6- второй бокс нейтронного источника;

7- вольфрамовая мишень ИН-06;

8- 100-тонный спектрометр по времени замедления в свинце.

КОМПЛЕКС ЛИНЕЙНЫЙ УСКОРИТЕЛЬ (ЛУ) -- НЕЙТРОННЫЕ ИСТОЧНИКИ

Исследования подбарьерного деления на нейтронном спектрометре по времени замедления в свинце (СВЗ-100) ИЯИ РАН. Нейтронные сечения деления ядер актинидов. (Совместно с ГНЦ «ФЭИ»)

МКС

ИМПУЛЬСНЫЙ ИСТОЧНИК НЕЙТРОНОВ ИН - 06

0000000

3

 Многофункциональный нейтронный спектрометр (МНС) для исследований в широком диапазоне характерных размеров от 0.1 до сотен нанометров.

2

(4

5

Оказания и соверживания и соверживани и соверживания и соверживани и соверживания и соверживания и соверживания и совержив

Нейтронографическая установка для исследования вещества в эстремальных условиях "Геркулес"

Дифрактометр-спектрометр общего назначения для исследования объёмных поликристаллов "ДИАС".

Автоматизированный дифрактометр для исследования структуры монокристаллов "Кристалл".

Источник нейтронов ИН-06

Нейтронная рефлектометрия позволяет изучать :

•Магнитные наноструктуры,

- •Полупроводниковые гетероструктуры,
- •Биологические мембраны,
- •Тонкие металлические, полупроводниковые и полимерные пленки.

Зависимость коэффициента отражения нейтронов от тестового образца - суперзеркала NiMo/Ti (m = 2) как функция λ/Θ

Схема установки:

 зеркальный нейтроновод, 2 — коллимирующие устройства
 отклоняющее суперзеркало, 4 — образец, 5 — консоль с вакуумируемой трубой и и 2D-детектором нейтронов Малоугловое рассеяние нейтронов на установке ГОРИЗОНТ может применяется для исследования сред :

-Наночастицы в сплавах,

-Полимеры, стекла и другие аморфные тела, •Биологические макромолекулы, вирусы и т. п. -Нанотрубки, фуллерены и другие наночастицы, •Коллоидные растворы, •Дефекты в материалах.

Рис.1 Нейтронографический комплекс «Геркулес-Диас»: 1 - защита источника нейтронов, 2 — герметичный сейф с возможностью создания водородной атмосферы, 3 — пресс для создания давления, 4 — образец в криостате, 5 — блок детекторов упругого рассеяния, 6 — блок детекторов неупругого рассеяния, 7 - двери сейфа, 8 — многоцелевой дифрактометр «Диас», 9 — ловушка нейтронного пучка.

Спектр прямого пучка нейтронографической установки высокого давления «Геркулес», максимум длины волны нейтронов 1.2А.

Нейтронограмма поликристаллического абразива на основе синтетического алмаза-карбонадо, измеренная на установке «Геркулес» (ИЯИ-ИФВД-РНЦ КИ) при угле рассеяния близком к 90 град.

Neutron scattering lengths and cross sections							
Isotope	conc	Coh b	Inc b	Coh xs	Inc xs	Scatt xs	Abs xs
Ti		-3.438		1.485	2.87	4.35	6.09
C		6 6460		5 551	0.001	5 551	0 0025
C		0.0400		5.551	0.001	5.551	0.0035

Нейтронограмма сплава с нулевой матрицей ТіZr для элементов камер высокого давления и контейнеров образцов для нейтроногафических измерений. 11 Нейтронограммы поликристаллического абразива на основе синтетического алмаза-карбонадо измеренные на установках «Геркулес» (ИЯИ-ИФВД-РНЦ КИ, 10м пролетная база) и МНС (ФИ РАН-ИЯИ, 20-ти метровая пролетная базе при углах рассеяния детекторы расположены под углами 87 и 93 градуса соответственно).

Полнопрофильный анализ дифрактограммы сплава на основе молибдена, полученной на дифрактометре МНС-ИНО6 в феврале 2019 г.

Сплав на основе молибдена (молибден , вольфрам 6%, титан 10%, углерод 3%) был измерен на дифрактометре МНС (пролетная база 21.7 м , угол детектора 160,.5°). На рисунке показаны данные со 2 канала, нормированые на фон. Были обнаружены дифракционные пики 2-х фаз:

- Молибден I m -3 m , параметр решетки а= 3.14800 Å.(синие штрихи на рисунке).
- 2) Ті _{0.5} Mo _{0.5} C, F m 3 m параметр решетки а=
 4.29070 Å .(красные штрихи на рисунке).

Импульсный источник эпитепловых и тепловых нейтронов РАДЭКС на базе модифицированной ловушки.

Первые нейтронограммы поликристаллических железа и графита полученных на импульсном источнике нейтронов РАДЭКС-ИЯИ РАН с помощью времени пролета с использованием макетного варианта спектрометра ДИАС(ИЯИ РАН-РНЦ КИ). (27 Апреля 2007г.)

Возможности 50 метровой пролётной базы установки РАДЭКС нейтронного комплекса ИЯИ РАН для исследований в области физики конденсированных сред

На время-пролётном нейтронном спектрометре РАДЭКС московской мезонной фабрики существует на настоящий момент несколько пролётных баз – 10м, 20м, 30м и 50м.

Один из спектров, обработанный по Ритвельду. Авторы благодарят А.М. Балагурова (ОИЯИ) за обработку спектров.

ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ РОССИЙСКОЙ АКАДЕМИИ НАУК

Детекторы нейтронов на основе SiPM и ZnS:Li⁶

В Секторе конденсированных сред ЛНИ разработан новый тип счетчиков нейтронов на основе ZnSкремниевых фотоумножителей и управляющей электроники[1-2]. Ведется замена счетчиков тепловых нейтронов на установках источника ИН-06 на новые высокоэффективные изготовленные по нашей технологии.

 Патент на полезную модель, №177857, Кольцевой детектор тепловых нейтронов, 14марта,2018г.
 Новый тип сцинтилляционных детекторов тепловых нейтронов на основе ZnS(Ag)/LiF и лавинных фотодиодов Письма в Журнал технической физики. 2015. Т. 41. № 18.
 С. 96-101

Схема прототипа детектора, состоящего из сцинтиллятора ZnS/LiF, световода и двух лавинных фотодиодов.

Фрагмент кольцевого детектора

Расположение счетчиков тепловых нейтронов и усилителей – формирователей на кольцевом детекторе.

Рис. 3. Схема технологии "рыбий глаз".

2. Применение технологии "рыбий глаз" (использование оптической линзы) при работе с плоским световодом. Таким образом удалось увеличить световыход до 150 фотоэлектронов. Принцип этой технологии детектора показан на рис. 3.

Дифрактограмма порошка технического алмаза установленного на кольцевом детекторе

Сумма по 12 детекторам, фон вычтен, время измерения 1.5 часа,

Параметры пучка 209 МэВ, 10Гц, 1мкс В качестве образца использован порошок технического алмаза

- 1. Разработаны счетчики с эффективностью
- до 70%, близкие к эффективности гелиевых счетчиков.
- 2. Временное разрешение счетчиков не хуже 1 мкс,
- что позволяет использовать их в ТОГ измерениях.
- 3. Низкая чувствительность к гамма квантам 10 -6.
- 4. Отсутствие тепловых шумов при пороге
- 10 ф.э. до температуры +30 градусов цельсия.
- 5. Отсутствие высоковольтного питания.
- (+33 вольта, +6в, -6в.)
- 6. Одно значение питания для всех счетчиков и
- одно значение порогового напряжения.(отсутствие
- индивидуальной настройки счетчиков).
- 7. Простая и помехозащищенная электроника
- 8. Возможно изготовление линейных счетчиков
- до 50см.

(Благдарим В.Г. Недорезова, Ф.Ф. Губера и

А. П. Ивашкина)

•Оптика- исследования при высоких давлениях

Эволюция мёссбауэровских (a) (¹¹⁹Sn) спектров в кристалле $GdCuSn_{0.8}Ge_{0.2}$ с ростом температуры при атмосферном давлении. (b) Температурная зависимость магнитного сверхтонкого поля

 $H_{\rm hf}$ на ядрах олова и (с) квадрупольного расщепления Δ .

(b)

(C)

T_= 24K

Мёссбауэровский спектр шпинели $Cu_{0.5}In_{0.4}Fe_{0.1}Cr_2S_4$ измеренный при Т=6.9К

Установки рентгеноструктурного анализа

4-х кружный дифрактометр HUBER

<u>Рентгеновские измерения</u> при высоком давлении в алмазных наковальнях.

DAC, Fe₂O₃ at P=18.6 Gpa

DAC, Fe2O3 at P=18.6 Gpa

дифрактометрическая система IPDSII с IMAGING PLATE корпорации STOE для поли- и монокристаллов.

Рентгенограмма измеренная на порошковом дифрактометре системы STADI MP (только монолиния CuKα1)

Возможности развития нейтронного комплекса ИЯИ РАН

Установки 2-й очереди:

1.Спектрометр обратной геометрии «Глобус»

2. Гибридный спектрометр прямой геометрии «Гибрид»

3. Дифрактометр для сильно поглощающих нейтроны материалов «Градус»

4. Холодный метановый источник

5. Доп. зал

Институт Ядерных Исследований РАН

Institute For Nuclear Research RAS, Troitsk, Moscow.

