"Исследование осцилляций нейтрино на ускорителях: основные результаты"

А. В. Буткевич

Институт ядерных исследований РАН, Москва

01.04.2022

(*) Осцилляции нейтрино. Гипотеза о возможном смешивании нейтрино Понтекорво (1957), Маки, Накагава, Саката (1962). Нейтрино с определенным ароматом ν_{α} , где $\alpha = e, \mu, \tau$ является суперпозицией ν_i , i=1,2,3,... собственных состояний с массами $m_i \neq m_j$

$$u_{lpha} = \sum U_{lpha i}
u_i$$

В случае 3-х дираковских состояний ν_i матрица смешивания лептонов $U_{\alpha i}$ зависит от 3-х углов смешивания θ_i и дираковской фазы нарушения СР-инвариантности в лептонном секторе δ . СР-инвариантность сохраняется, если $U = U^*$ - реальнная матрица, т.е. $\delta = 0, \pi$

Актуальность

3-х флейворная парадигма нейтринных осцилляций

Матрица смешивания дираковских массивных нейтрино Понтекорво-Маки-Накагава-Саката (аналогично смешиванию кварков) $c_{ij} = \cos \theta_{ij}, \quad s_{ij} = \sin \theta_{ij}, \quad \delta$ -фаза нарушения СР-инвариантности

$$U=\left(egin{array}{cccc} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{array}
ight) \left(egin{array}{cccc} c_{13} & 0 & s_{13}e^{-\imath\delta} \ 0 & 1 & 0 \ -s_{13}e^{\imath\delta} & 0 & c_{13} \end{array}
ight) \left(egin{array}{cccc} c_{12} & s_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{array}
ight)$$

атмосферные, ускоритель ускоритель, реактор солнечные, реактор

В случае майорановских массивных нейтрино матрица смешивания U_M содержит две дополнительных фазы нарушения СР-инвариантности (ξ_1, ξ_2) и имеет вид

$$U_M = U imes diag(1, \exp(i m{\xi}_1), \exp(i m{\xi}_2))$$

Эффекты осцилляций - после прохождения расстояния $L: \nu_{\alpha} \rightarrow \nu_{\beta}$, где $\alpha, \beta = e, \mu, \tau, \dots$ Вероятности осцилляций зависят от энергии нейтрино E и пройденного расстояния L, а также от разностей квадратов масс нейтрино $\Delta m_{ij}^2 = m_i^2 - m_j^2$, углов смешивания $\theta_{ij} = [0, \pi/2]$, фазы $\delta = [0, 2\pi]$ и иерархии масс нейтрино. Фазы (ξ_1, ξ_2) не влияют на эффекты осцилляций нейтрино.

А. Буткевич (ИЯИ РАН)

ИЯИ РАН-01.04.2022 3 / 40

Актуальность

Измеренные значения параметров 3-х нейтринных осцилляций.

 $\Delta m^2 = m_3^2 - (m_2^2 + m_1^2)/2$ иерархия масс: нормальная (NH) $m_1 \ll m_2 \ll m_3$ и $\Delta m_{23}^2 > 0$ или обратная (IH) $m_3 \ll m_1 \ll m_2$ и $\Delta m_{23}^2 < 0$?

Солнечные и реакторные (анти)нейтрино ("солнечные" параметры) $\Delta m^2_{21} = (7.39^{+0.021}_{-0.020}) \cdot 10^{-5} \ \Im B^2 \ \sigma \approx 2.8\%$ $\sin^2 \theta_{21} = 0.310 \pm 0.013 \ \sigma \approx 4.2\%$

Реакторные, ускорительные (анти)нейтрино $\sin^2 \theta_{13} = 0.0226 \pm 0.00065$ (IH) и $\sin^2 \theta_{13} = 0.0224 \pm 0.00065$ (NH) $\sigma \approx 2.8\%$

Атмосферные и ускорительные (анти)нейтрино ("атмосферные" параметры) $|\Delta m_{23}^2| = (2.510 \pm 0.03) \cdot 10^{-3} \ \text{sB}^2$ (IH) $|\Delta m_{23}^2| = (2.454 \pm 0.03) \cdot 10^{-3} \ \text{sB}^2$ (NH) $\sigma \approx 1.2\%$ $\sin^2 \theta_{23} = 0.565^{+0.017}_{-0.022}$ (IH) и $\sin^2 \theta_{23} = 0.563^{+0.018}_{-0.024}$ (NH) $\sigma \approx 4.2\%$

Фаза нарушения СР-инвариантности $\delta/^{\circ} = 282^{+23}_{-25}$, 3σ интервал (205 - 348) (IH) и $\delta/^{\circ} = 221^{+39}_{-28}$, 3σ интервал (154 - 357) (NH)

PDG 2020.

Что еще необходимо сделать в осцилляционных экспериментах

Измерить вероятности $\nu_\mu \to \nu_e, \, \bar{\nu}_\mu \to \bar{\nu}_e$ переходов, вероятность выживания $\nu_\mu \to \nu_\mu$ и $\bar{\nu}_\mu \to \bar{\nu}_\mu$ и определить

- (*) иерархию масс: нормальная (NH) $m_1 \ll m_2 \ll m_3$, или обратная (IH) $m_3 \ll m_1 \ll m_2$?
- (\star) фазу нарушения СР инвариантности δ в лептонном секторе $\delta
 eq [0,\pi]$
- (*) уточнить значения Δm^2_{23} и θ_{23} . Если $\sin^2 2\theta_{23} < 1(0.97)$, то определить в какой четверти находится угол θ_{23} . Если $\theta_{23} < 45^\circ$, то (в массивном состоянии ν_3 примесь ν_{τ} больше, чем ν_{μ}) или наоборот. если $\theta_{23} > 45^\circ$

3-х флейворная парадигма хорошо описывает подавляющее большинство данных.

Аномальные эффекты : MiniBooNe PRD 103, 052002 (2020)

Ускорительные осцилляционные эксперименты на коротких расстояниях наблюдают аномальные эффекты для $\nu_{\mu} \rightarrow \nu_{e}$, $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ переходов, а именно, большие вероятности появления ν_{e} в пучке ν_{μ} . 3+1 схема смешивания нейтрино ν_{e} , ν_{μ} , ν_{τ} , ν_{s} - стерильное нейтрино с $\Delta m^{2} = 0.043$ эВ² и sin² 2 $\theta = 0.807$ (best fit) ("Призрак" стерильных нейтрино). В экспериментах на исчезновение ($\nu_{\mu} \rightarrow \nu_{\mu}$, $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ каналы) анамалий не наблюдается.

А. Буткевич (ИЯИ РАН) "Исследование осцилляций нейтрино ..

ФОРМАЛИЗМ НЕЙТРИННЫХ ОСЦИЛЛЯЦИЙ

А. Буткевич (ИЯИ РАН)

"Исследование осцилляций нейтрино .. ИЯИ

ИЯИ РАН-01.04.2022

7 / 40

3-х флейворная парадигма - осцилляции в веществе

Эксперименты с большими расстояниями между источником и детектором нейтрино

- (*) Нейтрино проходит большие расстояния в среде с постоянной плотностью.
- (*) Влияние среды из-за различия в амплитудах упругого рассеяния вперед, например, ν_{μ} только из-за взаимодействия нейтральным током, а ν_e рассеяние заряженным и нейтральным токами на электронах. Эффект вещества (Михеев-Смирнов-Волфенстайн)
- (*) Среда может приводить как к подавлению осцилляций, так и к усилению их глубины
- (*) Расчеты вероятностей осцилляций по точным формулам трудоемки, поэтому используются разложение в ряд по малому параметру $lpha=\Delta m^2_{21}/\Delta m^2_{31}pprox 0.034$

Вероятность выживания $u_{\mu} \rightarrow \nu_{\mu}$ на расстоянии L.

Эффект вещества отсутствует, осцилляции как в вакууме

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \Delta,$

где $\Delta = \Delta m_{31}^2 L/4E$, E-энергия нейтрино. Лидирующий член $\cos^4 \theta_{13} \sin^2 2\theta_{23} \sin^2 \Delta$ позволяет определить значения $\sin 2\theta_{23}$ и Δm_{31}^2 . Вероятность появления ν_e в пучках ν_μ в веществе. Приближенные решения уравнения эволюции \Rightarrow разложение по малым параметрам α , A, s_{13} и их комбинациям.

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}(A-1)\Delta}{(A-1)^{2}} + \alpha^{2} \sin^{2} 2\theta_{12} \cos^{2} \theta_{23} \frac{\sin^{2} A\Delta}{A^{2}} + \alpha \sin 2\theta_{13} \cos(\Delta + \delta) \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{A-1},$$

где $A=VL/2\Delta$ зависит от упорядочивания масс и $\delta o -\delta$ для $ar
u_\mu oar
u_\mu$ и A o -A для $\Delta<0.$

$$V = \sqrt{2}G_F \rho m_N^{-1} Y_e \simeq 7.56^{-14} \rho Y_e, \tag{1}$$

где $Y_e\simeq 0.5$ - число электронов, приходящихся на один нуклон среды, $ho(r/cm^2)$ - плотность вещества вдоль траектории нейтрино.

Вероятности $\nu_{\mu} \rightarrow \nu_{e}$ и $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ осцилляций зависят от знака Δ - иерархии масс нейтрино, угла θ_{23} ($\theta_{23} < \pi/4$ или $\theta_{23} > \pi/4$) и фазы СР-нарушения. При этом амплитуда $\nu_{\mu} \rightarrow \nu_{e}$ ($\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$) осцилляций будет максимальной (минимальной) при NO и $\delta_{CP} \simeq -\pi/2$ и минимальной (максимальной) при IO и $\delta_{CP} \simeq \pi/2$. На пути $l_0 = \sqrt{2\pi m_N}/(G_F \rho Y_e)$ в результате рассеяния приобретается дополнительная разность фаз у ν_e и ν_μ : $\Delta \phi = 2\pi$. Эффект вещества заметен на толщи $d_0 = \rho l_0 \approx 3.5 \times 10^9$ (г/см³). Длина осцилляций в вакууме $l_\nu = 4\pi E/\Delta m_{31}^2$. Если $l_\nu \ll l_0$ - изменение свойств осцилляци незначительно. Оценка эффекта вещества в области энергий нейтрино, где эффект $\nu_\mu \rightarrow \nu_e$ осцилляций максимальный, т.е. $\sin^2 \Delta_{31} \approx 1$. $P_{\mu e}^m \approx P_{\nu e}^\nu (1 + 2E/E_r)$ где $P^m(P^v)$ - вероятность осцилляций в веществе (вакууме) и $E_r = \Delta m_{31}^2/2V \approx 10$ ГэВ при $\Delta m_{31}^2 \simeq 2.5 \times 10^{-3}$ эВ² и $\rho = 3$ г/см³. Нейтрино-антинейтрино асимметрия, определенная как

 $A_{CP} = [P(\nu_{\mu} \rightarrow \nu_{e}) - P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})]/[P(\nu_{\mu} \rightarrow \nu_{e}) + P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})].$

Для оценки A_{CP} при $\Delta \sim \pi/2$ можно использовать выражение

$$\begin{split} A_{cp} &= A_{CP}^{\delta} + A_{CP}^{mat} \\ A_{CP}^{\delta} &\simeq \frac{\cos \theta_{23} \sin \theta_{21}}{\sin \theta_{23} \sin \theta_{31}} \left(\frac{\Delta m_{21}^2 L}{4E} \right) \sin \delta_{CP}, \end{split}$$

и $A_{CP}^{mat} \propto L \times E$. Таким образом, измеряемая в веществе асимметрия обусловлена асимметрией A_{CP}^{δ} , вызванной нарушением СР-инвариантности и асимметрией A_{CP}^{mat} , возникающей из-за эффекта вещества. Знак A_{CP}^{mat} определяется иерархией масс, т.е. $A_{CP}^{mat} > 0$ ($A_{CP}^{mat} < 0$) при $\Delta > 0$ ($\Delta < 0$).

А. Буткевич (ИЯИ РАН) "Исследование осцилляций нейтрино .. ИЯИ РАН-01.04.2022

10/40

Аномальные результаты в нейтринных экспериментах на коротких расстояниях, которые не находят своего объяснения в рамках 3-х флейворной парадигмы

- (\star) избытки u_e и $ar{
 u}_e$, наблюдаемые в ускорительных экспериментах
- (\star) дефицит $ar{
 u}_e$ событий, наблюдаемый в экспериментах с реакторными нейтрино
- (*) дефицит ν_e событий, наблюдаемый в экспериментах с радиоактивными источниками нейтрино

Простое объяснение этих анамалий дает 3+1 модель, где стандартный нейтринный сектор ν_e, ν_μ, ν_τ расширяется дополнительным ароматом ν_s - стерильным нейтрино, которое не участвует во взаимодействиях Стандартной Модели. Три легких активных нейтрино ν_α и стерильных нейтрино ν_s представдляют смесь массивных состояний $\nu_1, \nu_2, \nu_3, \nu_4$, где $m_4 \approx O(1 \text{ >B})$, что следует из наблюдаемых аномалий.

Параметрически можно расширить матрицу U(3 imes 3) до матрицы U(4 imes 4) с

 $lpha=e,\mu, au,s$ и i=1,2,3,4.

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} & U_{\mu4} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} & U_{\tau4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix},$$

Матрица U параметризуют 3-я углами $\theta_{12}, \theta_{23}, \theta_{13}$ и CP-фазой δ плюс 3 дополнительных угла $\theta_{14}, \theta_{24}, \theta_{34}$ и две CP-фазы δ_{24}, δ_{14} . Полагают, что $\Delta_{14}^2 \approx \Delta_{43}^2 \approx \Delta_{41}^2 \approx 1$ эВ². Кроме того, $\Delta m_{41}^2 >> |\Delta m_{31}^2|, \Delta m_{21}^2$.

Тогда вероятность осцилляций на коротких расстояниях можно записать как * Нейтрино от реактора и источника $P(u = v = u) \approx 1 - 4|U| |^2(1 = |U| |^2) \sin^2 \Lambda = 1 - \sin^2(20) \sin^2 \Lambda$

$$\begin{split} P(\nu_e \to \nu_e) &\approx 1 - 4|U_{e4}|^2 (1 - |U_{e4}|^2) \sin^2 \Delta \equiv 1 - \sin^2(2\theta_{ee}) \sin^2 \Delta \\ \star \text{ Нейтрино от ускорителя (убывание из пучка)} \\ P(\nu_\mu \to \nu_\mu) &\approx 1 - 4|U_{\mu4}|^2 (1 - |U_{\mu4}|^2) \sin^2 \Delta \equiv 1 - \sin^2(2\theta_{\mu\mu}) \sin^2 \Delta \\ \star \text{ Нейтрино от ускорителя (появление в пучке)} \\ P(\nu_\mu \to \nu_e) &\approx 4|U_{\mu4}|^2 |U_{e4}|^2 \sin^2 \Delta \equiv \sin^2(2\theta_{\mu e}) \sin^2 \Delta \\ \star \text{ Нейтрино от ускорителя (убывание из пучка нейтральный ток)} \\ P^{NC}(\nu_\mu \to \nu_s) &\approx 1 - 4|U_{\mu4}|^2 |U_{s4}|^2 \sin^2 \Delta \equiv 1 - \sin^2(2\theta_{\mu\mu}) \sin^2 \Delta, \\ \text{где } \Delta = \Delta m_{14}^2 L/4E \end{split}$$

Из этих экспериментов можно определить матричные элементы $U_{e4}, U_{\mu4}, U_{s4}$ и использовать условие унитарности (для модели 3+1)

 $|U_{e4}|^2 + |U_{\mu4}|^2 + |U_{\tau4}|^2 + |U_{s4}|^2 = 1$ и связь амплитуд для появления и исчезновения $\sin^2 2 heta_{\mu e} \leq \sin^2 2 heta_{\mu \mu} \sin^2 2 heta_{ee}/4$

Ускорительные нейтринные осцилляционные эксперименты

Long baseline neutrino experiment: NOvA

Off-axis (14 mrad) пучок нейтрино большой интенсивности мощность протонного пучка составляет 0.7 MBт.

Используются два детектора: NDближний детектор (эффекты осцилляций малы) и FD- дальний детектор на расстоянии L=810км (NOvA) для регистрации эффектов осцилляций в потоках нейтрино.

Эффект осцилляций максимальный при $E_{min}\sim \Delta m^2_{23}L$, т.е. при $E\sim 1\div 3$ ГэВ.

• Thist antimentino data. 0.9 x 10 TOT, taken red 2017 - April 2018

Спектры (анти)нейтрино на ND и FD: при $heta_
u = 14mrad$ узкий пик в области $E_
u = 2$ ГэВ.

Нейтринные детекторы (SiPM MPPC Hamamatsu

Extruded PVC cells are filled with scintillating mineral oil. Scintillator light is collected by WLS to 32-pixel APD.

Ближний детектор в Фермилабе на глубине 100м

Дальний детектор в Миннессоте (Аш-Ривер) на поверхности

"Исследование осцилляций нейтрино ..

18 / 40

Экспозиция $13.6 imes 10^{20}POT$ - u_{μ} пучок и $12.5 imes 10^{21}POT$ - $ar{ u}_{\mu}$ пучок

M.A.Acero et al., arXiv:2108.08219 (2021)

 $\bar{\nu}_e$ CC: зарегистрировано - 33, фон - 14, best fit - 33

Long baseline neutrino experiment: T2K

T2K Experiment

Off-axis (2.5°) пучок нейтрино большой интенсивности. Мощ-

- Accelerator-based ν beam
- ν energy is narrow with off-axis method L = 295km \rightarrow oscillation peak at 0.6GeV
- + ν / $\overline{\nu}$ can be switched by flipping horn polarity
 - <1% of intrinsic ν_e at peak energy
 - ~5% of wrong sign component in $\overline{\nu}$ beam mode

Спектры на FD: узкий пик в области $E_{\nu} = 0.6$ ГэВ.

СуперКамиоканда

FD observed event

 ν -mode :14.9x10²⁰ POT , $\overline{\nu}$ -mode : 16.3x10²⁰ POT

K.Abe et al., PRD 103, 112008 (2021)

Схема Short-Baseline Neutrino (SBN) эксперимента в Фермилабе (США).

Используются Liquid Argon Time Projection Chambers (LArTPC) три детектора:

а) ближний детектор с активной массой 112 т на растоянии 110 м с объемом 5м (Д) \times 4м (Ш) \times 4м (В),

б) дальний детектор ICARUS - T600 с массой 470 т на расстоянии 600 м с объемом 18м(Д) \times 3.2м (Ш) \times 3м (В),

в) Средний детектор MicroBooNE с массой 85 т в активном объеме на расстоянии 469 м с объемом 10.4м(Д) × 2.6м(Ш) × 2.3м(В).

Spectr at MicroBooNE detector

Спектры нейтрино в нейтринном пучке Boster Neutrino Beam (BNB). Широкий максимум при энергии нейтрино ~ 0.7 ГэВ, как и в эксперименте T2K. Состав пучка: ν_{μ} : 93.65%, $\bar{\nu}_{\mu}$: 5.79%, ν_{e} : 0.51%, $\bar{\nu}_{e}$: 0.06%.

MicroBooNE детеутор. Криостат и внутренняя часть детектора.

Расстояние дрейфа - 2.56 м при электрическом дрейфовом поле 273 В/см. Электроны дрейфуют со скоростью 1.1 mm/ μ s. Система светосбора, состоящая из 32 ФЭУ, расположена за тремя плоскостями анодной проволки (вертикальные и под углом $\pm 60^{\circ}$), которые регистрирует ионизационный заряд. Расстояние между плоскостями 3 mm и расстояние между проволаками 3 мм.

Результаты экспериментов NOvA и T2K

Параметры осцилляций (best-fit points of T2K and NOvA data) NOvA - arXiv [2108.08219(hep-ph)] T2K - Phys. Rev> D103, 112008, (2021)

Получены при			PDG 2018
$\sin^2 2\theta_{13} = 0.0857 \pm$	$= 0.0046, \ \sin^2$	$\theta_{12} = 0.307^{+0.13}_{-0.12},$	$\Delta_{12} = (7.53 \pm 0.18) 10^{-5} eV^2$
Параметры	NOvA	T2K	
$\Delta_{32}/10^{-3} eV^2$ (NH)	$2.41\substack{+0.07 \\ -0.07}$	$-\ 2.45 \pm 0.07$	
$\Delta_{32}/10^{-3} eV^2~(ext{IH})$	$2.45\substack{+0.07 \\ -0.07}$	$ 2.43\pm0.07$	
$\sin^2 heta_{23}$ (NH)	$0.57\substack{+0.03 \\ -0.04}$	$0.53\substack{+0.029\\-0.035}$	
$\sin^2 heta_{23}$ (IH)	$0.56\substack{+0.03\\-0.04}$	$0.53\substack{+0.029\\-0.035}$	
δ_{CP}/π (NH)	$0.82\substack{+0.27\\-0.87}$	$1.389\substack{+0.223\\-0.185}$	
δ_{CP}/π (IH)	$1.52^{+0.27}_{-0.87}$	$1.56\substack{+0.149\\-0.179}$	
POWELTATLI AKCEODIAMOL			DY MO MACC HA 68%

Результаты экспериментов предпочитают нормальную иерархию масс на 68% доверительном уровне.

"T2K best fit point" - $\delta_{CP}=1.56$ исключается результатом NOvA с достоверностью 2σ

"NOvA best fit point" - $\delta_{CP}=0.82$ отвергается результатом T2K на уровне 2σ .

★ Обратная иерархия масс.

Разрешенная область T2K с доверительным интервалом 90% содержится в разрешенной области NOvA.

⋆ Возможный компромисс.

Обратная иерархия масс и $\delta_{CP} pprox 3\pi/2$.

MiniBooNE и MicroBooNE спектры событий

Инклюзивные спектры электронных событий $\nu_e + C \rightarrow e + X$ в экспериментах MiniBooNE (левый рисунок) и событий $\nu_e + Ar \rightarrow e + X$ в MicroBooNE (правый рисунок arXiv:2110.14054).

Для описания спектра событий, измеренного в эксперименте MicroBooNE нет необходимости привлекать вклады стерильных нейтрино. Измеренный и ожидаемый инклюзивные спектры согласуются в пределах ошибок.

Результаты эксперимента MicroBooNE

Отношение числа событий DATA/MC с разными топологиями (правый рисунок): (1e1p) - регистрируется $e^- + p$; $(1eNp0\pi)$ - регистрируется $e^- + Np$; $(1e0p0\pi)$ - регистрируется только e^- , (1eX) - инклюзивный спектр $e^- + X$ Спектры 1e1p событий (правый рисунок) arXiv:2110.14054

Согласие с данными в пределах ошибок.

Ошибки в сечениях и потоках нейтрино доминирует в полной систематической ошибке эксперимента. Ошибки в сечениях обусловлены ядерными эффектами: структура ядра, распределение нуклонов в ядре по энергии и импульсу, взаимодействие нуклонов в начальном (нуклон-нуклонные корреляции) и конечном состояниях, вклад токов обменных мезонов.

* Слабое взаимодействие нейтрино исследует структуру ядра, также как и электромагнитное взаимодействие электронов.

* Векторную часть электромагнитного взаимодействия можно определить из рассеяния электронов, а влияние ядерной среды, такое же как и при нейтрино-ядерном рассеянии. * Если модель не способна воспроизвести точные данные по рассеянию электронов, то нельзя ожидать, что она сможет правильно предсказать нейтринные сечения.

- ★ В области энергий нейтринных экспериментов 0.5 5 ГэВ доминируют:
- QE квазиупругий процесс e + A
 ightarrow e + N + X
- MEC рассеяние на обменных мезонах e + A o 2N + X (двух-частичные токи)
- RES рассеяние с рождением барионных резонансов $e + A
 ightarrow e + \pi + N + X$

★ Модели, используемые в расчете A. Butkevich et al., Phys. Rev. C102, 024602 (2020) QE - RDWIA модель Phys. Rev. C59,3256 (1999)

MEC - 2p-2h MEC модель Phys. Rev. D91, 073004 (2015)

RES - параметризация неупругих структурных функций Phys. Rev. C77, 065206 (2008)

* Инклюзивные дифференциальные сечения рассеяния электронов на ${}^{12}C, {}^{40}Ca, {}^{40}Ar$, вычисленные в QE+MEC+RES подходе.

 $^{12}C(e,e')$ дифференциальные сечения как функции переданной энергии ω в сравнении с

результатами RDWIA+MEC+RES модели.

А. Буткевич (ИЯИ РАН)

"Исследование осцилляций нейтрино ..

ИЯИ РАН-01.04.2022 33 / 40

 ${}^{40}Ca(e,e')$ дифференциальные сечения как функции переданной энергии ω в сравнении с результатами RDWIA+MEC+RES модели.

А. Буткевич (ИЯИ РАН)

"Исследование осцилляций нейтрино ..

ИЯИ РАН-01.04.2022 34 / 40

 $^{12}(e,e')$ и $^{40}Ar(e,e')$ дифференциальные сечения как функции переданной энергии ω в сравнении с результатами RDWIA+MEC+RES модели. При $|\bar{q}|_{dip} < 250$ МэВ расчет на $\sim 30\%$ переоценивает сечение в области минимума и согласуется с данными в пределах ошибок при $|\bar{q}|_{dip} > 500$. Эта оценка слабо зависит от начальной энергии электрона.

А. Буткевич (ИЯИ РАН)

35 / 40

MicroBooNE CCQE сечения

* Квази-упругий полуэксклюзивный процесс.

$$u_{\mu} + {}^{40}Ar \rightarrow \mu + p + B,$$

т.е. $CC1p0\pi$ события, где регистрируются мюон с $p_{\mu} > 100$ МэВ/с и только один протон с $p_p > 300$ МэВ/с. Фон - нейтроны и пионы с импульсом $p_{\pi} < 70$ МэВ оценивается из Монте Карло MicroBooNE Phys. Rev. Lett. 125, 201803 (2020).

- ★ Статистика 410 событий и систематическая ошибка 26%
- ★ Слабое взаимодействие ⇒ вклад аксиального тока.

Вклад аксиального тока отпереляется вектор-аксиальным форм-фактором

$$F_A(Q^2) = F_A(0)/(1+Q^2/M_A^2),$$

где аксиальная масса нуклона $1 < M_A < 1.2$ ГэВ определяется из анализа данных MicroBooNE: arXiv:2110.14028, T2K: Phys. Rev. D103, 112008 (2021) * Определение энергии нейтрино в $CC1p0\pi$ событиях.

Калориметрический метод

$$E_{\nu}^{rec} = E_{\mu} + T_p + E_b,$$

где E_μ, T_p энергия мюона и кинетическая энергия протона, а $E_b = 40~{
m M}
m sB$ - энергия связи нуклона в ядре аргона.

Кинематический метод

$$E^{QE-\mu}_{
u}=f(E_{\mu},\cos heta_{\mu},E_b)$$
 и $E^{QE-p}_{
u}=f(T_p,\cos heta_p,E_b)$

Условие отбора $CC1p0\pi$ событий $\Rightarrow E_{
u}^{rec} pprox E_{
u}^{QE-p} pprox E_{
u}^{QE-\mu}$

Интегрированные по спектру нейтрино ${}^{40}Ar(\nu_{\mu},\mu p)$ сечения как функции угла рассеяния мюона (левый рисунок) и импульса мюона (правый рисунок) в сравнении с результатами RDWIA модели A.Butkevich, PRC 105, 025501 (2022), вычисленными для значений $M_A = 1$ и 1.2 ГэВ. Представлены, также, инклюзиные сечения квазиупругого рассеяния нейтрино на аргоне.

А. Буткевич (ИЯИ РАН)

Интегрированные по спектру нейтрино ${}^{40}Ar(\nu_{\mu},\mu p)$ сечение как функция импульса протона в сравнении с результатами RDWIA модели A.Butkevich, PRC 105, 025501 (2022), вычисленными для значений $M_A = 1$ и 1.2 ГэВ.

А. Буткевич (ИЯИ РАН)

"Исследование осцилляций нейтрино ..

ИЯИ РАН-01.04.2022

38 / 40

* Квази-упругий полуэксклюзивный процесс рассеяния нейтральным током NCE.

$$u_{\mu}+{}^{40}Ar
ightarrow
u_{\mu}+p+B$$
 ,

т.е. $NCE1p0\pi$ взаимодействие, где регистрируется только один протон с $p_p>300$ MэB/c.

 \star Усредненное по спектру нейтрино NCE сечение $d\sigma^{NCE}(p_p)/dp_p$ чувствительно к матричному элементу $|U_{s4}|$, т. к.

 $P^{NC}(\nu_{\mu} \rightarrow \nu_{s}) \approx 1 - 4|U_{\mu4}|^{2}|U_{s4}|^{2}\sin^{2}\Delta \equiv 1 - \sin^{2}(2\theta_{\mu\mu})\sin^{2}\Delta$

Заключение

- иерархия масс нормальная (NH) (1σ NOvA) и T2K
- угол $heta_{23} > \pi/4$ (1.6 σ NOvA) и T2K.
- Фаза нарушения СР-инвариантности $\delta_{CP} \neq [0,\pi]$ (2 σ T2K).
- Возможное компромиссное решение IH и $\delta_{CP}pprox 3\pi/2.$
- Вопрос об иерархии масс и о нарушении СР-инвариантности остается открытым.

Complementarity

	DUNE	Hyper-K
Baseline	1300km → Large matter effect (Good for Mass Ordering determination)	295km \Rightarrow Small matter effect (Smaller effect of matter density uncertainty in δ_{CP})
Beam energy	~ Multi-GeV	~ Sub-GeV
Detector technology	Liq. Ar TPC	Water Cherenkov

- ✓ We would like to be convinced the CP violation by the consistent results from these 2 experiments with very different systematics.
- We hope that these 2 experiments will carry out the experiments in a similar timeline.
- r) В эксперименте MicroBooNE не наблюдается избытка u_e событий с $E_e < 500$ МэВ.

40 / 40