Ускорительные нейтринные эксперименты: последние новости

Ю.Г. Куденко Институт ядерных исследований РАН

Марковские чтения, ИЯИ РАН, 15 мая 2009

Mixing matrix

Pontecorvo-Maki-Nakagawa-Sakata matrix

Neutrino mass and mixings

3 mixing angles $(\theta_{12}, \theta_{23}, \theta_{13})$ 1 CPV phase (δ) 2 (independent) mass differences $(\Delta m_{ii}^2 = m_i^2 - m_i^2)$

Oscillations before first MiniBooNe result

Present knowledge and next steps

- Mixing angle θ_{13}
- Mass hierarchy (sign of $\Delta m_{23}^2 \rightarrow m_3 > m_1$ or $m_3 < m_1$)
- CP violation
- Absolute mass scale
- Dirac or Majorana
- Approaches
 - LBL experiments: multi purpose (θ_{13} , sign(Δm^2), CPV, θ_{23} , Δm_{23}^2)
 - Reactor-based v_e disappearance: single purpose (θ_{13}), complementary
 - Accelerator SBL \rightarrow LSND/MiniBooNE anomalies, sterile neutrinos (?)

MiniBooNE results

MiniBooNE anomaly

 $\nu_{\mu} \rightarrow \nu_{e}$

arXiv:0812.2243 [hep-ex]

anti- $v_{\mu} \rightarrow$ anti- v_{e}

arXiv:0904.1958 [hep-ex]

MiniBooNE anomaly

Event Sample	anti-v _e analysis (3.39 × 10 ²⁰ POT)	v _e analysis (6.46 × 10 ²⁰ POT)
200 – 475 MeV		
Data	61	544
Background	61.5 ± 11.7	415.2 ± 43.4
Excess	−0.5 ± 11.7 (−0.04σ)	128.8 ± 43.4 (3.0σ)
475 - 1250 MeV		
Data	61	408
Background	57.8 ± 10.0	385.9 ± 35.7
Excess	3.2 ± 10.0 (0.3σ)	22.1 ± 35.7 (0.6σ)

Possible explanations

Anomaly Mediated Neutrino-Photon Interactions at Finite Baryon Density Jeffrey A. Harvey, Christopher T. Hill, & Richard J. Hill, arXiv:0708.1281

CP-Violation 3+2 Model

Maltoni& Schwetz, arXiv:0705.0107; T. Goldman, G. J. Stephenson Jr., B. H. J. McKellar, Phys. Rev. D75 (2007) 091301

Lorentz Violation Katori, Kostelecky, & Tayloe, Phys. Rev. D74 (2006) 105009

CPT Violation 3+1 Model Barger, Marfatia, & Whisnant, Phys. Lett. B576 (2003) 303

Heavy Sterile Neutrino Decay S.N. Gninenko, arXiv:0902.3802

VSBL Electron Neutrino Disappearance Carlo Giunti& Marco Laveder, arXiv: 0902:1992

MINOS: $\nu_{\mu} \rightarrow \nu_{s}$

MINOS, PRL 101:221804,2008

Neutral Current Analysis

- General NC analysis overview:
 - All active neutrino flavours participate in NC interaction
 - Mixing to a sterile-v will cause a deficit of NC events in Far Det.
 - Assume one sterile neutrino and that mixing between v_{μ} , v_s and v_{τ} occurs at a single Δm^2
- Survival and sterile oscillation probabilities become:

$$P(\mathbf{v}_{\mu} - \mathbf{v}_{\mu}) = 1 - \alpha_{\mu} \sin^2(1.27\Delta m^2 L/E)$$
$$P(\mathbf{v}_{\mu} - \mathbf{v}_{\mu}) = \alpha_{\mu} \sin^2(1.27\Delta m^2 L/E)$$

(α_{μ,s} = mixing fractions)

Simultaneous fit to CC and NC energy spectra yields the fraction of v_{μ} that oscillate to v_s :

$$f_{s} = \frac{P(v_{\mu} \to v_{s})}{1 - P(v_{\mu} \to v_{\mu})} = 0.28^{+0.25}_{-0.28} \text{(stat.+syst.)}$$
$$f_{s} < 0.68 \quad (90\% \text{ C.L.})$$

T2K (Tokai to Kamioka) LBL neutrino experiment

SuperKamiokande

Goals of T2K

- Confirmation of $\nu_{\mu} {\rightarrow} \nu_{\tau}$ using NC events

Expected sensitivity to θ_{13}

Neutrino BeamLine

Construction: 2004 - 2009 (~ 5 years)

Near Neutrino Detectors

ND280 Off-axis Detector

280m downstream from pion production target

UA1/NOMAD CERN magnet operated at 0.2 T magnetic field

<u>Tracker</u>: Optimized for CC interactions measurments

- Fine Grained Detector (FGD)
- measure v beam flux, E_v spectrum, flavor composition through CC v-interactions,
- backgrounds CC-1 π
- water and scintillator target
- <u>Time Projection Chamber (TPC)</u>
 - measure charged particle momenta, particle ID via dE/dx
- measure backgrounds/pion cross section

Pi-Zero Detector (P0D)

- Optimized for NC π^0 measurement
- measure v_e contamination

Electromagnetic Calorimeter (ECAL)

- Photon detection (from π^0) in POD and tracker
- charge particle ID and reconstruction

Side Muon Range Detector (SMRD)

- measure momentum for lateral muons
- cosmic rays trigger

SMRD detectors

INR Workshop

Y11 fibers embedded and glued

stainless steel container

Ready for shipment

Preparation of S-grooves

2130 SMRD detectors are manufactured at INR in 2007-2009

Completed February 2009 Shipped to JPARC in March 2009

Assembly at JPARC

Assembly of SMRD modules at JPARC

Detectors in UA1 magnet

SMRD module (4 detectors) installed into magnet yoke About 40% installed by 1 May 2009

First v's for T2K

T2K Physics run

Beam commissioning: April-May 2009, Detector completion: Fall 2009

Data taking start December 2009

100kW, 30 GeV, 107 sec

 $v_{\mu} \rightarrow v_{e}$ 3.7 events at CHOOZ limit background 0.25 (v_{μ} NC) 0.39 (beam v_{e})

 $\nu_{\mu} \rightarrow \nu_{\mu}$

(FCFV μ -like)

oscillation parameters

	null oscillation	oscillation	
		ocomation	
All	183.2	64.4	sin²2 <i>0</i> ₂₃ = 1.0
CCQE	118.0	22.9	$\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$
CC non-QE	58.7	35.1	L = 295 km
NC	6.5	6.5	

PREDICTIONS FOR SENSITIVITY TO θ_{13}

A.Blondel et al. hep-ex/0606111

Conclusion

MINOS, OPERA	data taking	
MiniBooNe	new anomaly appears run with anti-v beam	
T2K-I	first neutrino beam in April 2009 start data taking in December 2009	
Nova	finally approved construction begins in May 2009	
MicroBooNE OscSNS ORNL	proposal LSND, MiniBooNE proposal anomalies, sterile v	