.. Предмет книги настолько быстро меняется, что единственно целесообразным представляется нарисовать нечто вроде кинематографической картины развития данной области физики элементарных частиц.. М.А. Марков, 1958 г. «Гипероны и К-мезоны»

Физика К-мезонов за 50 лет

содержание

- наблюдение прямого CP-нарушения
- > поиск зарядовой асимметрии в распадах $K^{\pm} \to (3\pi)^{\pm}$ « τ мезон»
- > «cusp» эффект и параметры киральной теории
- > сверхредкие распады каонов и новая физика
- каонные пробники фазовых переходов

наблюдение прямого СР-нарушения

История нарушенных симметрий

P - violation

T.D.Lee, C.N. Yang (1956)

• CP – violation J.Christenson, J.Cronin, V.Fitch, R.Turlay (1964)

$$K_L \rightarrow \pi^+\pi^- \iff CP = +1$$

$$K_2 \rightarrow \pi^+\pi^ K_2 \iff \mathbf{\epsilon} \ K_1 \rightarrow \pi^+\pi^ |\mathbf{\epsilon}| \approx 2.3 \cdot 10^{-3}$$

 \Leftarrow milli weak (\triangle S=1)

 \Leftarrow super weak(\triangle S=2)

Direct CP-violation

NA48 (CERN) ('97 data)

KTEV (FNAL) ('96-'97 data)

Phys.Let. B465,335(1999)

Phys.Rev.Let.83,22(1999)

Нейтральные каоны до 1964 г.

$$K^{0}$$
 (ds), $S = +1$
 \overline{K}^{0} (ds), $S = -1$

$$|CP|K^0\rangle \rightarrow -|\overline{K}^0\rangle, \quad CP|\overline{K}^0\rangle \rightarrow -|K^0\rangle$$

$$\begin{aligned} \left| K_{1} \right\rangle &= \frac{1}{\sqrt{2}} \left(\left| K^{0} \right\rangle - \left| \overline{K}^{0} \right\rangle \right), \quad CP = +1, \\ \left| K_{2} \right\rangle &= \frac{1}{\sqrt{2}} \left(\left| K^{0} \right\rangle + \left| \overline{K}^{0} \right\rangle \right), \quad CP = -1, \end{aligned}$$
 \tag{c\tau_{s}} \tag{c\tau_{L}} \tag{\tau_{1}} \tag{50 cm}

$$c\tau_{\rm s}$$
 (~ 2,7 cm)

$$c\tau_L$$
 (~1550 cm)

СР-нарушение в системе нейтральных каонов

СР-нарушение в СМ

Путем смешивания

$$\varepsilon = B_k \cdot |V_{ub}| \cdot |V_{cb}| \cdot \sin \delta \cdot F_{\varepsilon} \cdot \exp(i\pi/4)$$

$$K_{L} = K_{2}^{CP=-1} + \varepsilon K_{1}^{CP=+1} \qquad \pi^{+}\pi^{-}, \pi^{0}\pi^{0}$$

прямое:

$$\mathcal{E}'_{\mathcal{E}} = |V_{ub}| \cdot |V_{cb}| \cdot \sin \delta \cdot F_{\varepsilon'}$$

$$F_{\varepsilon'} \approx \frac{1}{m_s^2} \cdot \left[B_6 \cdot (1 - \Omega) - c \cdot B_8 \cdot m_t^{2,5} \right] \cdot \Lambda$$

Измерение прямого СР нарушения

$$\begin{split} & \eta_{+-} = A(K_L \to \pi^+ \pi^-) \, / \, A(K_S \to \pi^+ \pi^-) = |\eta_{+-}| \cdot exp(i \cdot \Phi_{+-}) \\ & \eta_{00} = A(K_L \to \pi^0 \pi^0) \, / \, A(K_S \to \pi^0 \pi^0) = |\eta_{00}| \cdot exp(i \cdot \Phi_{00}) \\ & \Phi_{+-} = (43.4 \pm 0.7)^o \qquad \Phi_{00} - \Phi_{+-} = (0.2 \pm 0.4)^o \text{ (CPT)} \end{split}$$

$$\eta_{+-} = \varepsilon + \varepsilon$$
 $\eta_{00} = \varepsilon - 2 \cdot \varepsilon$

Измеряемая величина:

Re(
$$\epsilon$$
'/ ϵ) = (1 - R) / 6 $R = |\eta_{00}/\eta_{+-}|^2$
double Ratio: $R \equiv \frac{\Gamma(K_L \to \pi^0 \pi^0) / \Gamma(K_S \to \pi^0 \pi^0)}{\Gamma(K_L \to \pi^+ \pi^-) / \Gamma(K_S \to \pi^+ \pi^-)}$

Результаты измерений $Re(\frac{\epsilon'}{\epsilon})$ в единицах 10^{-4} до NA48 и KTeV

Метод NA48

$$R = \frac{N(K_L \to \pi^0 \pi^0) \cdot N(K_S \to \pi^+ \pi^-)}{N(K_S \to \pi^0 \pi^0) \cdot N(K_L \to \pi^+ \pi^-)} = 1 - 6 \text{ Re}(\epsilon) / \epsilon$$

сокращение основной систематики

- ▶ 4 распада регистрируются синхронно
- > ~ коллинеарные K_S и K_L пучки
- общий распадный объем
- **>** K_S / K_L мечение
- взвешивание по времени жизни К_S
- измерения в каждом интервале по Рк

высокое разрешение детекторов

> **LKr** электро-магнитный калориметр $(\pi^0\pi^0$

 \blacktriangleright широко-апертурный магнитный спектрометр $(\pi^+\pi^-)$

синхронные пучки K_s и K_L

- 4 канала распада регистрируются синхронно в общем распадном объеме
- ~ коллинеарные K_S и K_L пучки

$\begin{array}{c} \mathbf{K} \rightarrow \pi^{+}\pi^{-} \\ (\mathbf{W})_{10} \\ \mathbf{K}_{10} \\ \mathbf{K}_{10} \\ \mathbf{K}_{10} \\ \mathbf{K}_{20} \\ \mathbf{K}_{10} \\ \mathbf{K}_{20} \\ \mathbf{K}_{30} \\ \mathbf{K}_{40} \\ \mathbf{K}_{10} \\ \mathbf{K}_{20} \\ \mathbf{K}_{30} \\ \mathbf{K}_{40} \\ \mathbf{K}_{10} \\ \mathbf{K}_{20} \\ \mathbf{K}_{30} \\ \mathbf{K}_{40} \\ \mathbf{K}_{10} \\ \mathbf{K}_{20} \\ \mathbf{K}_{20} \\ \mathbf{K}_{30} \\ \mathbf{K}_{40} \\ \mathbf{K}_{20} \\ \mathbf{K}_{30} \\ \mathbf{K}_{40} \\ \mathbf{K}_{20} \\ \mathbf{K}_{30} \\ \mathbf{K}_{40} \\ \mathbf{K}_{50} \\ \mathbf$

Мечение

Установка NA48

LKr - э-м жидко-криптоновый калориметр

15 мая 2008

В.Кекелидз

Отбор распадов $\mathsf{K}^0 o \pi^0\pi^0$

500 KHz $\Rightarrow \pi^0 \pi^0$ trigger, $(99.920 \pm 0.009)\%$ eff. \Rightarrow 2 KHz

- Cut on χ^2 from π^0 masses
- Veto events with 5th cluster in time

Энергетическое разрешение LKr

 $\sigma(E)/E \approx 3.2 \% / \sqrt{E} \oplus 0.009/E \oplus 0.42\%$ (E in GeV) (better than 1% for 25 GeV photons)

Систематические коррекции и неопределенности (данные '98-'99)

	$\Delta(R)$ (in 10^{-4} units)	
$\pi^+\pi^-$ background	16.9	± 3.0
$\pi^0\pi^0$ background	-5.9	± 2.0
beam scattering background	-9.6	± 2.0
Tagging inefficiency		± 3.0
Accidental tagging	8.3	± 3.4 (part. stat)
$\pi^+\pi^-$ scale	2.0	± 2.8
$\pi^0\pi^0$ scale		± 5.8
AKS inefficiency	1.1	± 0.4
Acceptance correction	26.7	± 4.1 (MC stat)
		$\pm 4.0 \text{ (syst)}$
$\pi^+\pi^-$ trigger	-3.6	$\pm 5.2 \text{ (stat)}$
Accidental event losses		± 4.4 (part. stat)
Total	35.9	± 12.6

Проверка стабильности Р

Результат $Re(\varepsilon'/\varepsilon)$

PL B465,335(1999); EPJ C22(2001)231 PL B544(2002)97

Окончательный анализ проводился параллельно 6-ю группами Дубненская группа - одна из них

из обзора PDG 2006

поиск зарядовой асимметрии в распадах K^{\pm}

Эксперимент NA48/2

Поиск зарядовой асимметрии в распадах $K^{\pm} \rightarrow (3\pi)^{\pm}$

«τ-распады»

2003 run: ~ 50 days

2004 run: ~ 60 days

Total statistics in 2 years:

 $K^{\pm} \rightarrow \pi^{-}\pi^{+}\pi^{\pm}$: ~4·10⁹

 $K^{\pm} \rightarrow \pi^{0}\pi^{0}\pi^{\pm}$: ~1·10⁸

Rare K[±] decays:

BR's down to 10⁻⁹

can be measured

> 200 TB of data recorded

Зарядовая асимметрия в распадах $K^\pm \to (3\pi)^\pm$

Experimental precisions before NA48/2: $[\delta A_a \sim 10^{-3}$, dominated by systematics]

E. Gámiz et al., JHEP 10 (2003) 42

SM estimate (NLO ChPT): $A_g^c = (-1.4\pm1.2)\times10^{-5};$ $A_a^n = (1.1\pm0.7)\times10^{-5}.$

G. D'Ambrosio et al., PLB480 (2000) 164

Models beyond the SM predict substantial enhancement partially within the reach of NA48/2.

Asymmetry of integrated decay widths is strongly suppressed.

Формализм распада $K^{\pm} \rightarrow (3\pi)^{\pm}$

<u>Матричный элемент:</u>

 $|M(u,v)|^2 \sim 1 + gu + hu^2 + kv^2$

Система покоя К:

 $\mathbf{u} = 2\mathbf{m}_{K} \cdot (\mathbf{m}_{K}/3 - \mathbf{E}_{odd})/\mathbf{m}_{\pi}^{2}$

$$v = 2m_{K'}(E_1 - E_2)/m_{\pi}^2$$

прямое СР-нарушение: асимметрия параметров

$$A_g = (g_+ - g_-)/(g_+ + g_-) \neq 0$$

измеренная асимметрия в распадах **К**±

$$\Delta g = (0.6 \pm 0.7_{stat} \pm 0.4_{trig} \pm 0.5_{syst}) \times 10^{-4}$$

$$\Delta g = (0.6 \pm 0.9) \times 10^{-4}$$

$$A_g^c = (-1.5 \pm 1.5_{stat} \pm 0.9_{trig} \pm 1.3_{syst}) \times 10^{-4}$$

$$A_a^c = (-1.5 \pm 2.2) \times 10^{-4}$$

$$A_g^0 = (1.8 \pm 1.7_{stat} \pm 0.6_{syst}) \times 10^{-4}$$

= $(1.8 \pm 1.8) \times 10^{-4}$

EPJ, C52: 875(2007)

«cusp» эффект и параметры киральной теории

Наблюдение эффекта «Cusp» в распадах $K^\pm o \pi^0 \pi^0 \pi^\pm$

An anomaly ("cusp" effect) at invariant mass $M(\pi^0\pi^0)=2\mathrm{m}_+(\pi^+\mathrm{mass})$ never observed in previous experiments, has been studied in $K^\pm\to\pi^0\pi^0\pi^\pm$ decays

it provides a precise determination of (a_0-a_2) — difference between the $\pi\pi$ scattering lengths in the isospin I=0 & I=2 states

Analysis is done independently by Dubna & Pisa groups

Объяснение «Cusp» - рассеяние в конечном состоянии

N. Cabibbo, PRL 93 (2004) 121801

$$\mathcal{M}(\mathsf{K}^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}) = \mathcal{M}_{0} + \mathcal{M}_{1}$$

<u>Direct emission:</u> $\mathcal{M}_0 = A_0(1+g_0u/2+h'u^2/2+k'v^2/2)$

Kaon rest frame:

 $u = 2m_{K} \cdot (m_{K}/3 - E_{odd})/m_{\pi}^{2}$ $v = 2m_{K} \cdot (E_{1} - E_{2})/m_{\pi}^{2}$

Rescattering amplitude:

$$\mathcal{M}_1 = -2/3(a_0 - a_2) m_+ \mathcal{M}_+ \sqrt{1 - (\frac{M_{00}}{2m_+})^2}$$

Combination of S-wave $\pi\pi$ scattering lenghts $K^{\pm} \rightarrow 3\pi^{\pm}$ amplitude at threshold

(isospin symmetry assumed here)

Negative interference under threshold

 $M^2(\pi^0\pi^0)$, (GeV/c²)²

Теория: двух-петлевые диаграммы

N. Cabibbo and G. Isidori, JHEP 503 (2005) 21

One-loop diagrams:

- S-wave scattering lengths $(a_x, a_{++}, a_{+-}, a_{+0}, a_{00})$ expressed as linear combinations of a_0 and a_2
- •isospin symmetry breaking following <u>J. Gasser</u>
- for example, $a_x = (1+\epsilon/3)(a_0-a_2)/3$, where $\epsilon = (m_+^2 m_0^2)/m_+^2 = 0.065$ isospin breaking parameter
- •all rescattering processes at one- & two-loop level
- •radiative corrections missing: $(a_0 a_2)$ precision ~5%

Two-loop diagrams:

b) irreducible 3π scattering c) reducible 3π scattering

Prediction of the two-loop theory **Cusp point** 1400 No rescattering 1200 Subleading amplitude effect 1000 800 600 Leading effect 400 200 0072 0.073 0.074 0.075 0.076 0.077 0.078 0.079 0.08 ітения' $M^2(\pi^0\pi^0)$, (GeV/c²)²

15 мая 2008

процедура фитирования

1-dimensional fit of the M₀₀ projection

Detector response matrix R_{ij} obtained with a GEANT-based Monte-Carlo simulation

Reconstructed distribution:

$$F_i^{MC} = \Sigma R_{ii} G_i$$

MINUIT minimization of χ^2 of data/MC spectra shapes

$$\chi^{2}(g,h',m_{+}(a_{0}-a_{2}),m_{+}a_{2},N) = \sum_{s_{3} \text{ bins}} \frac{(F_{DATA}-NF_{MC})^{2}}{\delta F_{DATA}^{2}+N^{2}\delta F_{MC}^{2}}$$

Результат по данным 2003+2004

(предварительный)

$$(a_0-a_2)m_+=0.261\pm0.006_{stat.}\pm0.003_{syst.}\pm0.0013_{ext.}$$

 $a_2m_+=-0.037\pm0.013_{stat.}\pm0.009_{syst.}\pm0.0018_{ext.}$

 \Rightarrow External uncertainty: due to R = $(A_{++-}/A_{+00})|_{threshold} = 1.975\pm0.015$;

Theory precision (rad.corr. & higher order terms neglected): $\delta(a_0-a_2)m_+=0.013$.

Systematic effect	$(a_0-a_2)\times 10^2$	$a_2 \times 10^2$
Analysis technique	±0.10	±0.20
Trigger inefficiency	negl.	±0.50
Description of resolution	±0.06	±0.11
LKr non-linearity	±0.06	±0.26
Geometric acceptance	±0.02	±0.01
MC sample	±0.03	±0.21
Simulation of LKr showers	±0.17	±0.50
V-dependence of amplitude	±0.17	±0.38
Total	±0.28	±0.90

Результат по данным 2003+2004 учитывающий киральную теорию

[Colangelo et al., PRL 86 (2001) 5008]:

(предварительный)

$$(a_0-a_2)m_+ = 0.263 \pm 0.003_{stat.} \pm 0.0014_{syst.} \pm 0.0013_{ext.}$$

Theory precision uncertainty is also applicable: $\delta(a_0-a_2)m_+=0.013$.

Systematic effect	$(a_0 - a_2) \times 10^2$
Analysis technique	±0.08
Trigger inefficiency	negl.
Description of resolution	±0.06
LKr non-linearity	±0.05
Geometric acceptance	±0.02
MC sample	±0.06
Simulation of LKr showers	±0.04
V-dependence of amplitude	±0.02
Total	±0.14

Электромагнитные поправки в конечном состоянии распадов $K \to 3\pi$

(Gevorkian, Tarasov, Voskresenskaya, hep-ph / 0612129)

Two contributions from $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ decay to the $K^{\pm} \rightarrow \pi^{\pm}\pi^{\circ}\pi^{\circ}$ cusp region:

- Pionium formation : $\pi^+\pi^-$ atom $\to \pi^\circ\pi^\circ$ (negligible width)
- Additional $\pi^+\pi^-$ unbound states with resonance structure $\to \pi^\circ\pi^\circ$

Fit quality & pionium signature

Points excluded from the fit due to absence of EM corrections in the used model

7 data bins skipped around the $M(\pi^+\pi^-)$ threshold

Excess of events in the excluded interval, if interpreted as due to pionium decaying as $A_{2\pi} \rightarrow \pi^0 \pi^0$, gives $R = \Gamma(K^\pm \rightarrow \pi^+ A_{2\pi})/\Gamma(K^\pm \rightarrow \pi^\pm \pi^+ \pi^-) = (1.82 \pm 0.21) \times 10^{-5}$.

Prediction [Z.K. Silagadze, JETP Lett. 60 (1994) 689]: $R=0.8\times10^{-5}$.

измерения длин пионного рассеяния - фундаментальных параметров киральной теории

(предварительный)

Д. Мадигожин, за NA48/2, 13-я Ломоносовская конф. Москва (2007)

сверхредкие распады каонов и новая физика

Распады $K^+ \to \pi^+ \nu \nu$: ясный тест СМ чувствительный к Новой Физике

Flavor Changing Neutral Current loop process: s→d coupling and highest CKM suppression

• Very clean theoretically: short distance contributions dominate, hadronic matrix element can be extracted from measured quantitie $(K^+ \rightarrow \pi^0 e^+ \nu)$.

Golden modes

SM predictions (uncertainties from CKM elements):

$$\begin{split} & \text{BR}(K^+ \to \pi^+ \nu \nu) \approx (1.6 \times 10^{-5}) \, | \, \text{V}_{\text{cb}} \, | \, ^4 [\sigma \eta^2 + (\rho_c - \rho)^2] \, \to \, (8.0 \pm 1.1) \times 10^{-11} \\ & \text{BR}(K_L \to \pi^0 \nu \nu) \approx (7.6 \times 10^{-5}) \, | \, \text{V}_{\text{cb}} \, | \, ^4 \eta^2 \, \to \, (3.0 \pm 0.6) \times 10^{-11} \end{split}$$

Sensitive to New Physics

Present measurement (E787/949): BR(K⁺ $\rightarrow \pi^+ \nu \nu$) = 1.47 $^{+1.30}_{-0.89} \times 10^{-10}$ (3 events)

каонные пробники фазовых переходов

Относительный «выход» каонов как указание на фазовый переходов

measurements of related yields for charged kaons & pions

Some enhancement is indicated in the energy region around

заключение

спустя 50 лет физика каонов не потеряла своей привлекательности как источник возможных новых открытий