
1

Oberon: The Power of Purity

Jürg Gutknecht
ETH Zürich
March 2004

• Purity
A quantitative assessment of homogeneity
or uniformity (The American Heritage
Dictionary)
Being undiluted or unmixed with extraneous
material (Hyperdictionary)

• Impurity
Lack of consistency or homogeneity
Worthless material that should be removed

2

Eighteen Years After

• How it All Started
Sabbatical at Xerox PARC
10 MHz/2 MB/40 MB Hardware

• Lasting Impressions
Instantaneous Responses
Superfast Compilation
No System Crashes
Effective Textual User Interface
Gadgets Component Showcase

This Presentation ...

• Focuses on a tool for the support of
software design and implementation,
in contrast to a product or result

• Shows how the philosophy and design
principles underlying this tool guarantee
effectivity, versatility and power

• Aims at encouraging non-computer-
scientists to use the tool for problem solving

• Neither intends to evangelize nor to claim
cure-all properties of the presented tool

3

A Quotation

„The tools we use have a profound (and
devious!) influence on our thinking habits,
and, therefore, on our thinking abilities“
Edsger W. Dijkstra

like this ...

... or like this?

4

The Tool …

• Is a programming language called Oberon,
a carefully crafted consolidation of Pascal
and Modula-2 after a long period of working
experience

• Uses a simple, clear and expressive syntax
• Provides a set of effective, transparent

and resource-efficient constructs
• Propagates a uniform, non-restrictive and

consistent computing model

ETH Language Tradition

Influential ConstructsLanguageYear

Data StructuresPascal1970

ModulesModula(-2)1980

Type ExtensionOberon1990

Active ObjectsActive Oberon2000

Composition & DialogsZonnon2004

ProceduresAlgol1960

Small Scale
Large Scale

5

The Oberon Syntax
module = MODULE ident ";" [ImportList] DeclarationSequence [BEGIN StatementSequence] END ident ".". ident = letter
{letter | digit}. letter = "A" .. "Z" | "a" .. "z". digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9". ImportList = IMPORT import
{"," import} ";". import = ident [":=" ident]. DeclarationSequence = {CONST {ConstantDeclaration ";"} | TYPE
{TypeDeclaration ";"} | VAR {VariableDeclaration ";"}} {ProcedureDeclaration ";" | ForwardDeclaration ";"}.
ConstantDeclaration = identdef "=" ConstExpression. identdef = ident ["*"]. ConstExpression = expression. expression =
SimpleExpression [relation SimpleExpression]. SimpleExpression = ["+"|"-"] term {AddOperator term}. term = factor
{MulOperator factor}. factor = number | CharConstant | string | NIL | set | designator [ActualParameters] | "(" expression ")" |
"~" factor. number = integer | real. integer = digit {digit} | digit {hexDigit} "H". hexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".
real = digit {digit} "." {digit} [ScaleFactor]. ScaleFactor = ("E" | "D") ["+" | "-"] digit {digit}. CharConstant = '"' character '"' | digit
{hexDigit} "X". string = '"' {character} '"'. set = "{" [element {"," element}] "}". element = expression [".." expression]. designator
= qualident {"." ident | "[" ExpList "]" | "(" qualident ")" | "^" }. ExpList = expression {"," expression}. ActualParameters = "("
[ExpList] ")". MulOperator = "*" | "/" | DIV | MOD | "&". AddOperator = "+" | "-" | OR. relation = "=" | "#" | "<" | "<=" | ">" | ">=" |
IN | IS. TypeDeclaration = identdef "=" type. type = qualident | ArrayType | RecordType | PointerType | ProcedureType.
qualident = [ident "."] ident. ArrayType = ARRAY length {"," length} OF type. length = ConstExpression. RecordType =
RECORD ["(" BaseType ")"] FieldListSequence END. BaseType = qualident. FieldListSequence = FieldList {";" FieldList}.
FieldList = [IdentList ":" type]. IdentList = identdef {"," identdef}. PointerType = POINTER TO type. ProcedureType =
PROCEDURE [FormalParameters]. VariableDeclaration = IdentList ":" type. ProcedureDeclaration = ProcedureHeading ";"
ProcedureBody ident. ProcedureHeading = PROCEDURE ["*"] identdef [FormalParameters]. FormalParameters = "("
[FPSection {";" FPSection}] ")" [":" qualident]. FPSection = [VAR] ident {"," ident} ":" FormalType. FormalType = {ARRAY OF}
(qualident | ProcedureType). ProcedureBody = DeclarationSequence [BEGIN StatementSequence] END.
ForwardDeclaration = PROCEDURE "^" ident ["*"] [FormalParameters]. StatementSequence = statement {";" statement}.
statement = [assignment | ProcedureCall | IfStatement | CaseStatement | WhileStatement | RepeatStatement |
LoopStatement | WithStatement | EXIT | RETURN [expression]]. assignment = designator ":=" expression. ProcedureCall =
designator [ActualParameters]. IfStatement = IF expression THEN StatementSequence {ELSIF expression THEN
StatementSequence} [ELSE StatementSequence] END. CaseStatement = CASE expression OF case {"|" case} [ELSE
StatementSequence] END. case = [CaseLabelList ":" StatementSequence]. CaseLabelList = CaseLabels {"," CaseLabels}.
CaseLabels = ConstExpression [".." ConstExpression]. WhileStatement = WHILE expression DO StatementSequence END.
RepeatStatement = REPEAT StatementSequence UNTIL expression. LoopStatement = LOOP StatementSequence END.
WithStatement = WITH qualident ":" qualident DO StatementSequence END

Nothing to Add &
Nothing to Remove

• Criteria for Exclusion of a Construct
Superfluous, covered by existing construct
Problematic, contibution to problem set is
larger than contribution to solution set
Hidden overhead, no straightforward and
efficient mapping to runtime exists

• Criteria for Inclusion of a Construct
Is extremely useful
Has generic character
Adds to completeness

6

Some Examples

Nested ModulesModules

Excluded ConstructsIncluded Constructs

Large setsSmall sets

SubrangesProcedure variables

Nested ModulesModules

Implementation inheritancePointers

Variant RecordsType Extension

CardinalsVAR parameters

Random Number Generator

MODULE RandomNumbers;
VAR z: LONGINT; (*global variable, hidden*)
PROCEDURE Next*(): REAL; (*interface*)

CONST a = 16807; m = 2147483647;
q = m DIV a; r = m MOD a;

VAR g: LONGINT;
BEGIN (*implementation*)

g := a*(z MOD q) - r*(z DIV q);
IF g > 0 THEN z := g ELSE z := g + m END;
RETURN z*(1.0/m) (*value*)

END Next;
BEGIN z := 31459
END RandomNumbers.

7

Tree Insertion
Node = POINTER TO RECORD
left, right: Node;
key: INTEGER
END;

PROCEDURE Insert
(VAR r: Node; new: Node);

BEGIN
IF r = NIL THEN r := new
ELSIF new.key <= r.key THEN
Insert(r.left, new)
ELSIF new.key > r.key THEN
Insert(r.right, new)
END
END Insert;

// Java
class Node {
int key;
BinaryTree left, right;
public Node(int key) {
this.key = key;
left = new BinaryTree();
right = new BinaryTree();
}
}

class BinaryTree {
Node root;
void insert (Node node) {
if (root == null)
root = node;
else if (node.key <=
root.key)
root.left.insert(node);
else
root.right.insert(node);

}
}

The Rucksack Problem
PROCEDURE Try (i: INTEGER; s: SET; av, w: REAL);
BEGIN
IF av – val[i] > vmax THEN
IF i = n-1 THEN
opts := s; vmax := av – val[i]

END
ELSE Try(i+1, s, av – val[i], w)
END

END;
IF w + weight[i] <= wmax THEN INCL(s, i);
IF i = n-1 THEN
IF av > vmax THEN opts := s; vmax := av END

ELSE Try(i+1, s, av, w + weight[i])
END

END;
END Try;

8

Machine Code

Include Element iINCL(s, i)

Load i from frameMOV EBX, 20[EBP]

Set bit i in sBTS 16[EBP], EBX

Key Virtues

• Full Support for Strong Typing
Safeguard against corruption & viruses
Precondition of automated garbage collection

• Full Support for All Paradigms
Algorithms and Data Structures
Modular Programming
Object-Oriented Programming
Component Modeling

9

Modules, Interfaces and Import
• Multiple Roles of Modules

System Managed Object with Interface
Container of Related Data Types
Provider of Abstract Data Types (ADT)
Unit of Separate Compilation
Unit of Loading on Demand

• Import Relation for Modules
Supports Separation of Concerns
Specifies Static System Structure
Reflects Dependencies

MenuViewers

TextFrames

System

Oberon

Viewers Texts

Modules Fonts

Files

Display FileDir

Kernel

Input SCC Diskette

Edit Net Backup

Printer

Reals

Import
Module

ADT Text

User
Commands

Interface

UI

The Oberon System

10

Text as an Abstract Data Type

Integrated in Core System
Accessed by ADT Reader, Scanner, Writer
Consumed and Produced by Programs
Parsed by Commands
Used for Powerful Textual User Interface

Object Spectrum

+ Activities

+ Methods

Data Fields

Ingredients ModelLevelRole

OOP+ FunctionalServant

Actor+ BehaviorActor

A&DRecordOperand

Focused by OO
Languages

11

Simulation Engine

TYPE
Event = POINTER TO RECORD
next: Event;
t: REAL;
handle: PROCEDURE (this: Event)

END;
GetNext(e);
WHILE e.t <= simPeriod DO
now := e.t; e.handle(e)
GetNext(e)

END

Eventhandler

e.handle := MyEventHandler

PROCEDURE MyEventHandler (e: Event);
BEGIN ...
END MyEventHandler;

Simulate(simPeriod)

"Make it as Simple as Possible...
TYPE
Message = RECORD END;
Object = POINTER TO RECORD
f: PROCEDURE (me: Object; msg: Message);

END;

(*method call*)
... x.f(me, myMessage);

Quotation A. Einstein

12

Type Extension Applied Twice
TYPE
OpMessage = RECORD (Message)
op: INTEGER

END;

TextMessage = RECORD (Message)
text: ARRAY 100 OF CHAR

END;

MyObject = POINTER TO RECORD (Object)
state: INTEGER

END;

Runtime Dispatching Handler
PROCEDURE myf (x: Obj; m: Message);
BEGIN
IF m IS OpMessage THEN
CASE m(OpMessage).op OF ... END

ELSIF m IS TextMessage THEN
(*parse m(TextMessage).text*)

ELSE (*unknown message received*)
END

END myf;

VAR x: MyObject;
... NEW(x); x.f := myf; ...

Instance-centered
coupling of functionality

13

Method Call Machine Code
Method call
x
adr(m)
tag(m)
x
x.f

x.f(x, m)
PUSH [-4]
PUSH [12]
PUSH -104
MOV EBX, [-4]
CALL 0[EBX]

Entry protocol
Save old stack frame
New fp is top of stack

PROCEDURE myf
PUSH EBP
MOV EBP,ESP

Exit protocol
Restore fp

Remove pars and return

END
MOV ESP,EBP
POP EBP
RET 12

Component Hierarchy

Delegate

Delegate Doesn't
understand

Doesn't
understand

Parental Control
Design Pattern

Preprocessing

Container
Hierarchy

Handle

14

... But Not Simpler"

• Oberon Runtime Type Support

Object2a
Object1b

Object0

size
base

TD[1]
TD[2] TD[1]

x: Object2a

Type Descriptortag

TD[2]

TD[2]
TD[1]

size
base

size
base

CMP x.tag.TD[lev], ADR(TD(T))
BNE trap

x(T) →

TypeLevel(T)

Quotation A. Einstein 1a 1b

0

2a 2b

Runtime Typing Machine Code
Type test
Type tag
Extension level
OpMessage descriptor
If negative

IF m IS OpMessage THEN
MOV EBX,12[EBP]
MOV EBX,-12[EBX]
CMP EBX,[8]
JNZ 53 (00000086H)

Type guard

Trap no
Trap

m(OpMessage).op
MOV EBX,12[EBP]
MOV EBX,-12[EBX]
CMP EBX,[8]
JZ 3 (00000062H)
PUSH 6
INT 3

15

Outlook: Active Objects
TYPE
Particle = POINTER TO RECORD
col: INTEGER; t, dt: REAL;
x, k0, k1, k2, k3, q: Vector;
f: PROCEDURE (me: Particle; x: Vector): Vector;

BEGIN { ACTIVITY }
LOOP Flip(x[0], x[1], col);

PASSIVATE dt*10000;
Flip(x[0], x[1], col); Draw(col, x[0], x[1]);
k0 := f(x);
k1 := f(x + dt/2 * k0);
k2 := f(x + dt/2 * k1);
k3 := f(x + dt * k2);
x := x + dt * (1/6*k0 + 1/3*k1 + 1/3*k2 + 1/6*k3);
t := t + dt

END
END Particle;

In
tri

ns
ic

Be
ha

vi
or

Outlook: Active Objects
TYPE

LorenzParticle = POINTER TO RECORD (Particle);
sigma, r, b: REAL

END LorenzParticle;

PROCEDURE Lorenzf (me: Particle; x: Vector): Vector;
VAR y: Dynamics.Vector;

BEGIN
y[0] := me(LorenzParticle).sigma*(x[1]-x[0]);
y[1] := -x[0]*x[2] + r*x[0] - x[1];
y[2] := x[0]*x[1] - b*x[2];
RETURN y

END Lorenzf;

16

Conclusion
• Oberon and its successors are quite successful

in the hands of specially skilled software
constructors.

• The common programming paradigm has shifted
in the meantime from full custom algorithm &
data development to extensive reuse of libraries

• Commercial languages have taken up many of
the virtues discussed, for example, linking loader
technology and fully managed runtimes

• Moore's law has partly spoilt the show of
resource efficiency. A decrease of response time
from 0.1 sec to 0.01 sec is far less dramatic than
a decrease from 1 sec to 0.1 sec. A new chance
opens in the area of the "disappearing computer"

Conclusion Continued
• Modern systems have reached a state of

"unmastered complexity. Calls for simplicity are
en vogue. Bill Gates quoting Mark Twain at the
1998 Microsoft company meeting:

• The most effective key to simplicity is the art of
uniforming what can be uniformed and
separating what should be separated

• The question remains what a complex system
can do that Oberon cannot.

I am sorry that I wrote such a long letter,
I did't have time to write a shorter one
Mark Twain in a letter to a friend

