Рейтинг (ПРНД) сотруднков ИЯИ РАН сезона 23 [309]

по группам: Теоретическая физика, Ядерная физика,Нейтринная физика и КЛ, физика Частиц, Ускорительная физика,Междисциплинарные исследования
по должностям и регионам: Москва, научные Сотрудники (по Указу), научные Работники (вне Указа), Аспиранты, стуДенты, внешние совМестители, Сб...Мб - то же для БНО
ФИОГРПРНДПРНД
рук
к-т умно
жения
датафайл
расчёта
должн
Воронин Дмитрий МихайловичЧ392,61,5а13.01.2023А

Воронин Дмитрий Михайлович
01.04.94, младший научный сотрудник ОЭФ

Публикации:
2021
1.   Ushakov N.A., Fazliakhmetov A.N., Gangapshev A.M. …, D.M. Voronin et al. New large-volume detector at the Baksan Neutrino Observatory: Detector prototype // Journal of Physics: Conference Series, V.1787, 012037 (2021). DOI:10.1088/1742-6596/1787/1/012037

0.547*30*0.2*2=6.564
2.   C. Cao, J. Xu, M. He, …, D.M. Voronin et al. Mass production and characterization of 3-inch PMTs for the JUNO experiment // Nuclear Instruments and Methods in Physics Research, Section A, V.1005, 165347 (2021). DOI:10.1016/j.nima.2021.165347

1.335*30*0.07=2.804

3.   A. Abeln, K. Altenmuller, S. Arguedas Cuendis, …, D. Voronin et al. Conceptual design of BabyIAXO, the intermediate stage towards the International Axion Observatory // Journal of High Energy Physics, V.2021, 137 (2021). DOI:10.1007/JHEP05(2021) 137
6,379х30х0,047= 8,994
4.   V.V. Prosin, I.I. Astapov, P.A. Bezyazeekov, …, D.M. Voronin et al. Depth of the Maximum of Extensive Air Showers (EASes) and the Mean Mass Composition of Primary Cosmic Rays in the 1015–1018 eV Range of Energies, According to Data from the TUNKA-133 and TAIGA-HiSCORE Arrays for Detecting EAS Cherenkov Light in the Tunkinsk Valley // Bulletin of the Russian Academy of Sciences: Physics, V.85, 395–397 (2021). DOI:10.3103/S1062873821040298

0.564 *60*0.07*1.5=3,553

5.   L.G. Sveshnikova, I.I. Astapov, P.A. Bezyazeekov, …, D.M. Voronin et al. Detecting Gamma Rays with Energies Greater than 3–4 ТeV from the Crab Nebula and Blazar Markarian 421 by Imaging Atmospheric Cherenkov Telescopes in the TAIGA Experiment // Bulletin of the Russian Academy of Sciences: Physics, V.85, 398–401 (2021). DOI:10.3103/S1062873821040365

0.564 *60*0.07*1.5=3,553

6.   D.A. Podgrudkov, E.A. Bonvech, I.V. Vaiman, …, D.M. Voronin et al. First Results from Operating a Prototype Wide-Angle Telescope for the TAIGA Installation // Bulletin of the Russian Academy of Sciences: Physics, V.85, 408–411 (2021). DOI: 10.3103/S1062873821040286

0.564 *60*0.07*1.5=3,553

7.   Angel Abusleme, Thomas Adam, Shakeel Ahmad, …, Dmitriy Voronin et al. JUNO sensitivity to low energy atmospheric neutrino spectra // The European Physical Journal C, V.81, 887 (2021). DOI:10.1140/epjc/s10052-021-09565-z

4.991*30*0.018=2.695

8.   Angel Abusleme, Thomas Adam, Shakeel Ahmad, …, Dmitriy Voronin et al. The design and sensitivity of JUNO’s scintillator radiopurity pre-detector OSIRIS // The European Physical Journal C, V.81, 973 (2021). DOI:10.1140/epjc/s10052-021-09544-4
4,991x30x0,018= 2,695
9.   Angel Abusleme, Thomas Adam, Shakeel Ahmad, …, Dmitriy Voronin et al. Radioactivity control strategy for the JUNO detector // Journal of High Energy Physics, V.2021, 102 (2021). DOI:10.1007/JHEP11(2021)102

6.379*30*0.018=3.445

10.   A. Abeln, K. Altenmuller, S. Arguedas Cuendis, … D. Voronin et al. Axion search with BabyIAXO in view of IAXO // PoS (ICHEP2020) 390 DOI: 10.22323/1.390.0631
8х0,047=0,376
11.   Ushakov N.A., Fazliakhmetov A.N., Gangapshev A.M. …, Voronin D.M. et al. A new Baksan Large Neutrino Telescope: the project’s status // PoS (ICRC2021) 1188 DOI:10.22323/1.395.1188
8x0,2x2=3,2
12.   Ushakov N.A., Fazliakhmetov A.N., Gangapshev A.M. …, Voronin D.M. et al. Evaluation of large area photomultipliers for use in a new Baksan Large Neutrino Telescope project // PoS (ICRC2021) 1101 DOI:10.22323/1.395.1101
8x0,3x2=4,8
13.   D. Voronin, A. Fazliakhmetov, et al. Development of calibration system for a project of a new Baksan Large Neutrino Telescope // PoS (ICRC2021) 1100 DOI:10.22323/1.395.1100
8x0,3x2=4,8
14.   D. Voronin, A. Fazliakhmetov, et al. Calibration system of EAS Cherenkov arrays using commercial drone helicopter // PoS (ICRC2021) 268 DOI:10.22323/1.395.0268
8x0,3x2=4,8
15.   A.N. Fazliakhmetov, V.N. Gavrin, …, Voronin D.M. et al. Light concentrators for large-volume detector at the Baksan Neutrino Observatory // PoS (ICRC2021) 1097 DOI:10.22323/1.395.1097
8x0,2x2=3,2
16.   Panov, A.D., Astapov, I.I., Beskin, G.M., …, Voronin D. et al. Search for Astrophysical Nanosecond Optical Transients with TAIGA-HiSCORE Array. Phys. Atom. Nuclei 84, 1037–1044 (2021). DOI:10.1134/S1063778821130251
0,41х0,07х60х1,5=2.583
17.   Tluczykont, M., Astapov, I.I., Awad, A.K., …, Voronin D. et al. Status and First Results of TAIGA. Phys. Atom. Nuclei 84, 1045–1052 (2021). DOI: 10.1134/S1063778821130378
0,41х0,07х60х1,5=2.583
18.   Kuzmichev, L.A., Astapov, I.I., Bezyazeekov, P.A., …, Voronin D. et al. Cosmic Ray Study at the Astrophysical Complex TAIGA: Results and Plans. Phys. Atom. Nuclei 84, 966–974 (2021). DOI:10.1134/S1063778821130172

0,41х0,07х60х1,5=2.583

19.   R. Monkhoev, M. Ternovoy, I. Astapov, …, D. Voronin et al. Geant4 simulation of the Tunka-Grande experiment 2021 J. Phys.: Conf. Ser. 2103 012001. DOI:10.1088/1742-6596/2103/1/012001

0.547*30*0.07*1.5=1.723

20.   N. Budnev, I. Astapov, …, D. Voronin et al. TAIGA—An Innovative Hybrid Array for High Energy Gamma Astronomy, Cosmic Ray Physics and Astroparticle Physics // Physics of Atomic Nuclei. 2021. V. 84. N. 3. P. 362–367. DOI: 10.1134/S1063778821030078
0.41*60*0.07*1.5=2.583

21.   V. Prosin, I. Astapov, …, D. Voronin et al. Energy Spectrum and Mass Composition of Cosmic Rays from the Data of the Astrophysical Complex TAIGA // Physics of Atomic Nuclei. 2021. V. 84. P. 1653–1659. DOI: 10.1134/S1063778821090283

0.41*60*0.07*1.5=2.583

22.   M. Ternovoy, I. Kotovschikov, …, D. Voronin et al. Simulation of the Tunka-Grande, TAIGA-Muon and TAIGA-HiSCORE arrays for a search of astrophysical gamma quanta with energy above 100 TeV // J. Phys.: Conf. Sers. 2021. V. 1847. N.1. P. 012047. DOI: 10.1088/1742-6596/1847/1/012047

0.547*30*0.07*1.5=1.723

23.   A. L. Ivanova, R. Monkhoev, …, D. Voronin et al. Tunka-Grande scintillation array: resent results // J. Phys.: Conf. Ser. (2021) 2156 012196. DOI: 10.1088/1742-6596/2156/1/012196
   0.547*30*0.07*1.5=1.723

ПРНД 2021 = 77,116


2022

1.   Angel Abusleme, Thomas Adam, …, Dmitriy Voronin et al. JUNO Physics and Detector // Progress in Particle and Nuclear Physics (2022) 123: 103927. DOI: 10.1016/j.ppnp.2021.103927

12.425*30*0.018= 6.7095

2.   Angel Abusleme, Thomas Adam, …, Dmitriy Voronin et al. Sub-percent precision measurement of neutrino oscillation parameters with JUNO // Chinese Phys. C (2022) 46: 123001. DOI: 10.1088/1674-1137/ac8bc9

2.944*30*0.018=1.59

3.   A. Sidorenkov, O. Borshchev, …, D. Voronin et al. Characterization of a high light yield liquid scintillator with a novel organosilicon fluor developed for astroparticle physics experiments // Eur. Phys. J. C (2022) 82: 1038. DOI: 10.1140/epjc/s10052-022-11017-1

4.991*30*0.2*2=59.892

4.   N.Budnev, I.Astapov, P.Bezyazeekov, …, D. Voronin et al. TAIGA—A hybrid array for high energy gamma-ray astronomy and cosmic-ray physics, Nuclear Instruments and Methods in Physics Research Section A. 1039. 2022. 167047. DOI: 10.1016/j.nima.2022.167047

1.335*30*0.07*1.5=4.205

5.   The JUNO collaboration., Wang J., Liao J., …, Voronin D. et al. Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment // J. High Energ. Phys. 2022. 62 (2022). DOI: 10.1007/JHEP06(2022)062

6.379*30*0.018=3.445

6.   I. Astapov, P. Bezyazeekov, …, D. Voronin et al. Optimisation studies of the TAIGA-Muon scintillation detector array // Journal of Instrumentation (2022) 17. P06022. DOI: 10.1088/1748-0221/17/06/P06022

1.121*30*0.07*1.5=3.531

7.   I. Astapov, P. Bezyazeekov, …, D. Voronin et al. Identification of electromagnetic and hadronic EASs using neural network for TAIGA scintillation detector array // Journal of Instrumentation (2022) 17. P05023. DOI: 10.1088/1748-0221/17/05/P05023

1.121*30*0.07*1.5=3.531

8.   I. Astapov, P. Bezyazeekov, …, D. Voronin et al. Cosmic-Ray Research at the TAIGA Astrophysical Facility: Results and Plans // Journal of Experimental and Theoretical Physics (2022) 134(4), 469-478. DOI: 10.1134/S1063776122040136

1.111*60*0.07*1.5=6.999

9.   A. Grinyuk, E. Postnikov, …, D. Voronin et al. Stereoscopic and monoscopic operation of the five IACTs in the TAIGA experiment. 2022. PoS(ICRC2021) Volume 395. DOI: 10.22323/1.395.0713

8*0.07*1.5=0.84

10.   D. Zhurov, O.A. Gress, …, D. Voronin et al. TAIGA-IACT pointing control and monitoring software status. 2022. PoS(ICRC2021) Volume 395. DOI: 10.22323/1.395.0690

8*0.07*1.5=0.84

11.   M. Blank, M. Tluczykont, …, D. Voronin et al. Development of hybrid reconstruction techniques for TAIGA. 2022. PoS(ICRC2021) Volume 395. DOI: 10.22323/1.395.0757

8*0.07*1.5=0.84

12.   A. Panov, I. Astapov, …, D. Voronin et al. Search for nanosecond-fast optical transients with TAIGA-HiSCORE array. 2022. PoS(ICRC2021) Volume 395. DOI: 10.22323/1.395.0951

8*0.07*1.5=0.84

13.   A. Ivanova, M. Brueckner, …, D. Voronin et al. Tunka-Grande array for high-energy gamma-ray astronomy and cosmic-ray physics: preliminary results. 2022. PoS(ICRC2021) Volume 395. DOI: 10.22323/1.395.0361

8*0.07*1.5=0.84

14.   E. Yu Mordvin, N. V. Volkov, …, D.M. Voronin et al. Astroclimate of the High Mountain Plains of the Greater Altai, According to Satellite Remote Sensing Data: Potential for Deploying a Full-Scale Gamma Astronomy Experiment // Bulletin of the Russian Academy of Sciences: Physics. 2022. 86(3), 370-373. DOI: 10.3103/S1062873822030182

0.564 *60*0.07*1.5=3,553

15.   M. Vasyutina, L. Sveshnikova, …, D. Voronin et al. Gamma/Hadron Separation for a Ground Based IACT in Experiment TAIGA Using Machine Learning Methods. 2022. PoS (DLCP2021). DOI: 10.22323/1.410.0008

8*0.07*1.5=0.84

16.   D. Chernov, E. Bonvech, …, D. Voronin et al. SiPM-based camera for gamma-ray imaging air Cherenkov telescope // J. Phys.: Conf. Ser. (2022) 2374 012045 DOI: 10.1088/1742-6596/2374/1/012045
0.547*30*0.07*1.5=1.723

17.   E. Kravchenko, J. E. Alizzi, …, D. Voronin et al. Development of scintillation detectors with light collection via wavelength shifting light guides for TAIGA experiment // J. Phys.: Conf. Ser. (2022) 2374 012042. DOI: 10.1088/1742-6596/2374/1/012042

0.547*30*0.07*1.5=1.723
18.   Angel Abusleme, Thomas Adam, …, Dmitriy Voronin et al. Mass testing and characterization of 20-inch PMTs for JUNO. Eur. Phys. J. C 82, 1168 (2022). DOI:10.1140/epjc/s10052-022-11002-8
4.991*30*0.018=2.695

ПРНД 2022 = 104,6365

Доклады:
2021
1. Воронин Д.М. XXVIII Международная конференция студентов, аспирантов и молодых учёных «Ломоносов» — 2021, устный доклад «Применение управляемых летательных аппаратов для калибровок установок, регистрирующих черенковский свет от ШАЛ», https://lomonosov-msu.ru/file/event/7000/request/777332/ersn16749/invite.pdf
25
2. Dmitry Voronin 37th International Cosmic Ray Conference — 2021, постерный доклад «Development of calibration system for a project of a new Baksan Large Neutrino Telescope» https://icrc2021-venue.desy.de/video/Development-of-calibration-system-for-a-project-of-a-new-Baksan-Large-Neutrino-Telescope/5dca493fc77cc722bf490ec7daf35106
10
3. Dmitry Voronin 37th International Cosmic Ray Conference — 2021, постерный доклад «Calibration system of EAS Cherenkov arrays using commercial drone helicopter» https://icrc2021-venue.desy.de/video/Calibration-system-of-EAS-Cherenkov-arrays-using-commercial-drone-helicopter/845eb494f1738c60c60a53d6ec67c3da
10
4. Воронин Д.М. 64-я Всероссийская научная конференция МФТИ — 2021, устный доклад «Применение управляемых летательных аппаратов для калибровок установок, регистрирующих черенковский свет от ШАЛы», https://drive.google.com/drive/folders/1loJnL-S2IDeHv_UgYb9SjEA0OlsMqvQu
25

2022
1. Воронин Д.М. 37 Всероссийская конференция по космическим лучам – 2022, постерный доклад «Калибровочная система черенковских детекторов широких атмосферных ливней с использованием дистанционно управляемых летательных аппаратов», http://rcrc2022.sinp.msu.ru/
10
Итоговый ПРНД = (77,116 + 104,6365 + 80) * 1,5 = 392,63