.. Предмет книги настолько быстро меняется, что единственно целесообразным представляется нарисовать нечто вроде кинематографической картины развития данной области физики элементарных частиц.. М.А. Марков, **1958** г. **«Гипероны и К-мезоны»**

Физика К-мезонов за 50 лет

наблюдение прямого СР-нарушения

ПОИСК Зарядовой асимметрии
в распадах $K^{\pm} \to (3\pi)^{\pm} \ll \tau$ - мезон»

«cusp» эффект и параметры киральной теории

сверхредкие распады каонов и новая физика

каонные пробники фазовых переходов

наблюдение прямого СР-нарушения

История нарушенных симметрий

P - violation

T.D.Lee, C.N.Yang (1956)

• **CP** – violation J.Christenson, J.Cronin,V.Fitch, R.Turlay (1964) $K_{I} \rightarrow \pi^{+}\pi^{-} \iff CP = +1$

$$\begin{split} He \Tilde{matrix} He \Tilde{matrix} matrix and the transformation of transfo$$

Измерение прямого СР нарушения

$$\begin{split} \eta_{+-} = & A(K_L \to \pi^+ \pi^-) \,/\, A(K_S \to \pi^+ \pi^-) = |\eta_{+-}| \cdot \exp(i \cdot \Phi_{+-}) \\ \eta_{00} = & A(K_L \to \pi^0 \pi^0) \,/\, A(K_S \to \pi^0 \pi^0) = |\eta_{00}| \cdot \exp(i \cdot \Phi_{00}) \\ \Phi_{+-} = & (43.4 \pm 0.7)^\circ \qquad \Phi_{00} - \Phi_{+-} = & (0.2 \pm 0.4)^\circ \,(\text{CPT}) \end{split}$$

$$\eta_{+-} = \varepsilon + \varepsilon$$
 $\eta_{00} = \varepsilon - 2 \varepsilon$

 $\frac{\textit{Mзмеряемая величина:}}{\text{Re}(\mathbf{\epsilon} / \mathbf{\epsilon}) = (1 - \mathbf{R}) / 6 \qquad \mathbf{R} = | \eta_{00} / \eta_{+-} |^2 \\ \text{double Ratio:} \quad \mathbf{R} \equiv \frac{\Gamma(K_L \to \pi^0 \pi^0) / \Gamma(K_S \to \pi^0 \pi^0)}{\Gamma(K_L \to \pi^+ \pi^-) / \Gamma(K_S \to \pi^+ \pi^-)}$

В.Кекелидзе, "Марковские чтения"

Результаты измерени
й $Re(\frac{\epsilon'}{\epsilon})$ в единицах 10^{-4} до NA48 и KTeV

Метод NA48

$$\mathsf{R} = \frac{\mathsf{N}(\mathsf{K}_{\mathsf{L}} \to \pi^{0}\pi^{0}) \cdot \mathsf{N}(\mathsf{K}_{\mathsf{S}} \to \pi^{+}\pi^{-})}{\mathsf{N}(\mathsf{K}_{\mathsf{S}} \to \pi^{0}\pi^{0}) \cdot \mathsf{N}(\mathsf{K}_{\mathsf{L}} \to \pi^{+}\pi^{-})} = 1 - 6 \operatorname{Re}(\varepsilon)/\varepsilon$$

сокращение основной систематики

- ≻ 4 распада регистрируются синхронно
- ~ коллинеарные К_S и К_L пучки
- общий распадный объем
- ≻ K_S / K_L мечение
- взвешивание по времени жизни К_S
- измерения в каждом интервале по Рк

высокое разрешение детекторов

 $(\pi^0\pi^0)$

 $(\pi^{+}\pi^{-})$

10

LKr электро-магнитный калориметр

широко-апертурный магнитный спектрометр

Отбор распадов ${f K}^0 o \pi^0 \pi^0$

500 KHz $\Rightarrow \pi^0 \pi^0$ trigger, (99.920 ± 0.009)% eff. $\Rightarrow 2$ KHz

Энергетическое разрешение LKr

(better than 1% for 25 GeV photons)

В.Кекелидзе, "Марковские чтения"

Систематические коррекции и				
неопределенности (данные 98-99)				
	$\Delta(R$	2) (in 10 ⁻⁴ units)		
$\pi^+\pi^-$ background	16.9	± 3.0		
$\pi^0 \pi^0$ background	-5.9	± 2.0		
beam scattering background	-9.6	± 2.0		
Tagging inefficiency		± 3.0		
Accidental tagging	8.3	± 3.4 (part. stat)		
$\pi^+\pi^-$ scale	2.0	±2.8		
$\pi^0 \pi^0$ scale		± 5.8		
AKS inefficiency	1.1	± 0.4		
Acceptance correction	26.7	± 4.1 (MC stat)		
_		± 4.0 (syst)		
$\pi^+\pi^-$ trigger	-3.6	± 5.2 (stat)		
Accidental event losses		± 4.4 (part. stat)		
Total	35.9	± 12.6		

Проверка стабильности R

18

15 мая 2008

поиск зарядовой асимметрии в распадах К[±]

Эксперимент NA48/2

Поиск зарядовой асимметрии в распадах $K^{\pm} \rightarrow (3\pi)^{\pm}$

«*т* - распады»

2003 run: ~ 50 days 2004 run: ~ 60 days

Total statistics in 2 years: $K^{\pm} \rightarrow \pi^{-}\pi^{+}\pi^{\pm}$: ~4·10° $K^{\pm} \rightarrow \pi^{0}\pi^{0}\pi^{\pm}$: ~1·10°Rare K[±] decays:BR's down to 10-°can be measured> 200 TB of data recorded

Зарядовая асимметрия в распадах $K^{\pm} \rightarrow (3\pi)^{\pm}$

G. D'Ambrosio et al., PLB480 (2000) 164

Models beyond the SM predict substantial enhancement partially within the reach of NA48/2.

> Asymmetry of integrated decay widths is strongly suppressed.

измеренная асимметрия в распадах **К**±

В.Кекелидзе, "Марковские чтения"

«cusp» эффект и параметры киральной теории

15 мая 2008

Теория: двух-петлевые диаграммы

N. Cabibbo and G. Isidori,

JHEP 503 (2005) 21

One-loop diagrams:

Two-loop diagrams:

b) irreducible 3π scattering c) reducible 3π scattering

• S-wave scattering lengths $(a_x, a_{++}, a_{+-}, a_{+0}, a_{00})$ expressed as linear combinations of a_0 and a_2 •isospin symmetry breaking - following <u>J. Gasser</u> • for example, $a_x = (1+\epsilon/3)(a_0-a_2)/3$, where $\epsilon = (m_+^2 - m_0^2)/m_+^2 = 0.065$ - isospin breaking parameter • all rescattering processes at one- & two-loop level • radiative corrections missing: $(a_0 - a_2)$ precision ~5%

Результат по данным 2003+2004

(предварительный)

32

 $(a_0-a_2)m_+ = 0.261 \pm 0.006_{stat.} \pm 0.003_{syst.} \pm 0.0013_{ext.}$ $a_2m_+ = -0.037 \pm 0.013_{stat.} \pm 0.009_{syst.} \pm 0.0018_{ext.}$

External uncertainty: due to $R = (A_{++-}/A_{+00})|_{threshold} = 1.975\pm0.015;$

Theory precision (rad.corr. & higher order terms neglected): $\delta(a_0-a_2)m_+=0.013$.

Systematic effect	$(a_0 - a_2) \times 10^2$	a ₂ ×10 ²
Analysis technique	±0.10	±0.20
Trigger inefficiency	negl.	±0.50
Description of resolution	±0.06	±0.11
LKr non-linearity	±0.06	±0.26
Geometric acceptance	±0.02	±0.01
MC sample	±0.03	±0.21
Simulation of LKr showers	±0.17	±0.50
V-dependence of amplitude	±0.17	±0.38
Total	±0.28	±0.90

Результат по данным 2003+2004

учитывающий киральную теорию

[Colangelo et al., PRL 86 (2001) 5008]:

(предварительный)

$(a_0 - a_2)m_+ = 0.263 \pm 0.003_{stat.} \pm 0.0014_{syst.} \pm 0.0013_{ext.}$

 \implies Theory precision uncertainty is also applicable: $\delta(a_0 - a_2)m_+ = 0.013$.

Systematic effect	$(a_0 - a_2) \times 10^2$
Analysis technique	±0.08
Trigger inefficiency	negl.
Description of resolution	±0.06
LKr non-linearity	±0.05
Geometric acceptance	±0.02
MC sample	±0.06
Simulation of LKr showers	±0.04
V-dependence of amplitude	±0.02
Total	±0.14

Электромагнитные поправки в конечном состоянии распадов $K \rightarrow 3\pi$ (Gevorkian, Tarasov, Voskresenskaya, hep-ph / 0612129) Two contributions from $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ decay to the $K^{\pm} \rightarrow \pi^{\pm}\pi^{\circ}\pi^{\circ}$ cusp region:

- Pionium formation : $\pi^+\pi^-$ atom $\rightarrow \pi^\circ\pi^\circ$ (negligible width)
- Additional $\pi^+\pi^-$ unbound states with resonance structure $\rightarrow \pi^\circ\pi^\circ$

Fit quality & pionium signature

сверхредкие распады каонов и новая физика

Распады $K^+ \rightarrow \pi^+ \nu \nu$: ясный тест СМ чувствительный к Новой Физике

Flavor Changing Neutral Current loop process: s→d coupling and highest CKM suppression

Very clean theoretically: short distance contributions dominate, hadronic matrix element can be extracted from measured quantitie $(K^+ \rightarrow \pi^0 e^+ V)$.

38

SM predictions (uncertainties from CKM elements): BR(*K*⁺→π⁺νν) ≈ (1.6×10⁻⁵) | V_{cb} | ⁴[ση²+(ρ_c-ρ)²] → (8.0 ± 1.1)×10⁻¹¹ BR(*K_L*→π⁰νν) ≈ (7.6×10⁻⁵) | V_{cb} | ⁴η² → (3.0 ± 0.6)×10⁻¹¹

Sensitive to New Physics

Present measurement (E787/949): BR(K⁺ $\rightarrow \pi^+\nu\nu) = 1.47 + 1.30 \times 10^{-10}$ (3 events)

каонные пробники фазовых переходов

Относительный «выход» каонов как указание на фазовый переходов

В.Кекелидзе, "Марковские чтения"

заключение спустя 50 лет физика каонов не потеряла своей привлекательности как источник возможных новых открытий