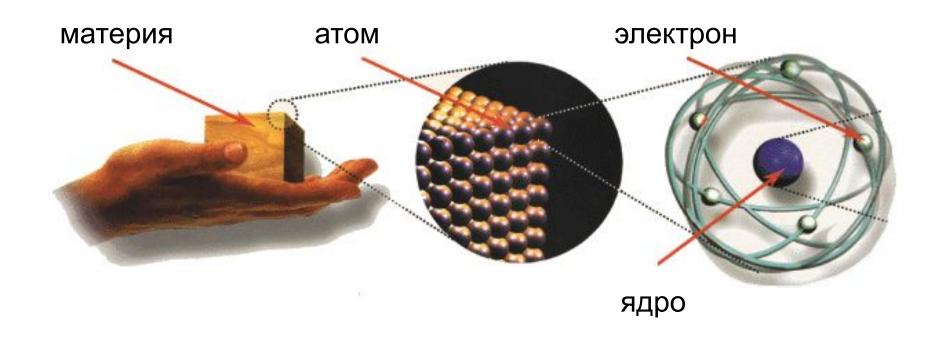
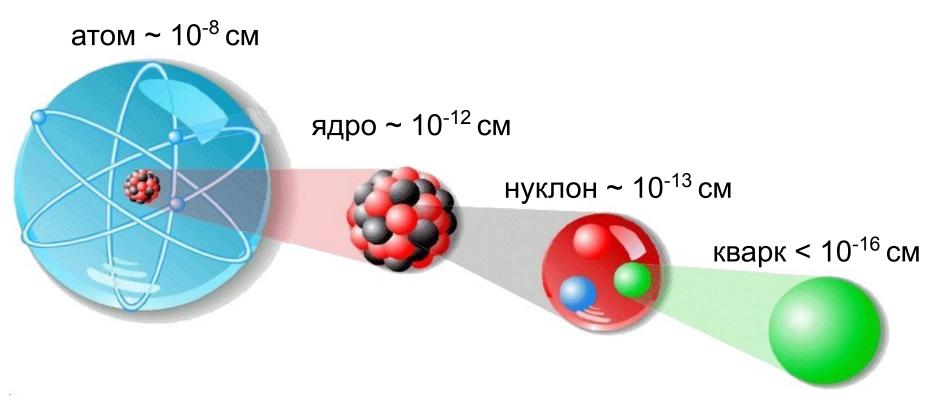
Столкновения релятивистских тяжелых ядер

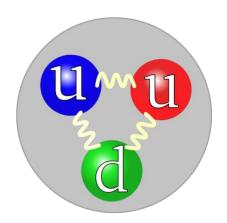
Илья Селюженков


МИФИ / GSI

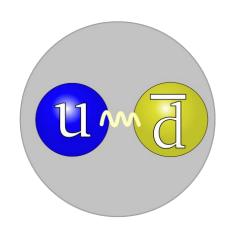

Конференция в честь 50-летия ИЯИ РАН 04 декабря 2020

Введение

Структура материи: макро- и микро-мир



Структура материи на нано- и фемто-расстояниях



Квантовая хромодинамика (КХД): теория сильного взаимодействия

протон (барион)

пион (мезон)

Нормальное состояние материи: цветные кварки и глюоны связаны в бесцветные состояния (адроны) → конфайнмент (confinement)

Асимпточическая свобода в КХД

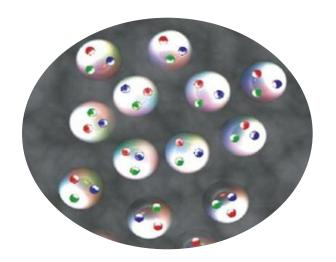
Нобелевская премия 2004 года

David J. Gross

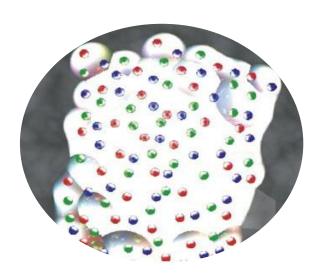
H. David Politzer

Frank Wilczek

константа связи сильного взаимодействия уменьшается с увеличением энергии: сильное взаимодействие становиться слабым при экстремально больших энергиях (температурах)

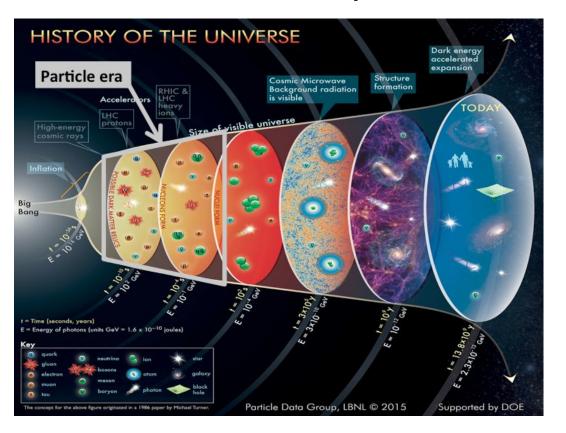

→ деконфайнмент (deconfinement)

Кварк-глюонная плазма (КГП)


Идея:

нагревая материю до экстремальных температур (T ~ 10¹²K) можно получить состояние из свободных кварков и глюонов

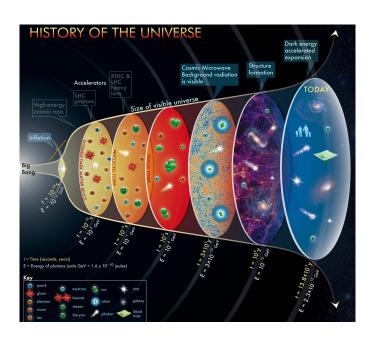
адронный газ



кварк-глюонная материя

Фундаментальные вопросы физики столкновений релятивистских тяжелых ядер

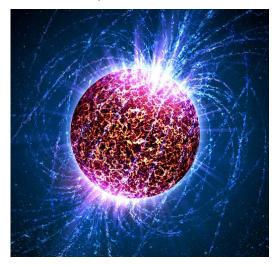
Эволюция Вселенной в теории Большого Взрыва


13.8 миллиардов лет расширения Вселенной

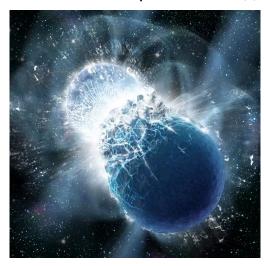
Эволюция Вселенной в теории Большого Взрыва

Через несколько микросекунд после Большого Взрыва (Big-Bang) горячая Вселенная была в состоянии деконфайнмента (КГП)

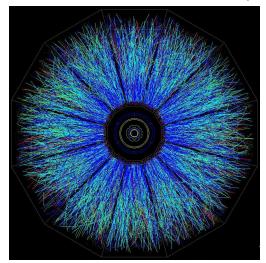
Фундаментальные вопросы физики столкновений релятивистских тяжелых ядер



Как устроена сильно-взаимодействующая материя при экстремальных температурах и экстремальных барионных плотностях:


Построение фазовой диаграмма кварк-глюонной материи и определение ее свойств (вязкость, сжимаемость, и т.д.)

Плотная барионная материя


Нейтронные звезды

Слияние нейтронных звезд

Столкновения тяжелых ядер

Температура

 ρ < 10 ρ_0 Плотность

Время жизни / время реакции T < 10 MeV

~ infinity

T ~ 10-100 MeV

 $\rho < 2 - 6 \rho_0$

 $T \sim 10 \text{ ms}$

 $T < 120 \text{ MeV } (2x10^{12}\text{K})$

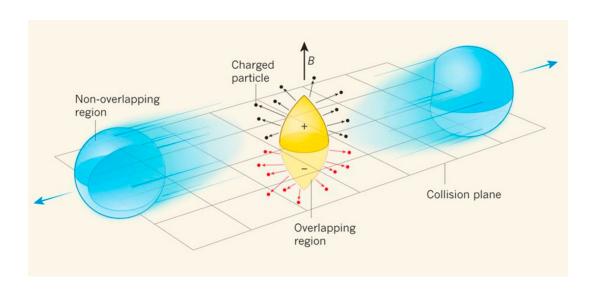
 $\rho < 5 - 15 \rho_0$

 $t \sim 10^{-23} s$

Фундаментальные вопросы физики столкновений релятивистских тяжелых ядер

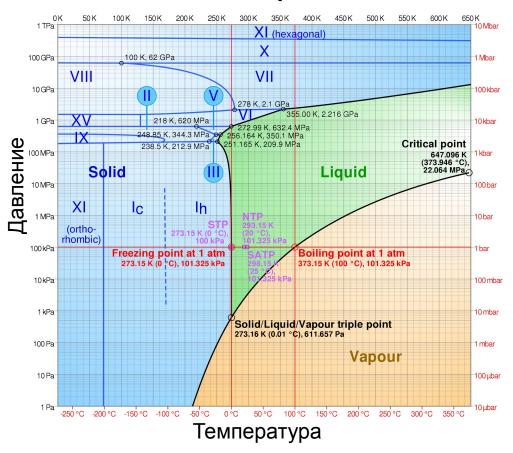
Слияние нейтронных звезд

Свойства сильно-взаимодействующей материи в зависимости от барионного числа, киральности и спиновой структуры

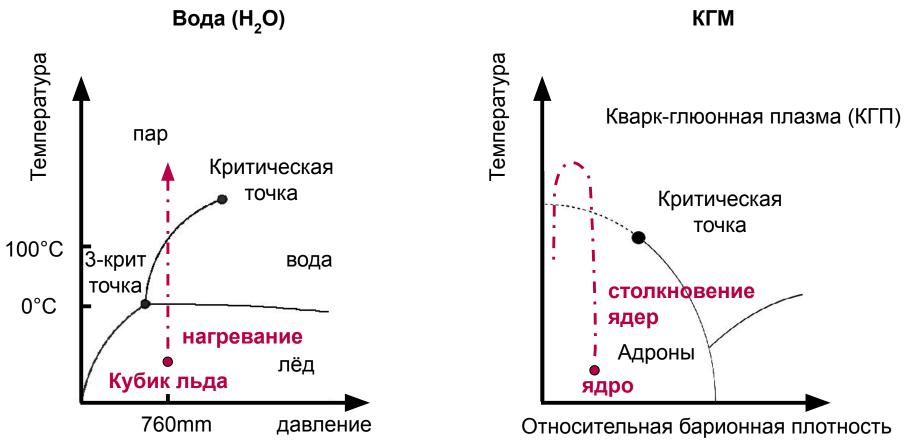

Большая относительная барионная плотность:

$$\rho \sim 2 - 6 \rho_0$$

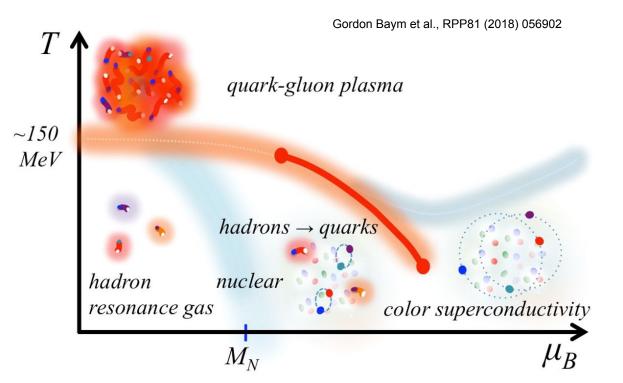
Восстановление киральной симметрии, завихренность кварк-глюонной жидкости со спином


Фундаментальные вопросы физики столкновений релятивистских тяжелых ядер

Происхождение асимметрии материи и антиматерии во вселенной вопросы сохранения четности (Р) и СР (зарядовой сопряженности) в КХД



Фазовая диаграмма кварк-глюонной материи (КГМ)

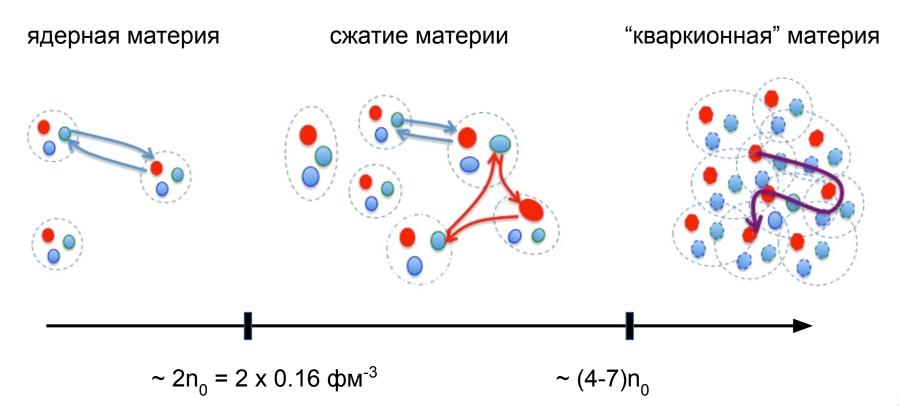

Фазовая диаграмма воды

Сканирование фазовой диаграммы воды и КГМ

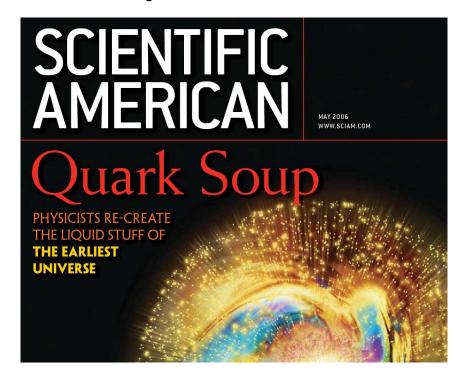
Фазовая диаграмма кварк-глюонной материи (КГМ)


Ранняя вселенная:

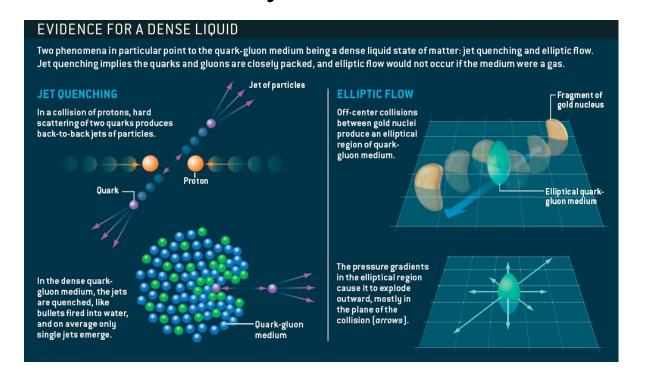
 $\rightarrow \mu_{\text{B}} \sim 0$


экстремальные температуры

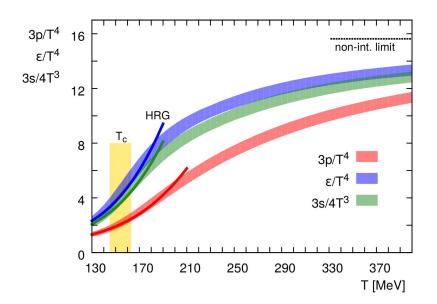
Температура (T) – барионный химический потенциал (µ_B)


Фазовый переход типа "кроссовер" при высоких Т и малых $\,\mu_b$

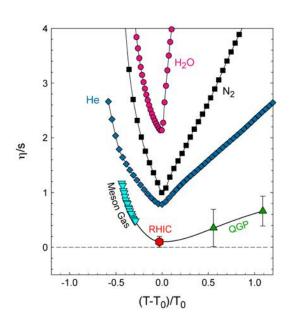
Фазовый переход при большом барионном химическом потенциале μ_b



Указание на SPS@CERN и открытие на RHIC@BNL сильновзаимодействующей идеальной жидкости


M. Roirdan & W. Zajc, Scientific American (2006)

Указание на SPS@CERN и открытие на RHIC@BNL сильновзаимодействующей идеальной жидкости


Описание свойств КГМ при µ_в=0 в терминах релятивистской вязкой жидкости

Термодинамическое уравнение состояния р(Т)

Фазовый переход типа "Кроссовер": Т_с ≈ 156 МэВ степени свободы: кварки и глюоны

Сдвиговая вязкость η(Т)

почти идеальная жидкость $\eta/s \approx 0$

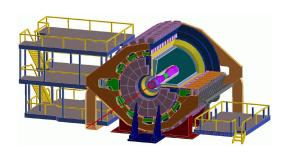
Экспериментальные установки

Действующие и будущие мегасайенс установки

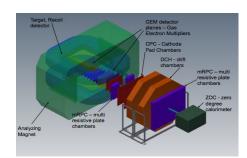
Действующие эксперименты в России, Европе и США

NA61/SHINE

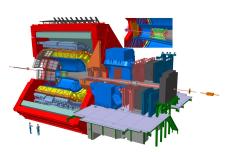
SPS Heavy Ion and Neutrino Experiment



HADES High Acceptance DiElectron Spectrometer


STAR

Solenoidal Tracker At RHIC


BM@NBaryonic Matter

at Nuclotron

ALICE

A Large Ion Collider Experiment

@LHC: ATLAS, CMS, LHCb

Основные возможности для измерений

Регистрация и идентификация продуктов столкновения ядер: заряженные и нейтральные адроны, фотоны, дилептоны, струи, спектаторы

Близкий к 4π аксептанс: полный азимут, широкий диапазон по быстроте и поперечному импульсу р_т: ~0 МэВ/с до ~100 ГэВ/с

Вклад ИЯИ в действующие эксперименты

HADES

TOFino

Идентификация заряженных адронов передний времяпролетный сцинтилляционный годоскоп Временное разрешение ~ 400 псек (использовался в 2002-2008г.)

FW

Определение центральности столкновения и плоскости реакции передний сцинтилляционный годоскоп

ECAL

измерение нейтральных пионов, фотонов и электронов электромагнитный калориметр из свинцового стекла

NA61/SHINE & BM@N

PSD

Определение центральности столкновения и ориентации плоскости реакции

Передний калориметр для детектирования осколков налетающего ядра

Особенности дизайна:

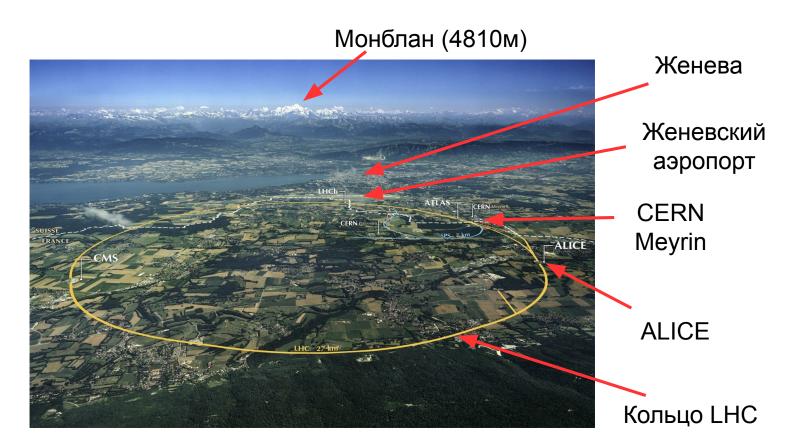
Поперечный: модульная конструкция Продольная: сегментированная структура из слоев свинца и сцинтиллятора. Сбор света с помощью спектросмещающего оптоволокна (WLS) Считывание сигнала кремниевыми фотоэлектронными умножителями (SiPM)

ALICE

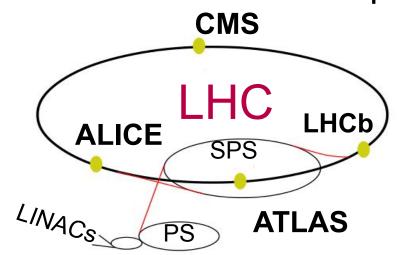
T₀

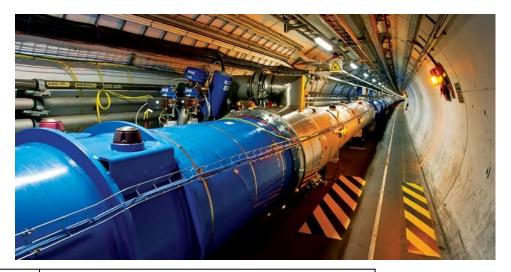
Триггер столкновений, мониторинг светимости, время столкновения (для идентификации частиц), определение центральности столкновения и плоскости реакции

Пара черенковских счетчиков размещенных на противоположных сторонах точки взаимодействия ядер


Кварцевые радиаторы, подключены к ФЭУ

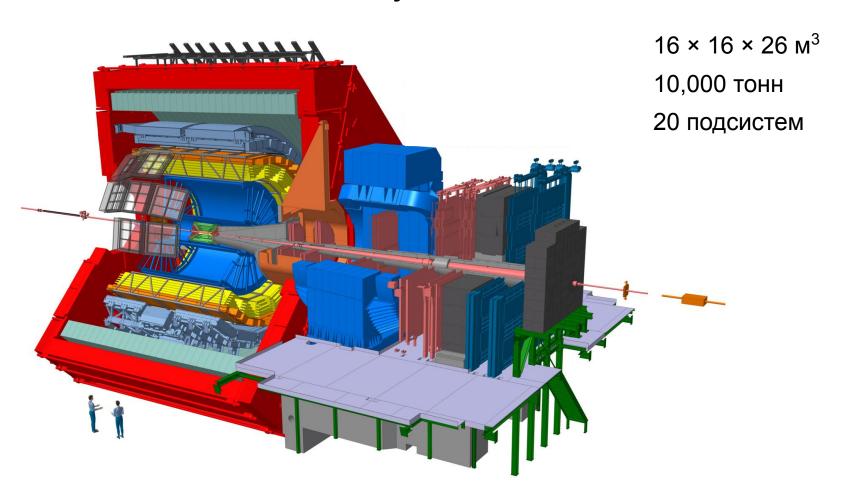
Временное разрешение ~ 25 (40) псек для Pb-Pb (протонов)


Установка ALICE на LHC

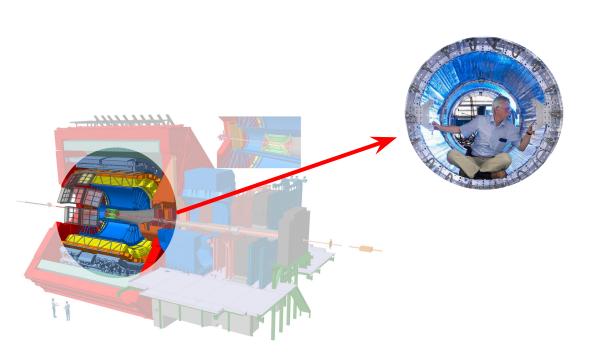

определение свойств кварк-глюонной плазмы

Большой Адронный Коллайдер (LHC)

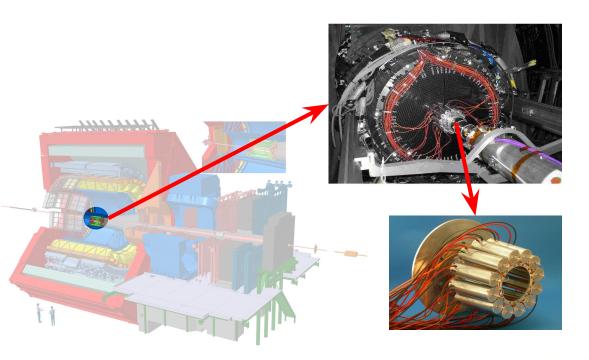
Параметры LHC


Расположение	CERN (Европа)
Длина окружности	27 км
Пучки частиц	p, Xe, Pb
Энергия пучка на нуклон в системе центра масс, (Тераэлектронвольты)	pp: 0.9, 2.76, 5, 7, 13 pPb: 5.02, 8.16 Xe-Xe: 5.44 Pb-Pb: 2.76, 5.02

АЛИСА: Большой Йонный Эксперимент на LHC


https://en.wikipedia.org/wiki/ALICE: A Large Ion Collider Experiment

Подсистемы установки АЛИСА


Время-проекционная камера (ТРС)

Время-проекционная камера (ТРС)

Вклад ИЯИ в установку ALICE

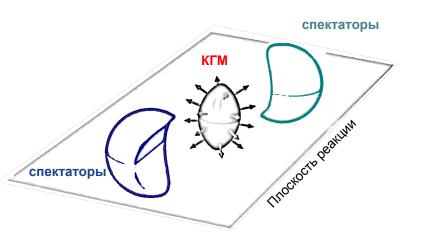
Детектор Т0

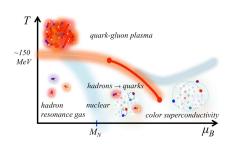
Триггер столкновений, мониторинг светимости, время столкновения (для идентификации частиц), определение центральности столкновения и плоскости реакции

Пара черенковских счетчиков размещенных на противоположных сторонах точки взаимодействия ядер

Кварцевые радиаторы, подключены к ФЭУ

Временное разрешение ~ 25 (40) псек для Pb-Pb (протонов)





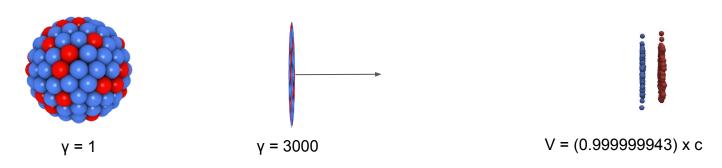
Условия образования КГМ на LHC

Столкновения при ультра-релятивистских (ТэВ) энергиях

Множественное рождение мягких частиц

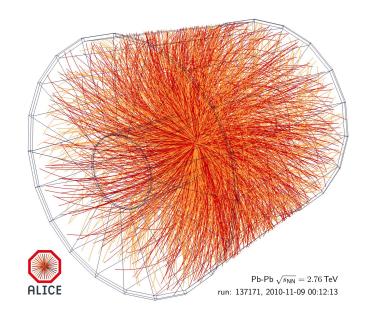
→ симметрия материи и антиматерии

→ µ_в ~ 0 (условия ранней Вселенной)


Многократное пере-рассеяние и коллективное расширение

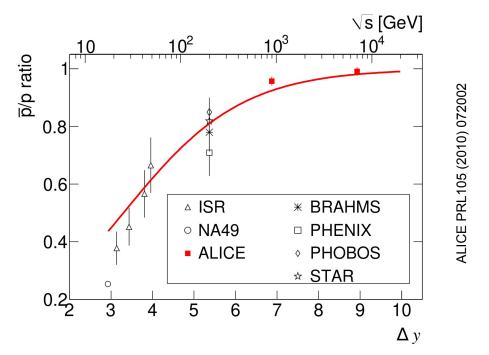
→ макроскопическое описание КГМ как релятивистской жидкости

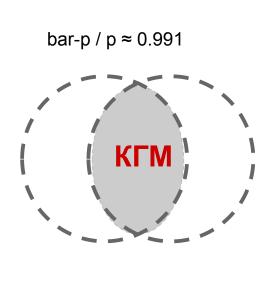
Температуры $T > 150 \text{ MэB } (\sim 10^{12} \text{K})$


→ создание кварк-глюонной плазмы

Условия образования КГМ на LHC

характеристика			RHIC	LHC
Энергия столкновения на нуклон	√s _{NN}	ТэВ	0.2	2.76 / 5.04
Лоренц фактор	γ	_	100	3000
Скорость ядер	V	в ед. с	0.999957412	0.999999943
Эффект. температура	T _{eff}	МэВ	221 ± 19 ^{stat} ± 19 ^{syst}	297 ± 12 ^{stat} ± 41 ^{syst}
Время распада	T _f	фм/с	6.77 ± 0.68	10.42 ± 0.53
Плотность энергии	3	ГэВ/фм ³	9.1	21 ± 2
Объем при распаде	V	фм ³	2177 ± 378	4792 ± 582
Материя к антиматерии	bar-p/p	_	0.8	0.991 ± 0.015

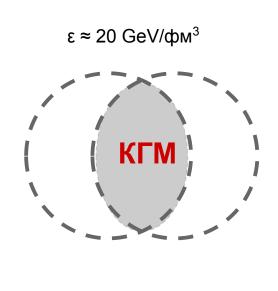

Столкновение двух ядер свинца: рождаются десятки тысяч новых частиц



$$\frac{\mathrm{dN}}{\mathrm{d}\,\eta}\bigg|_{\eta=0} = 1600$$

Столкновения повторяются сотни миллионов раз при разных энергиях и для разных типов ядер

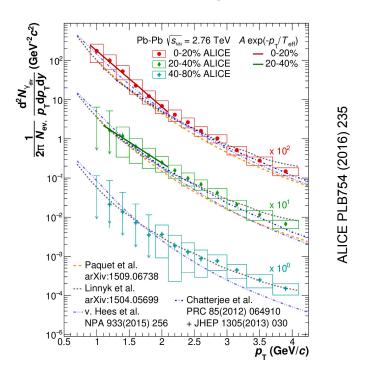
Условия образования КГМ: отношение материи к антиматерии

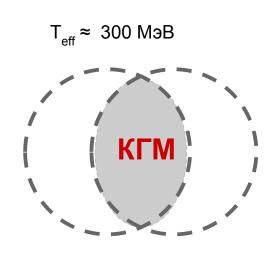

Почти полная симметрия рождения материи и антиматерии → условия, близкие к ранней Вселенной (t ~ 10⁻⁴ c)

Необходимые условия для формирования КГП

- Плотность энергии примерно в 10 раз больше, чем в ядре
 > 1 ГэВ/фм³
- Температура в 10⁵ горячее чем на солнце
 - ~ 200 M₃B (2 x 10¹² K)
- Достаточно большой размер для установления деконфайнмента
 - ~ больше чем несколько ферми (10⁻¹⁵)
- Достаточно времени для установления равновесия
 - > 1фм/с (10⁻²⁴ сек)

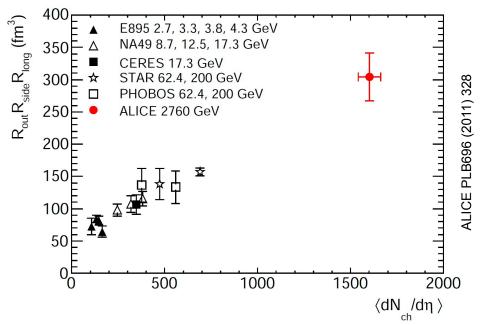
Условия образования КГМ: плотность энергии в области перекрытия

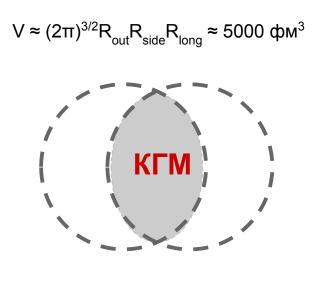




Намного выше, чем плотность "холодной" КХД материи

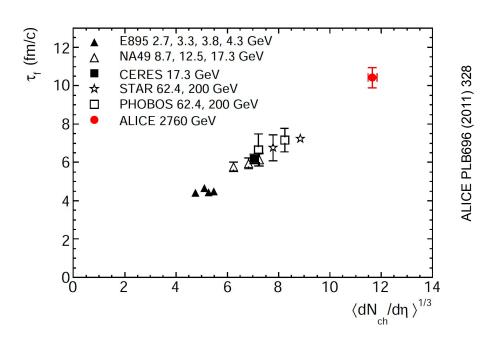
- → множественное рождение кварков и глюонов
- → необходимое условие применимости макроскопического описания КГМ

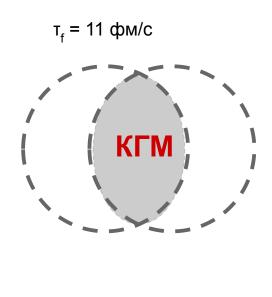

Условия образования КГМ: излучение прямых фотонов



Достигаемая температуры намного выше чем для фазового перехода КХД: $T_{\rm c} \sim 156~{\rm MpB}$

Условия образования КГМ: размер области образования

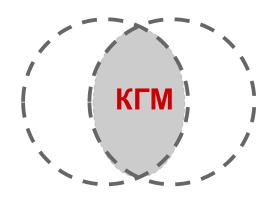




Размер системы гораздо больше радиуса протона (0.85 фм)

 → необходимое условие для деконфайнмента (свободные кварки и глюоны в конечном объеме)

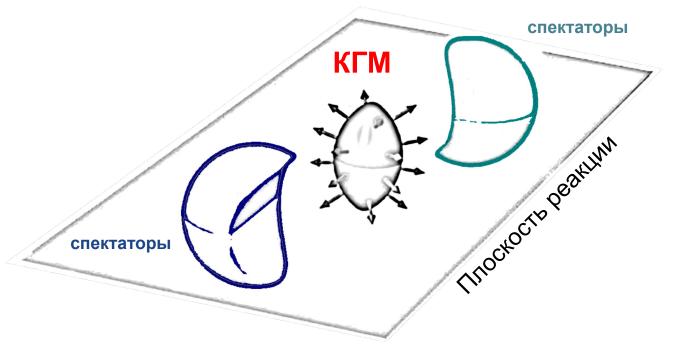
Условия образования КГМ: время жизни системы



Намного дольше времени термализации (0.1 фм/с). Необходимое условие для достижения термодинамического равновесия

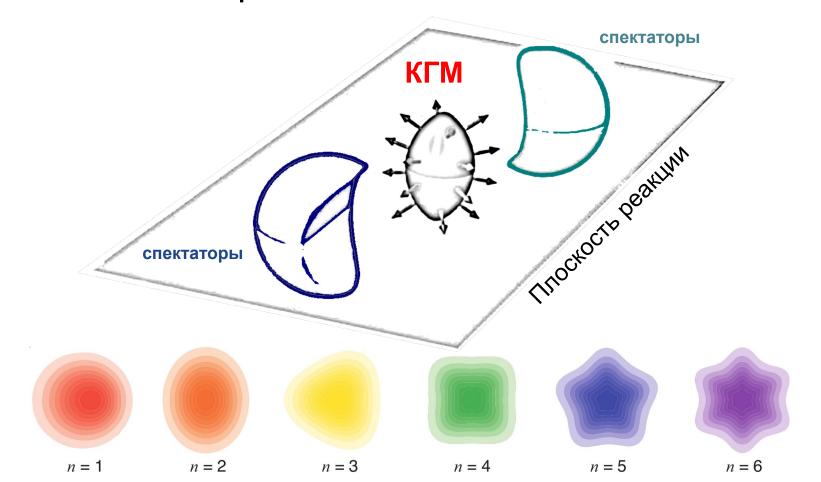
Условия образования КГМ на LHC

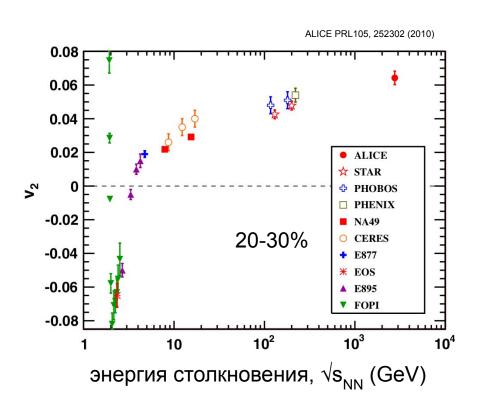
$$T_f = 11 \text{ } \text{фм/}c$$


bar-p / p
$$\approx 0.991$$

Предпочтительные условия для образования горячей, плотной и долгоживущей КГМ в условиях, близких к ранней Вселенной

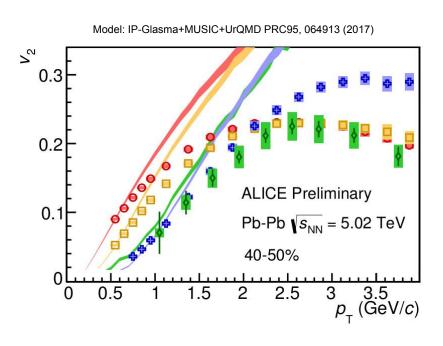
Определение свойств КГП & Анизотропные коллективные потоки

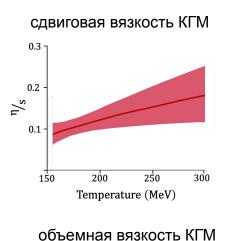

Анизотропные коллективные потоки

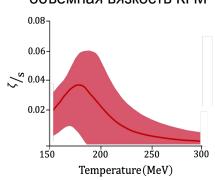

Плоскость реакции: направление движения ядер и прицельного параметра

Область перекрытия имеет форму эллипса

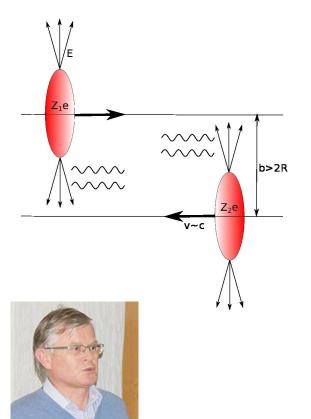
Анизотропные коллективные потоки


Эллиптический поток (v₂) как функция энергии столкновения


Экспериментальные данные покрывают четыре порядка по величине энергии столкновения


Данные из экспериментов в GSI, AGS, SPS, RHIC, и LHC

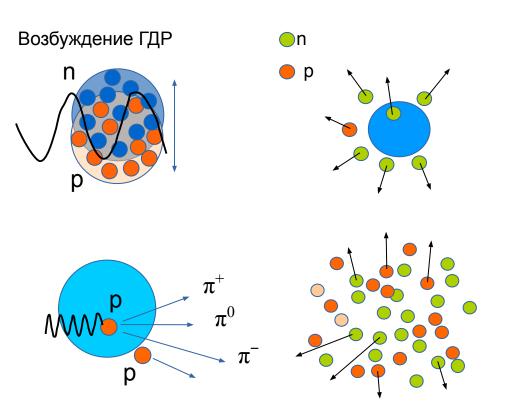
Гидродинамическое описание V_2



Ультрапериферийные столкновения (UPC) ядер

И.А. Пшеничнов

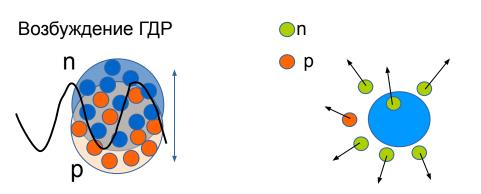
При ультрапериферийных столкновениях ультрарелятивистские ядра могут распадаться за счет своих лоренц-сжатых кулоновских полей


Модель RELDIS:

Создана совместно ИЯИ и Институтом Нильса Бора

Монте-Карло модель релятивистской электромагнитной диссоциации является уникальной реализацией метода Вайцзеккера-Вильямса для описания испускания и поглощения эквивалентных фотонов.

RELDIS, в свою очередь, основан на модели фотоядерной реакции, также созданной в ИЯИ


RELDIS: Модель релятивистской электромагнитной диссоциации, созданная в ИЯИ

При малых возбуждениях в основном испаряются нейтроны

Распад на большое число фрагментов случается редко из-за низкой средней энергии возбуждения

Предсказание для сечений вылета тяжелых ядер в столкновениях ядер свинца на LHC

заряд	нуклид	Сечение (b)
82	¹⁸⁸⁻²⁰⁸ Pb	144.7
81	¹⁸⁵⁻²⁰⁷ TI	29.9
80	¹⁸¹⁻²⁰⁶ Hg	13
79	¹⁷⁸⁻²⁰⁵ Au	6.2

В процессе электромагнитной диссоциации ядра золота образуются из свинца почти так же часто, как адроны в столкновениях ядер свинца

Мечта средневековых алхимиков - реальность на LHC...

Примечательно:

В 2015 году, при плановом техническом обслуживании обнаружено около 4 тонн золота внутри Большого адронного коллайдера https://bullion.directory/cern-scientists-create-230m-dollars-gold-in-lab

Модернизация существующих и подготовка новых

экспериментальных установок

Вклад ИЯИ в модернизация существующих установок

NA61/SHINE Ha SPS

Модернизация переднего адронного калориметра

Разработка новых кремниевых детекторов пучка

Разработка методов определения центральности по спектарорам

BM@N на Нуклотроне

Создан новый адронный калориметр для будущих запусков эксперимента BM@N на нуклотроне

ALICE на LHC

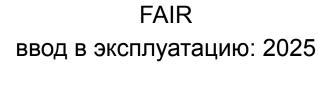
FIT (Fast interaction Trigger)

окончательный интеграционный тест FV0 и FT0-A в октябре 2020 года

FT0-С готов к установке на ALICE в декабре 2020 года

Будущие ускорители и коллайдеры

НИКА Сверхпроводящий коллайдер протонов и тяжёлых ионов (ОИЯИ, Дубна)

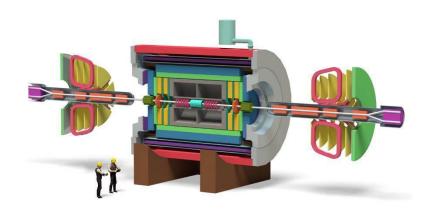


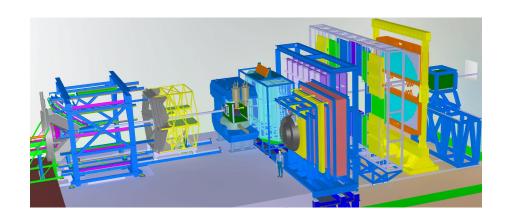
FAIR
Центр по исследованию ионов и антипротонов (Дармштадт, Германии)

Стройплощадки НИКА и FAIR (2020)

НИКА ввод в эксплуатацию: 2022

Аэро-видеосъемка https://youtu.be/cK4eUWbzn5w?t=142




Аэро-видеосъемка https://www.youtube.com/watch?v=O4J3nx2pnls

Будущие установки в России и Германии

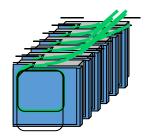
MPD Многоцелевой детектор на НИКА

СВМСжатая барионная материя на ФАИР

Вклад ИЯИ в будущие установки в России и Европы

А. Ивашкин

Ф. Губер


Л.В. Кравчук

Разработка и создание передних адронных калориметров, а также методов их калибровки

Технология основана на модулях адронного калориметра, собранных из слоев свинца и сцинтиллятора.

Сбор света с помощью спектросмещающего оптоволокна (WLS)

Считывание сигнала кремниевыми фотоэлектронными умножителями (SiPM)

Коллеги ИЯИ РАН

Молодые исследователи и студенты ИЯИ РАН

Молодые ученые

Alexander Izvestnii

Dmitry Finogeev

Oleg Petukhov

Dmitry Borisenko

Аспиранты

Nikolay Karpushkin МФТИ

Elizaveta Zherebzova Μ/ΙΦ/Ι

Vadim Volkov МФТИ

Alexander Strizhak ΜΦΤИ

Студенты (МИФИ, МФТИ)

Alexander Baranov ΜИΦИ

Irina Yumatova МИФИ

Alexander Makhnev МФТИ

Султан Мусин МФТИ

Dmitry Gerasimov МФТИ

Рабочие группы ИЯИ РАН

Поздравляю ИЯИ РАН с 50-ти летием!

