Bose Stars

I. Tkachev

INR RAS, Moscow

Markov readings, 13 May 2023, Moscow

Outline

• Axion Bose Star collapse

D.Levkov, A.Panin, & IT, PRL 118 (2017) 011301

Formation of Bose Stars

D.Levkov, A.Panin, & IT, PRL 121 (2018) 151301

Radio-emission of Axion Stars

D.Levkov, A.Panin, & IT, Phys.Rev.D 102 (2020) 023501

Instability of rotating Bose stars

A. Dmitriev, D.Levkov, A.Panin, & IT, Phys.Rev.D 104 (2021) 023504

Growth of Bose Stars

A. Dmitriev, D.Levkov, A.Panin, & IT, arXiv: 2305.01005

Destructon of Bose Stars

P. Tinyakov, IT, & K. Zioutas, JCAP 01 (2016) 035

• Bose star is a self-gravitating clump of Bosons in the lowest energy state.

Ruffini & Bonazzola, Phys. Rev. 187 (1969) 1767

 May appear in Dark Matter models with light Bose particles. Mainstream candidates - QCD axion or ALP in general:
 Axion stars

IT, Sov. Astron. Lett. 12 (1986) 305

• Vast literature, but little attention to the problem of their formation.

- Interactions are needed to form Bose condensate
- But ALP couplings are extremely small

• Relaxation time is enhanced due to large phase space density *f IT, Phys. Lett. B* **261** (1991) 289

$$\left| au_{R}^{-1} \sim \sigma \, v \, n \, (1+f)
ight|$$

where $f \sim \frac{n}{(mv)^3} \gg 1$

which is still not enough to beat small λ (except in rare axion miniclusters)

Bose condensation by gravitational interactions

D.Levkov, A.Panin, & IT, PRL 121 (2018) 151301 Are we crazy?

- No
- $ullet \ f \gg 1 {
 m classical}$ fields
- $v \ll 1-$ nonrelativistic approximation
- Gravity but no other interactions

Field equations for light DM (Scrödinger-Poisson system)

$$egin{aligned} &i\partial_t\psi = -\Delta\psi/2m + mU\psi\ \Delta U = 4\pi G(\underbrace{m|\psi|^2}_{oldsymbol{
ho}} - \langle
ho
angle) \end{aligned}$$

Bose star is a stationary solution: $\psi = \psi_s(r) \mathrm{e}^{-i\omega t}$

Solving these equations in time, we find Bose condensation!

Bose condensation by gravitational interactions

D.Levkov, A.Panin, & IT, PRL 121 (2018) 151301 Are we crazy?

- No
- $f \gg 1 ext{classical fields}$
- $v \ll 1-$ nonrelativistic approximation
- Gravity but no other interactions

Field equations for light DM (Scrödinger-Poisson system)

$$egin{aligned} &i\partial_t\psi = -\Delta\psi/2m + mU\psi\ \Delta U = 4\pi G(\underbrace{m|\psi|^2}_{oldsymbol{
ho}} - \langle
ho
angle) \end{aligned}$$

Bose star is a stationary solution: $\psi = \psi_s(r) \mathrm{e}^{-i\omega t}$

Solving these equations in time, we find Bose condensation!

Bose condensation by gravitational interactions

D.Levkov, A.Panin, & IT, PRL 121 (2018) 151301 Are we crazy?

- No
- $f \gg 1 ext{classical fields}$
- $v \ll 1-$ nonrelativistic approximation
- Gravity but no other interactions

$$egin{array}{c} \psi(t,\,x) \ U(t,\,x) \end{array}$$

Field equations for light DM (Scrödinger-Poisson system)

$$egin{aligned} i\partial_t\psi&=-\Delta\psi/2m+mU\psi\ \Delta U&=4\pi G(\underbrace{m|\psi|^2}_{oldsymbol{
ho}}-\langle
ho
angle) \end{aligned}$$

Solving these equations in time, we find Bose condensation!

Time evolution

It's a Bose star

We observe formation of a Bose star at $t= au_{ar}$

Bose star appearance: another signature

Energy distribution at different moments of time $F(\omega, t) \equiv \frac{dn}{d\omega} = \int d^3x \int \frac{dt_1}{2\pi} \psi^*(t, x) \psi(t + t_1, x) e^{i\omega t_1 - t_1^2/\tau_1^2}$

Kinetics

Landau equation — derivation

- Perturbative solution of Schrödinger-Poisson equation
- ullet Kinetic approximations $(mv)^{-1} \ll x, \; (mv^2)^{-1} \ll t$
- Compute Wigner distribution

$$f_p(t,x) = \int d^3y \,\mathrm{e}^{-ipy} \langle \psi(x+y/2)\psi^*(x-y/2)
angle$$

random phase average

$$\partial_t f_p + rac{p}{m}
abla_x f_p - m
abla_x ar U
abla_p f_p = ext{St} f_p$$

D.Levkov, A.Panin, & IT, PRL 121 (2018) 151301

Good agreement of lattice F and kinetic f,

$$F_{\omega}=rac{mpf_p}{2\pi^2},\qquad \omega=rac{p^2}{2m}$$

We solve kinetic equation in the form

$$\partial_t F_\omega = \operatorname{St} F_\omega$$

Kinetics

Landau equation — derivation

- Perturbative solution of Schrödinger-Poisson equation
- Kinetic approximations $(mv)^{-1} \ll x, \; (mv^2)^{-1} \ll t$
- Compute Wigner distribution

$$f_p(t,x) = \int d^3y \, \mathrm{e}^{-ipy} \langle \psi(x+y/2)\psi^*(x-y/2)
angle$$

random phase average

$$\frac{\partial_t f_p}{\partial_t f_p} + \frac{p}{m} \nabla_x f_p - m \nabla_x \bar{U} \nabla_p f_p = \operatorname{St} f_p \equiv \underbrace{\frac{f}{\tau_R}}_{\psi} \leftarrow \operatorname{relaxation time} \\ \underbrace{f_p^3}_p \leftarrow \operatorname{Bose amplification}$$

Time to Bose star formation:
$$au_{gr} = egin{array}{c} b \ au_R = rac{4\sqrt{2b}}{\sigma_{gr} v \, nf} \ O(1) ext{ correction} \end{array}$$

Time to Bose star formation

$$au_{gr} = rac{4\sqrt{2}b}{\sigma_{gr} vnf}$$

<u>Rutherford cross section</u>: $\sigma_{gr} \approx 8\pi (mG)^2 \Lambda / v^4$

Coulomb logarithm

Average phase-space density: $f = 6\pi^2 n/(mv)^3$

$$au_{gr}=rac{b\sqrt{2}}{12\pi^3}rac{mv^6}{G^2\Lambda n^2}$$

- Strongly depends on local quantities: *n*, *v*, *f*
- Involves global logarithm $\Lambda = \log(mvR)$

String axions

$$\tau_{bs} \sim 10^{6} \, {\rm yr} \left(\frac{m}{10^{-22} \, {\rm eV}} \right)^{3} \left(\frac{v}{30 \, {\rm km/s}} \right)^{6} \left(\frac{0.1 \, M_{\odot} / {\rm pc}^{3}}{\rho} \right)^{2}$$

Fornax dwarf galaxy

$$egin{array}{rcl} v &\sim & 11 \ {
m km/s} \
ho &\sim & 0.1 \ M_{\odot}/{
m pc}^3 \ au_{bs} &\sim & 1000 \ {
m yr} \end{array}$$

Universe filled with Bose stars!

PQ phase transition after inflation \rightarrow Miniclusters

- After phase transition $0 < \theta < 2\pi$ from horizon to horizon, but $\theta \approx {
 m const}$ on a horizon scale l_H
- Peculiar initial amplitude of oscillations when m_a turns on
- Dark Matter should be very clumpy

PQ phase transition after inflation \rightarrow Miniclusters

- Mass scale of the clumps is set by $M\sim 10^{-11}\,M_\odot$, which is DM mass within horizon at $T_{
 m osc}\approx 1~{
 m GeV}$
- Naively, initial DM density contrast is $\delta
 ho_a/
 ho_a\equiv\Phi\sim 1$
- In fact, very dense objects can form, $\Phi \gg 1$, since for $\theta \sim 1$ the axion attractive self-coupling is non-negligible,

$$V(a)=m^2f_a^2\left(rac{ heta^2}{2}-rac{ heta^4}{4!}+\dots
ight)$$

Minicluster seeds formation at QCD

The height of the plot is cut at $\Phi = 20$. E.Kolb & IT, Phys.Rev. D49 (1994) 5040 A.Vaquero, J.Redondo, J.Stadler arXiv:1809.09241

I. Tkachev

Minicluster formation around equality

A clump becomes gravitationally bound at $Tpprox \Phi \, T_{
m eq}$, i.e. its density today

 $ho_{
m mc}pprox 140\Phi^3(1+\Phi)ar
ho_a(T_{
m eq})$

E.Kolb & IT, Phys.Rev. D50 (1994) 769

B.Eggemeier, et al arXiv:1911.09417

Bose-star formation: QCD axions

$$\tau_{bs}\sim \frac{10^9\,\mathrm{yr}}{\Phi^4}\left(\frac{M_c}{10^{-13}\,M_\odot}\right)^2\left(\frac{m}{26\,\mu\mathrm{eV}}\right)^3$$

•
$$\Phi \sim 1 \Rightarrow \tau_{bs} \sim 10^9 \, {\rm yr}$$

• $\Phi \sim 10^3 \Rightarrow \tau_{bs} \sim {\rm hr}$

Universe filled with axion Bose stars!

- The problem of the growth of a Bose star seems to be very difficult.
 - It is intrinsically inhomogeneous, involves gravity, etc.
- Attempts to approach it in the past were based on calculations of the cross-section for particle capture by the star, see e.g.

J. Chan, S. Sibiryakov, and W. Xue, 2207.04057

• But the solution turned out to be simple and analytical,

A. Dmitriev, D. Levkov, A. Panin, and I.I Tkachev, arXiv:2305.01005.

- The new paradigm:
 - Condensation = flux of particles from the "bath" into the ground state.
 - Kinetics in the bath is the key.
 - The star eats everything she was given.
- A miracle that allows for analytics evolution is self-similar.

- The problem of the growth of a Bose star seems to be very difficult.
 - It is intrinsically inhomogeneous, involves gravity, etc.
- Attempts to approach it in the past were based on calculations of the cross-section for particle capture by the star, see e.g.

J. Chan, S. Sibiryakov, and W. Xue, 2207.04057

• But the solution turned out to be simple and analytical,

A. Dmitriev, D. Levkov, A. Panin, and I.I Tkachev, arXiv:2305.01005.

- The new paradigm:
 - Condensation = flux of particles from the "bath" into the ground state.
 - Kinetics in the bath is the key.
 - The star eats everything she was given.
- A miracle that allows for analytics evolution is self-similar.

Particle distribution function $F(\omega)$ at two moments of time. Chain points – solution of the Landau kinetic equation.

 $M_*\equiv M_{bs}+M_e=\int_{\omega<0}F\,d\omega$, while M_b is the same integral over $\omega>0$, $M=M_{bs}+M_e+M_b.$

Distribution functions $F(\omega)$ before (left) and after self-similar transformation (right).

$$ilde{F}(t,\, ilde{\omega})=lpha F_s(eta ilde{\omega})\,,\quad lpha= au^{-1/D}\,,\quad eta= au^{2/D-1}\,,$$

 $au = t/t_{gr}$, chain points, F_s – solution of the transformed Landau kinetic equation.

Self-similarity gives time-dependent mass $M_b \propto au^{k_M}$ and energy $E_b \propto au^{k_E}$ with

 $k_M = 1 - 3/D$, $k_E = 2 - 5/D$, $3k_E - 5k_M = 1$.

D is determined by the boundary conditions, which change in our case.

Define

 $k_M(\tau) \equiv \frac{d \ln M_b}{d \ln \tau}$ and $k_E(\tau) \equiv \frac{d \ln E_b}{d \ln \tau}$

 $dk_{M,T}/d\ln\tau \ll 1$

Then, the conservation laws $M_b=M-M_st$ and $E_b=E-E_st$ give

$$d\ln aupprox 3d\ln(E-E_*)-5d\ln(M-M_*)\,,$$

or

$$\left(1-E_*/E
ight)^3 (1-M_*/M)^{-5} pprox (au- au_i)/ au_*\,.$$

Self-similarity gives time-dependent mass $M_b \propto au^{k_M}$ and energy $E_b \propto au^{k_E}$ with

 $k_M = 1 - 3/D$, $k_E = 2 - 5/D$, $3k_E - 5k_M = 1$.

D is determined by the boundary conditions, which change in our case.

Define

$$k_M(au) \equiv rac{d\ln M_b}{d\ln au} \quad ext{and} \quad k_E(au) \equiv rac{d\ln E_b}{d\ln au} \,.$$

They satisfy the self-similar law, $3k_E-5k_Mpprox 1$, if change slowly:

 $dk_{M,E}/d\ln au\ll 1.$

Then, the conservation laws $M_b = M - M_*$ and $E_b = E - E_*$ give

$$d\ln au pprox 3d\ln(E-E_*) - 5d\ln(M-M_*)$$
,

or

$$(1 - E_*/E)^3 (1 - M_*/M)^{-5} \approx (\tau - \tau_i)/\tau_*$$
.

In E_* we can count only the ground state $E_*pprox -\gamma M_{bs}^3$, with $\gammapprox 0.0542\,m^2G^2$,

$$(1+x_{bs}^3/\epsilon^2)^3(1-x_e-x_{bs})^{-5}pprox au\,,$$
 where $\epsilon^2\equiv E/\gamma M^3$ and $(x_{bs}+x_e)=M_*(au)/M.$

Bose star mass at $\epsilon = 0.074$, dashed lines – theory.

Evolutions of $M_{bs}(t)$ in 11+22 simulations at $\epsilon = 0.074$ and 0.186. Circles – averages over simulations with given ϵ , dashed lines – theory.

Phenomenological implications (QCD axions)

- Less diffuse DM -> smaller signals in DM detectorts
- But rare strong signals during encounters with debris of tidally disrupted miniclusters

P.Tinyakov, IT and K. Zioutas, JCAP 1601 (2016) 035

• Gravitational microlensing and femtolensing

E.Kolb & IT, Astrophys.J 460 (1996) L25

M.Fairbairn, et. al, PRL 119 (2017) 021101

- Decay of Bose stars
 - Decay to relativistic self
 - Resolution of tension between low and high z observations?

Z.Berezhiani, A.Dolgov & IT, Phys.Rev. D 92 (2015) 061303

- Decay to radiophotons
 - Relation to FRB?

IT, JETP Letters 101 (2015) 1 A.Iwazaki, PRD 91(2015) 023008

• Specific signal in Gravitational waves

Minicluster abundance

Typical miniclusters with $\Phi \approx 1$:

- 10²⁵ in the Galaxy
- $10^{10} \ \mathrm{pc}^{-3}$ in the Solar neighborhood
- Minicluster radius $\sim 10^7~{
 m km}$
- \bullet Direct encounter with the Earth once in $10^5 \ years$
- $\bullet\,$ During encounter density increases by a factor $10^8\,$ for about a day

But, some miniclusters are destroyed in encounters with stars. This may change the prospects for DM detection.

Axion direct detection

Tidal streams from miniclusters

Probability of a minicluster disruption

$$P(\Phi) = 0.022 \left(rac{n}{100}
ight) \Phi^{-3/2} \left(1+\Phi
ight)^{-1/2}$$

Just disk crossings. No actual orbits integration.

P.Tinyakov, IT and K. Zioutas, JCAP 1601 (2016) 035

Axion direct detection

Crossing tidal streams from miniclusters

Mean number of encounters with axion streams producing amplification factor larger than A, as a function of A. Twenty year observation interval is assumed.

P.Tinyakov, IT and K. Zioutas, JCAP 1601 (2016) 035

I. Tkachev

Axion direct detection

Crossing tidal streams from miniclusters

Simulation of expected PWS in cavity experiments

C. O'Hare and A. Green, Phys.Rev. D95 (2017) 063017

- Bose condensation by gravitational interactions is very efficient
- Large fraction of axion dark matter may consist of Bose stars
- Phenomenological implications of Bose star existence are reach and deserve further studies