

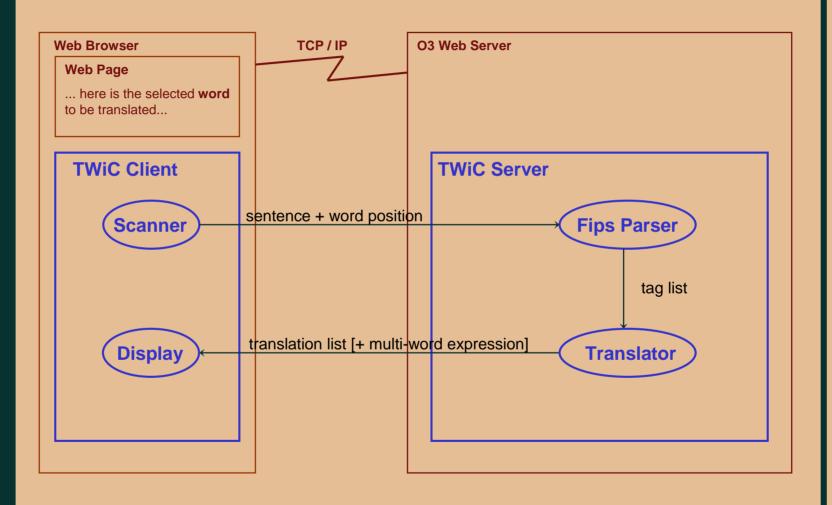
Oberon for Natural Language Processing

Eric Wehrli & Luka Nerima
LATL-Dept. of Linguistics
University of Geneva
Eric.Wehrli@lettres.unige.ch

Oberon day @ CERN March 10, 2004

A concrete example : TWiC 1-The problem

- Provide terminological assistance to readers of on-line documents in foreign languages.
- Neither on-line dictionaries nor machine translation constitute adequate solutions:
 - Dictionaries tend to be « noisy »
 (ignoring contextual information, they return irrelevant information)
 - Machine translation is still too unreliable



2-Proposed solution

- TWiC (Translation of words in context) is a bilingual (English-French) terminological assistant for on-line documents.
 - Given a selected word, TWiC will display possible translations compatible with the linguistic context (syntax and very partially semantics)
 - For instance, given the word « gave » in « he gave it up », TWiC returns « abandonner, renoncer à » and not the dozens of possible translations of the verb « to give »

TWiC Architecture

TWiC POS tag list

They foiled an attempt...

Source word	POS tag	Position	Lexeme number	Expression number
they	PRO-PER-3-PLU	0	111000011	
foiled	VER-PAS-3-PLU	5	111016454	141000136
an	DET-SIN	12	111050002	
attempt	NOU-SIN	15	111005034	- 141000136

Advantages

- Better identification of selected item (less noise)
 - Ils ont passé tout l'été (summer vs been)
 - They all rose
- I dentification of multiword expressions
 - They didn't get along well.
 - The record she has broken was 10 years old.

 $[_{DP} \text{ the } [_{NP} \text{ record}_i [_{CP} [_{DP} e_i]]_{TP} [_{DP} \text{ she }] \text{ has } [_{VP} \text{ broken } [_{DP} e_i]]]]]]$

- They saw a school of little fishes.
- He foiled an attempt.

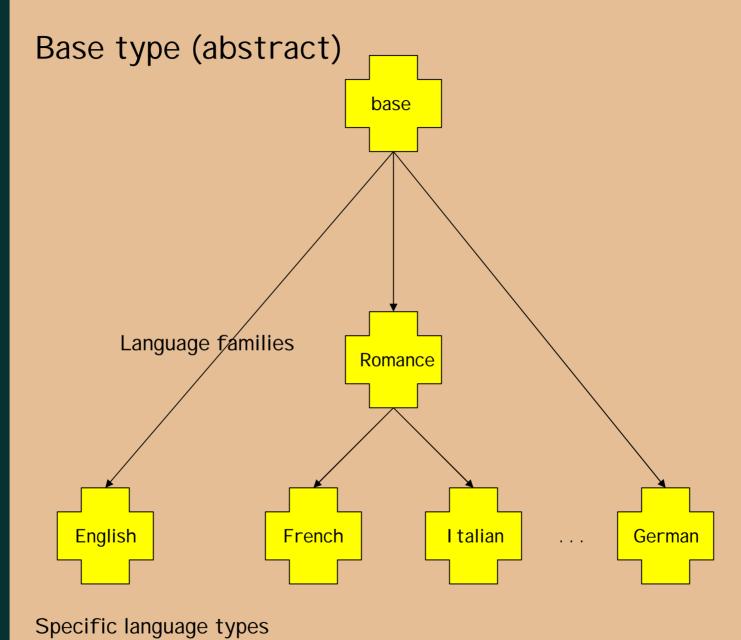
Some figures

- Size of lexical DB
 - French & English monolingual dictionaries :
 - ~50k lexemes + ~2500 expressions
 - >200k morphological forms (>100 for English)
 - Bilingual (English-French): ~50k entries
- Proc. speed: ~150 words/sec
- Size of application
 - Client module: ~1MB
 - Server module : ~2,5MB
 - I SAM datafiles : ~40MB
- Fips source code (generic)
 - 35 modules, ~37'500 lines of code
- Source code (language-specific)
 - 2 modules, ~7'000 lines of code (per language)

Why Oberon? Why BlackBox? (1/2)

Automatic garbage collection

NLP is hugely non-deterministic (combinatorics of syntactic ambiguities such as prepositional phrase attachments corresponds to the Catalan number sequence)


Fast code (vs Prolog or Lisp)

Given the high-level of non-determinism of NLP applications, extremely fast code is necessary to achieve real time responses

Object-oriented language

Object design appears to be a good/interesting way to model language variation

Why Oberon? Why BlackBox? (2/2)

- Environment is fully unicode and wellintegrated in the Windows system we have done some morphological work on Greek, Hungarian, Russian, and would like to consider Asian and Semitic languages
- Easy to develop distributable exe or dll components
- Hypertext facilities and more generally the richness of the MVC design
- Top-level assistance and support from OM