МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет) КАФЕДРА «ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ И КОСМОЛОГИЯ» Выпускная квалификационная работа магистра на тему:

> Исследование характеристик детекторов заряженных фрагментов-спектаторов для эксперимента ВМ@N на пучке электронов

> > Герасимов Дмитрий Павлович (студент группы M02-011яф)

> > > Научный руководитель: Губер Фёдор Фридрихович, к.ф-м.н, внс ИЯИ РАН

# Эксперимент ВМ@N

• BM@N (Baryonic Matter at Nuclotron) - первый эксперимент на выведенном пучке ускорительного комплекса NICA-Нуклотрон по исследованию ядро-ядерных взаимодействий при энергиях ионов пучка до 4.5 АГэВ (до 3.5 ГэВ в сцм).

• Программа экспериментов на BM@N включает изучение уравнения состояния ядерной материи, изучение свойств адронов в плотной ядерной среде, рождение гиперядер в ядро-ядерных столкновениях.



Тема квалификационной работы связана с разработкой пучкового годоскопа и сцинтилляционных детекторов для сцинтилляционной стенки для эксперимента BM@N, исследованием их отклика на пучках электронов.

#### Передние детекторные системы BM@N

- FHCal передний адронный калориметр для измерения геометрии ядро-ядерных столкновений;
- FQH передний кварцевый годоскоп (перекрывает пучковое отверстие в калориметре);
- ScWall передняя многоканальная сцинтилляционная стенка для измерения заряженных фрагментов-спектаторов.



#### Все эти детекторные системы разработаны и изготовлены в ИЯИ РАН

[GeV]



Из корреляции между выделенной энергией в FHCal и амплитудой сигнала в FQH можно однозначно определить центральность взаимодействия.

Зарядовые распределения фрагментов-спектаторов, измеренные ScWall необходимы для уточнения параметров моделей фрагментации.

# FQH – передний пучковый кварцевый годоскоп



# Плата с фотодиодами Плата с фотодиодами

#### Схема FQH



#### Схема одного кварцевого детектора FQH

- FQH 16 кварцевых черенковских детекторов.
- Размер каждого детектора 4 х 10 х 160 мм.
- Чувствительная область FQH 160 х 160 мм<sup>2</sup>
- Свет с каждого кварцевой пластины детектируется с двух противоположных торцов парами кремниевых фотоумножителей.
- Сигналы с фотодетекторов регистрировались в тестах на пучке с помощью диджитайзера CAEN

Одна из задач дипломной работы – измерение световыхода и неоднородности светосбора вдоль кварцевой пластины



Зависимость квантовой эффективности от длины волны для МРРС S12572-015P, слева ( использован в в тесте) и для МРРС S14160-3015PS (будет использоваться на BM@N)

# Установка для тестирования кварцевого годоскопа

Измерения световыхода и неоднородности светосбора кварцевых детекторов FQH проводились на пучке электронов синхротнона «Пахра» в ФИАН (Троицк).



Схема установки

Фото установки на пучке электронов

# Результаты измерения световыхода и неоднородности светосбора кварцевых детекторов FQH

#### Световыход



Вид амплитудного спектра с каждой из двух пар фотодиодов кварцевого детектора

Из соотношения количества нулевых и ненулевых событий в этом амплитудном спектре, согласно свойствам пуассоновского распределения, в было определено среднее амплитудное значение спектра.

- Световыход при считывании сигналов парой фотодиодов только с одного из торцов кварцевой пластины - от 2 до 3 фотоэлектронов.
- Световыход при считывании сигналов четырьмя фотодиодами с обоих торцов кварцевой пластины детектора находится в пределах от 4.5 до 4.9 фотоэлектронов.

#### Неоднородность светосбора



- Неоднородность светосбора в кварцевой пластине при считывании света только парой МРРС с одного из торцов пластины детектора достигает 42%.
- неоднородность <u>светосбора</u> при считывании сигналов парами фотодиодами с обоих торцов кварцевой пластины детектора - в пределах ±5%.

Похожие результаты были получены для всех 16 детекторов годоскопа.

#### ScWall – передняя многоканальная сцинтилляционная стенка





ScWall: 36 сцинт. дет. 7,5 х 7,5 х 1см<sup>3</sup>, 138 сцинт. дет. 15 х 15 х 1см<sup>3</sup>. Сцинт. – производство «Унипласт». Оптоволокно WLS Y11(200) S-type диаметром 1 мм производства компании Kuraray





Одна из задач дипломной работы – измерение световыхода и неоднородности светосбора вдоль диагонали сцинтилляционной пластин для 2х типов отражателей сцинтилляционных пластин. МРРС S13360-1325CS, Нататаtsu (Япония). Площадь активной области 1.3 × 1.3 мм<sup>2</sup>, квантовая эффективность 25%, коэффициент усиления 7 · 10<sup>5</sup>.

### Результаты измерения световыхода и неоднородности светосбора больших сцинтилляционных детекторов для ScWall

Измерения световыхода и неоднородности светосбора сцинтилляционных детекторов для ScWall также проводились на пучке электронов синхротнона «Пахра» в ФИАН (Троицк).



### Результаты измерения световыхода и неоднородности светосбора маленьких сцинтилляционных детекторов для ScWall



# Заключение (I)

Задачей данной квалификационной работы было проведение исследований на пучке электронов на синхротроне «Пахра» в ФИАН световыходов и неоднородностей светосбора с кварцевых черенковских детекторов переднего пучкового годоскопа и образцов сцинтилляционных детекторов с разными отражающими покрытиями для выбора этих детекторов для сцинтилляционной стенки эксперимента BM@N.

В результате проведенных исследований получены следующие результаты:

# Заключение (II)

#### Для кварцевых детекторов годоскопа FQH :

- Значения световыхода при считывании сигналов парой фотодиодов только с одного из торцов кварцевой пластины детектора находится в пределах от 2 до 3 фотоэлектронов.
- Световыход при считывании сигналов четырьмя фотодиодами с обоих торцов кварцевой пластины детектора находится в пределах от 4.5 до 4.9 фотоэлектронов.
- неоднородность световыхода в кварцевой пластине при считывании света только парой МРРС с одного из торцов пластины детектора достигает 42%.
- ⊣ Неоднородность <u>световыхода</u> при считывании сигналов парами фотодиодами с обоих торцов кварцевой пластины детектора находится в пределах ±5%.

## Заключение (III)

#### Для сцинтилляционных детекторов ScWall:

- Диффузионный отражатель, образованный в результате травления специальным химическим раствором поверхности сцинтиллятора, обеспечивает более высокий световой выход, чем отражатель ТҮVEK – 40 фотоэлектронов против 32 фотоэлектронов для сцинтилляционных детекторов 15 х 15 см<sup>2</sup> и, соответственно, 71 против 55 фотоэдектронов для детекторов 7.5 х 7.5 см<sup>2</sup>.
- → Однако, измерения показали, что пространственная неоднородность светосбора в сцинтилляционных детекторах меньше для детекторов с отражателем из ТҮVEK, чем с диффузионным отражателем. Для детекторов 15 х 15 см<sup>2</sup> с ТҮVEK неоднородность светосбора составляет около 6%, что почти в 2 раза меньше, чем для детектора с диффузионным отражателем. Для детекторов 7.5 х 7.5 см<sup>2</sup> неоднородность светосбора составляет около 2.4% для отражателя ТҮVEK и 3.2% для химического отражателя.

# Спасибо за внимание!

| Точка на кварцевой | Сторона 1 |      |         | Сторона 2 |      |         |
|--------------------|-----------|------|---------|-----------|------|---------|
| пластине детектора |           |      |         |           |      |         |
|                    |           |      |         |           |      |         |
| 4                  | 44004     | 4540 | 1/01 10 | 10001     | A//  | 504 404 |
| 1                  | 11084     | 1549 | 1621.18 | 10001     | 400  | 531.124 |
| 2                  | 10656     | 1523 | 1578.44 | 9478      | 345  | 394.309 |
| 3                  | 10575     | 1496 | 1573.64 | 9576      | 497  | 567.308 |
| 4                  | 10256     | 1355 | 1428.7  | 9413      | 512  | 579.644 |
| 5                  | 10054     | 1266 | 1341.84 | 9348      | 560  | 630.515 |
| 6                  | 9857      | 1144 | 1229.07 | 9419      | 700  | 781.242 |
| 7                  | 10089     | 1138 | 1226.41 | 9705      | 754  | 839.048 |
| 8                  | 10091     | 1087 | 1177.93 | 9826      | 822  | 910.546 |
| 9                  | 10000     | 975  | 1062.7  | 9917      | 892  | 978.97  |
| 10                 | 9846      | 883  | 971.389 | 9960      | 997  | 1086.41 |
| 11                 | 10349     | 750  | 831.484 | 10769     | 1170 | 1254.79 |
| 12                 | 10762     | 799  | 888.514 | 11220     | 1257 | 1350.32 |
| 13                 | 10538     | 674  | 752.858 | 11171     | 1307 | 1390.59 |
| 14                 | 9967      | 584  | 655.21  | 10686     | 1303 | 1379.35 |

$$N_{0_{NEW}} = N_0 + N * Q, \quad Q = q_2 * q_2$$
  $q_{1,2} = \frac{N_0}{N}$ 

$$\begin{split} N_{p} &= \ln\left(\frac{N}{N_{o\_NEW}}\right) \\ &dN_{p} = \sqrt{\left(\left(\frac{1}{N}\right)^{2} * dN^{2} + \left(\frac{1}{N_{o\_NEW}}\right)^{2} * dN_{o\_NEW}^{-2}\right)} \\ \Delta &= \frac{N_{p} - meanN_{p}}{meanN_{p}} \\ &d\Delta &= \sqrt{\left(\left(\frac{1}{meanN_{p}}\right)^{2} * dN_{p}^{-2} + \left(\frac{N_{p}}{meanN_{p}^{-2}}\right)^{2} * dmeanN_{p}^{-2}\right)}, \end{split}$$

----